eISSN : 3022-7011
After the Korea Information Processing Society (KIPS) Transactions journal was founded in 1994, it was reorganized into the KIPS Transactions: Computer and Communication Systems(2287-5891/2734-049X ) and the KIPS Transactions: Software and Data Engi neering(2287-5905/2734-0503) in 2012. Through the KIPS official meeting on January 8th, 2024, the new KIPS Transaction journal was founded by integrating two KIPS Journals, KIPS Transactions: Computer and Communication Systems and KIPS Transactions: Software and Data Engineering. The new journal aims to realize social value and contribute to the development of South Korea’s science and technology with support from the lottery fund of the Ministry of Strategy and Finance and the science/technology promotion fund of the Ministry of Science and ICT. It is indexed in the Korea Science Academic Database, Korea Citation Index (KCI), and EBSCO.


A Study on Improving Performance of Software Requirements Classification Models by Handling Imbalanced Data

Jong-Woo Choi  Young-Jun Lee  Chae-Gyun Lim  Ho-Jin Choi

Software requirements written in natural language may have different meanings from the stakeholders’ viewpoint. When designing an architecture based on quality attributes, it is necessary to accurately classify quality attribute requirements because...

Extending StarGAN-VC to Unseen Speakers Using RawNet3 Speaker Representation

Bogyung Park  Somin Park  Hyunki Hong

Voice conversion, a technology that allows an individual’s speech data to be regenerated with the acoustic properties(tone, cadence, gender) of another, has countless applications in education, communication, and entertainment. This paper proposes a...

A Study on Classification Models for Predicting Bankruptcy Based on XAI

Jihong Kim  Nammee Moon

Efficient prediction of corporate bankruptcy is an important part of making appropriate lending decisions for financial institutions and reducing loan default rates. In many studies, classification models using artificial intelligence technology hav...

Detecting Common Weakness Enumeration(CWE) Based on the Transfer Learning of CodeBERT Model

Chansol Park  So Young Moon  R. Young Chul Kim

Recently the incorporation of artificial intelligence approaches in the field of software engineering has been one of the big topics. In the world, there are actively studying in two directions: 1) software engineering for artificial intelligence an...

Latest Publication   (Vol. 13, No. 3, Mar.  2024)

