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Parameter Estimation and Prediction Methods for
Hyper-Geometric Distribution Software Reliability Growth Model

Joong-Yang Park' - Chang-Yeul Yoo™ - Bu-Kwon Lee™

ABSTRACT

The hyper-geometric distribution software reliability growth model was recently developed and successfully applied.
Due to mathematical difficulty of the maximum likelihood method, the least squares method has been suggested for
parameter estimation by the previous studies. We first summarize and compare the minimization criteria adopted by
the previous studies. It is then shown that the weighted least squares method is more appropriate because of the
nonhomogeneous variability of the number of newly detected faults. The adequacy of the weighted least squares
method is illustrated by two numerical examples. Finally, we propose a new method for predicting the number of
faults newly discovered by next test instances. The new prediction method can be used for determining the time to
stop testing.
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1. Introduction

In recent years software systems have been
widely applied to many complex and critical sys-
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tems. Since the failure of a software system may
result in serious damage, software systems are
required to be very reliable. Therefore software
reliability has become one of major issues in the
software system development. In order to quanti-
tatively assess the reliability of a software system
during the testing and operational phases, many
software reliability growth models (SRGMs) have
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been proposed in the literature. See, for example,
Goel [1] Ramamoorthy and Bastani [11] and Shan-
thikumar [12] The SRGMs are usually used to
estimate the number of remaining faults, software
reliability and other software quality assessment
measures. Some of currently available SRGMs
enable us to predict probabilistically the time to next
occurrence of failure in the operational phase.
Another class of SRGMs let us estimate the number
of software faults still residual after the debugging
process. The hyper-geometric distribution software
reliability growth model (HGDM) advocated by
Tohma et al. [13] belongs to the latter class of
SRGMs. A series of studies on the HGDM has been
made recently by Hou, Kuo and Chang [2] [3]
Jacoby and Tohma [6] Minohara and Tohma [9]
and Tohma et al. [14] Hou, Kuo and Chang [4]
[5Heveloped optimal software release policies based
on the HGDM.

This paper first considers the problem of esti-
mating the parameters of the HGDM. Then the
problem of predicting the number of faults newly
discovered by additional test operations is inves-
tigated. Section 2 briefly reviews the basic concept
and formulation of the HGDM. The parameter esti-
mation problem is discussed and then the weighted
least sequares method is proposed in Section 3.
Experiments have been performed by using two real
data sets and the results are presented in Section 4.
The results show that the proposed weighted least
squares method is useful. Section 5 suggests a
method for predicting the number of faults newly
discovered by future test operations. The method is
based on the expected value of the number of newly
discovered faults obtained on condition that the

cumulative number of faults is known.

2. Hyper-Geometric Distribution Software Relia-
bility Growth Model

In this section we briefly review the HGDM. At

the beginning of the test-and-debug process a
software system is assumed to have s initial
faults. Test operations performed in a day or a
week may be called a test instance. Test instances
are denoted by ¢;, i=1,2,+in accordance with the
order of applying them. The sensitivity factor, w;
represents the number of faults discovered by the
application of test instance #. Some of the faults
detected by ¢; may have been detected previously
by the application of test instances ¢;, j=1,,i—.1
Hence, the number of faults newly discovered by ¢,
is not necessarily equal to w; That is, each
detected fault can be classified into the two
categories, newly discovered faults and redis-

covered faults. Let N, denote the number of

faults newly discovered by ¢; and C;= 2Ni The
~

following assumptions are made on the HGDM.

(1) No new faults are introduced into the soft-
ware system during the debugging process.

(2) Sensitivity factor w; the number of faults
discovered by ¢, is the faults taken ran-
domly out of m initial faults.

