TY - JOUR T1 - Deep Neural Network-Based Scene Graph Generation for 3D Simulated Indoor Environments AU - Shin, Donghyeop AU - Kim, Incheol JO - The Transactions of the Korea Information Processing Society PY - 2019 DA - 2019/1/30 DO - 10.3745/KTSDE.2019.8.5.205 KW - Scene Graph KW - 3D Indoor Environment KW - Deep Neural Network KW - AI2-THOR AB - Scene graph is a kind of knowledge graph that represents both objects and their relationships found in a image. This paper proposes a 3D scene graph generation model for three-dimensional indoor environments. An 3D scene graph includes not only object types, their positions and attributes, but also three-dimensional spatial relationships between them, An 3D scene graph can be viewed as a prior knowledge base describing the given environment within that the agent will be deployed later. Therefore, 3D scene graphs can be used in many useful applications, such as visual question answering (VQA) and service robots. This proposed 3D scene graph generation model consists of four sub-networks: object detection network (ObjNet), attribute prediction network (AttNet), transfer network (TransNet), relationship prediction network (RelNet). Conducting several experiments with 3D simulated indoor environments provided by AI2-THOR, we confirmed that the proposed model shows high performance.