Technique to Reduce Container Restart for Improving Execution Time of Container Workflow in Kubernetes Environments
Taeshin Kang  Heonchang Yu
The utilization of container virtualization technology ensures the consistency and portability of data-intensive and memory volatile workflows. Kubernetes serves as the de facto standard for orchestrating these container applications. Cloud users often overprovision container applications to avoid container restarts caused by resource shortages. However, overprovisioning results in decreased CPU and memory resource utilization. To address this issue, oversubscription of container resources is commonly employed, although excessive oversubscription of memory resources can lead to a cascade of container restarts due to node memory scarcity. Container restarts can reset operations and impose substantial overhead on containers with high memory volatility that include numerous stateful applications. This paper proposes a technique to mitigate container restarts in a memory oversubscription environment based on Kubernetes. The proposed technique involves identifying containers that are likely to request memory allocation on nodes experiencing high memory usage and temporarily pausing these containers. By significantly reducing the CPU usage of containers, an effect similar to a paused state is achieved. The suspension of the identified containers is released once it is determined that the corresponding node's memory usage has been reduced. The average number of container restarts was reduced by an average of 40% and a maximum of 58% when executing a high memory volatile workflow in a Kubernetes environment with the proposed method compared to its absence. Furthermore, the total execution time of a container workflow is decreased by an average of 7% and a maximum of 13% due to the reduced frequency of container restarts.
The Transactions of the Korea Information Processing Society, Vol. 13, No. 3, pp. 91-101, Mar. 2024
resource management Kubernetes Container Workflow Memory Oversubscription
Reed-Solomon Encoded Block Storage in Key-value Store-based Blockchain Systems
Seong-Hyeon Lee  Jinchun Choi  Myungcheol Lee
Blockchain records all transactions issued by users, which are then replicated, stored, and shared by participants of the blockchain network. Therefore, the capacity of the ledger stored by participants continues to increase as the blockchain network operates. In order to address this issue, research is being conducted on methods that enhance storage efficiency while ensuring that valid values are stored in the ledger even in the presence of device failures or malicious participants. One direction of research is applying techniques such as Reed-Solomon encoding to the storage of blockchain ledgers. In this paper, we apply Reed-Solomon encoding to the key-value store used for ledger storage in an open-source blockchain, and measure the storage efficiency and increasing computational overhead. Experimental results confirm that storage efficiency increased by 86% while the increase in CPU operations required for encoding was only about 2.7%.
The Transactions of the Korea Information Processing Society, Vol. 13, No. 3, pp. 102-110, Mar. 2024
BFT Blockchain erasure code Key-Value Store Reed-Solomon Encoding
Model-Based Intelligent Framework Interface for UAV Autonomous Mission
Son Gun Joon  Lee Jaeho
Recently, thanks to the development of artificial intelligence technologies such as image recognition, research on unmanned aerial vehicles is being actively conducted. In particular, related research is increasing in the field of military drones, which costs a lot to foster professional pilot personnel, and one of them is the study of an intelligent framework for autonomous mission performance of reconnaissance drones. In this study, we tried to design an intelligent framework for unmanned aerial vehicles using the methodology of designing an intelligent framework for service robots. For the autonomous mission performance of unmanned aerial vehicles, the intelligent framework and unmanned aerial vehicle module must be smoothly linked. However, it was difficult to provide interworking for drones using periodic message protocols with model-based interfaces of intelligent frameworks for existing service robots. First, the message model lacked expressive power for periodic message protocols, followed by the problem that interoperability of asynchronous data exchange methods of periodic message protocols and intelligent frameworks was not provided. To solve this problem, this paper proposes a message model extension method for message periodic description to secure the model's expressive power for the periodic message model, and proposes periodic and asynchronous data exchange methods using the extended model to provide interoperability of different data exchange methods.
The Transactions of the Korea Information Processing Society, Vol. 13, No. 3, pp. 111-121, Mar. 2024
intelligent framework Drone Autonomy Interface interoperability
Implementation of a Scheme Mobile Programming Application and Performance Evaluation of the Interpreter
Dongseob Kim  Sangkon Han  Gyun Woo
Though programming education has been stressed recently, the elementary, middle, and high school students are having trouble in programming education. Most programming environments for them are based on block coding, which hinders them from moving to text coding. The traditional PC environment has also troubles such as maintenance problems. In this situation, mobile applications can be considered as alternative programming environments. This paper addresses the design and implementation of coding applications for mobile devices. As a prototype, a Scheme interpreter mobile app is proposed, where Scheme is used for programming courses at MIT since it supports multi-paradigm programming. The implementation has the advantage of not consuming the network bandwidth since it is designed as a standalone application. According to the benchmark result, the execution time on Android devices, relative to that on a desktop, was 131% for the Derivative and 157% for the Tak. Further, the maximum execution times for the benchmark programs on the Android device were 19.8ms for the Derivative and 131.15ms for the Tak benchmark. This confirms that when selecting an Android device for programming education purposes, there are no significant constraints for training.
The Transactions of the Korea Information Processing Society, Vol. 13, No. 3, pp. 122-129, Mar. 2024
scheme RScheme Programming Mobile App jni Benchmarking
Autoencoder Based N-Segmentation Frequency Domain Anomaly Detection for Optimization of Facility Defect Identification
Kichang Park  Yongkwan Lee
Artificial intelligence models are being used to detect facility anomalies using physics data such as vibration, current, and temperature for predictive maintenance in the manufacturing industry. Since the types of facility anomalies, such as facility defects and failures, anomaly detection methods using autoencoder-based unsupervised learning models have been mainly applied. Normal or abnormal facility conditions can be effectively classified using the reconstruction error of the autoencoder, but there is a limit to identifying facility anomalies specifically. When facility anomalies such as unbalance, misalignment, and looseness occur, the facility vibration frequency shows a pattern different from the normal state in a specific frequency range. This paper presents an N-segmentation anomaly detection method that performs anomaly detection by dividing the entire vibration frequency range into N regions. Experiments on nine kinds of anomaly data with different frequencies and amplitudes using vibration data from a compressor showed better performance when N-segmentation was applied. The proposed method helps materialize them after detecting facility anomalies.
The Transactions of the Korea Information Processing Society, Vol. 13, No. 3, pp. 130-139, Mar. 2024
Anomaly Detection Prediction Maintenance Autoencoder Unsupervised learning Frequency Domain
Three-Dimensional Convolutional Vision Transformer for Sign Language Translation
Horyeor Seong  Hyeonjoong Cho
In the Republic of Korea, people with hearing impairments are the second-largest demographic within the registered disability community, following those with physical disabilities. Despite this demographic significance, research on sign language translation technology is limited due to several reasons including the limited market size and the lack of adequately annotated datasets. Despite the difficulties, a few researchers continue to improve the performacne of sign language translation technologies by employing the recent advance of deep learning, for example, the transformer architecture, as the transformer-based models have demonstrated noteworthy performance in tasks such as action recognition and video classification. This study focuses on enhancing the recognition performance of sign language translation by combining transformers with 3D-CNN. Through experimental evaluations using the PHOENIX-Wether-2014T dataset [1], we show that the proposed model exhibits comparable performance to existing models in terms of Floating Point Operations Per Second (FLOPs).
The Transactions of the Korea Information Processing Society, Vol. 13, No. 3, pp. 140-147, Mar. 2024
Sign Language Translation Transformer Convolutional Transformer
Korean Ironic Expression Detector
Seung Ju Bang  Yo-Han Park  Jee Eun Kim  Kong Joo Lee
Despite the increasing importance of irony and sarcasm detection in the field of natural language processing, research on the Korean language is relatively scarce compared to other languages. This study aims to experiment with various models for irony detection in Korean text. The study conducted irony detection experiments using KoBERT, a BERT-based model, and ChatGPT. For KoBERT, two methods of additional training on sentiment data were applied (Transfer Learning and MultiTask Learning). Additionally, for ChatGPT, the Few-Shot Learning technique was applied by increasing the number of example sentences entered as prompts. The results of the experiments showed that the Transfer Learning and MultiTask Learning models, which were trained with additional sentiment data, outperformed the baseline model without additional sentiment data. On the other hand, ChatGPT exhibited significantly lower performance compared to KoBERT, and increasing the number of example sentences did not lead to a noticeable improvement in performance. In conclusion, this study suggests that a model based on KoBERT is more suitable for irony detection than ChatG
The Transactions of the Korea Information Processing Society, Vol. 13, No. 3, pp. 148-155, Mar. 2024
Irony Detection KoBERT ChatGPT Transfer Learning MultiTask Learning