(3) Sensitivity factor w; is represented as a
function of m and p; the progress in test-
and-debugging, ie, w;,=m#p;

The probability that x; faults are newly dis-
covered by ¢ on the condition that C;_,faults
has been discovered up to #,_;is then formulated
as

-Ci- Ci-
P(N;=x;|Ci-)) = (m = ])(w,-—lx,-) (1)

@

where max(U,wi— C,-_l)Sx,-Smin(w,-,m— C,'_l)

for i=1,2,» Co=0and x,=0 Thus the con-
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ditional expected value of N; is

E(N|Ci-1) =(m—C,_ ) p;i
The expected values of C; was derived by Jacoby and ‘
Tohmal[7] as

E(c,)=w{1—ll_j(1—p,-)] o)

The sensitivity factor plays an important role in the
HGDM. Various functions for w; have been devised
and successfully applied to real data sets. Especially
Hou, Kou and Chang [2] introduced two types of
sensitivity factor based on the learning curve. They
are respectively referred to as the exponential
sensitivity factor and the logistic sensitivity factor.
Functional'forms of the sensitivity factor are presented
in Table 1 of Jacoby and Tohma [7] and Minchara
and Tohma [9]

3. Parameter Estimation

Let ¢; and x; be the observed values of C; and
N;. Suppose that the software system is tested up to
test instance ¢,. The number of testers or computer
time associated with each test instance is recorded and
denoted by %, Then the available data consists of ¢;
(equivalently x,) and #; (if available), i=1,2,-,n
In order to estimate the current number of residual
faults and to predict the number of residual faults after
applying ¢,+4for d=1 we first need to estimate the
parameters in the model. Due to the mathematical
difficulty of the maximum likelihood method, the least
squares method has been used for the HGDM. Tohma
et al. [13] obtained the least squares estimates by
minimizing

Slei- BCOY 3)

This criterion was also employed in Hou, Kuo and
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Chang [2] [3] and Jacoby and Tohma [7] However,
Tohma et al. [14] minimized

2li— BN,IC )P @

The minimization of expression (4) is equiva-lent to
the minimization of

z[ci‘ﬂcilci—x)]z

since E(CiC;_))=Ci\+EN]|C;i-)) and C;=
C;-,+ N;. The distribution of N, given by expres-
sion (1), is dependent on C;-; C;_ has been already
realized and observed at the time when ith test
instance is applied. The information contained in C,.-,
should be utilized for predicting the expected value of
C; or N, Therefore, the minimization of expression
(4) is more appropriate than the minimization of
expression (3).

We should now note that the above two criteria
assume that the variability of N, i=1,2,: - are
homogenous. But this assumption does not hold for the
HGDM. The variance of N; is obtained from the
distribution of N; as

(m—Ci-1)Ci_10:(1 —p:)
m—1 ’

Var(N||C:_)) =

Clearly Var(N;|C;-,) is not constant for all :. In the
circumstances the weighted least squares method is ge
nerally known to be adequate. Generally observaions s
ubject to large variance are not as informative as obser
vations subject to small variance. Therefore the weight
for an observation should then be the reciprocal of its
variance. We may consider the estimates minimizing

[x,— E(WN;| Ci- )P
e Var(N,|Ci-y)"

4. Application to Real Data Sets

The weighted least squares method is applied to




2348 B=YENCI=Z =X MOSB M9=(989)

two real data sets. The first data set is presented in
Tohma et al. [14] It was collected from a software
system for monitering and real time control. The test
data were recorded day by day. Thus the test
operations performed in a day were regarded as a test
instance. The number of test workers was also
recorded for each test instance. Table 1 shows the
estimation results of the least squares and weighted
least squares methods. We assumed that w,=

mu;(@i+ B8) as in Tohma et al. [14] Henceforth

2" =mg 8 = mBand " denotes the estimate.

(Table 1> Estimation results for first data set

least squares | weighted least squares
m 497.2745 484.9785
2 0.0554 0.0854
B 1.7487 1.1058

In order to validate and check model as- sumptions
and model adequacy, the residual analysis should be
considered. The studentized residuals obtained by the
least squares method are plotted against 7 in Fig. 1.
The three data points for =11, 13, 14 appears to be
outliers. (The previous studies on this data set did not
make any comment on this.) Outliers may occur by
chance. Other causes such as the delayed report of
fault detection may result in outliers. In order to make
our discussion simple, we assume that the three data
points are observed by chance. Thus we ignore the
three data points and inspect Fig. 1. The variability of
N; is apparently nonhomogenuous. The variability
increases in the early phase and then decreases. We
thus employ the weighted least squares method. The
studentized residuals obtained by the weighted least
squares method are plotted in Fig. 2 Notice that three
suspicious points are much more clearly revealed. By
ignoring the three data points, we can see that the
variability has been stabilized. Using the weighted
least squares estimates, we can compute the following
estimates:

E(N,l Ci-n= (’/;l—ci—l )i\:
and

E(CICi-) = ci-y + EWNJIG-))

where p;= u;{ @i+ B). Fig. 3 shows the plots of ¢;
and E(C;|C;_,)depicted against i. E(CiIC;-))

closely fits to c¢;.
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(Fig. 1) Plot of studentized residuals obtained by the
least squares method. (first data set)
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(Fig. 2) Plot of studentized residuals obtained by the
weighted least squares method. (first data set)



(Fig. 3) Plots of ¢; and E(C;|C;_, pgainst i. ¢; :

solid line, E(C;|C;_,): dashed line. (first
data set)
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(Fig. 4) Plot of studentized residuals obtained by the
least squares method. (second data set)
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(Fig. 5) Plot of studentized residuals obtained by the
weighted least squares method.(second data
set)
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(Fig. 6) Plots of ¢; and E(C;IC;_, pgainst 7. ¢, :
solid line, E(C;IC;-,) dashed iine. (second
data set)
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The second data set was gathered from a switching
system and presented in Kanoun et al. [8] It is the
collection of the cumulative number of discovered
faults for 81 test instances. Since the number of test
workers and/or the computer time are not recorded,
this data set is analyzed under the assumption that
w;=m(ai+ B8). Table 2 and Fig.4-6 show the
results. The two data points for 7=2, 3seems to be
outliers. By simply ignoring the two data points and
comparing Fig.4 and Fig.5, we find that the
stabilization of variability has been achieved. Fig.6
shows that the assumed model works well.

(Table 2 Estimation results for second data set

least squares | weighted least squares
m 478.6827 464.9267
a° 0.1787 0.4555
B 11.3266 6.3174
5. Prediction

Suppose that we want to predict the number of
faults newly detected by next d test instances. That
is, we want the estimate of E(Nyi + -+ N, 4C,).
Once the estimate is obtained, we can easily compute
the estimate of E(C,+4C,)= Cp+ E(Nyi 1+
+ N,+4lC,). Such a prediction problem occurs when

we determine the software release time or further test
instances required to meet the given software reli-
ability objective. It can be shown that

E(N,H-[lcn) = (m—— Cn )au+l

E(Nu+] +Nn+2lcn)
= E[E(Nn+l +Nn+2lcn,Nu+l)|Cn]
. =E[(m_cn_Nn+] )pn+2+Nn+l|Cn]

=(m— Cn )[pn+2+(1_pn+2)pn+]]-

=(m=c)1- [0 -1,.))]

and in general

E(lgzvﬁﬂ c,,) = (m—C,,)[l—}lj(l-lJ..n)].

()]

E(C;) derived by Jocoby and Tohma [7] and given
in expression (2), is actually E(C;|C,) This can be
verified by substituting » and d in expression (5)
with 0 and ¢ By replaceing the parameters in
expression (5) with corresponding estimates, we can
predict the number of faults newly discovered by next
d test instances.

Example Consider the second data set. The data is
the collection of C; i=1,2,,81Suppose that we
want to predict the number of faults newly discovered
by next two test instances. This can be solved by
estimating E(Ng + Ngl Cg). Since cg = 461,

E(Ng+ Ng|Cq)

= (;'\l— 681)[1_1131 (1_138”,‘)]
=0.7065.

6. Conclusion

This paper first proposed the method for estimating
paramethers of HGDM. The previous studies sug-
gested the least squares method. We argued that the
weighted least squares method is more appropriate
then the least squares method. It was illustrated by
analyzing two real data set. We then proposed a new
method for predicting the number of faults newly
discovered by next test instances. It will be useful for
determining the time to stop testing.
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