Ao g A2 2415

2 <

Fol7 EAAE BY olFY FALE FoM AHAH AR 1F FE A& R AY AQ FaeFE AA U o
AL 3999 282 LEviEe] dedolr £33 FUAA AU o] EAdl Oi@ de¥ dnAF L o)AA
e HaE . B =R Adsls dandde FR2EYS N AAE AR YSd 2L Aol s d F
S g AoE dA AREo A YA 2AIE A

Minimal Circular Strings
Kyubum Wee'- Hong-Jin Yeh'!

ABSTRACT

We present a linear time algorithm for finding a lexicographicall); minimal circular string in a given string. The
problem was motivated by an effort to implement state transition functions in isotropic cellular automata. A naive
algorithm for the problem would require quadratic time. The proposed algorithm runs in linear time by keeping the

result of comparisons of substrings and reusing it afterwards when the same computation is needed.

1. Introduction

We consider the problem of finding a minimal
circular string in a given string. More formally, giv-
en a string s= a;a;*"*a, we want to find a posi-
tion 7 such that the circular string @i+
a,a;ay-a;-) is lexicographically smaller than or
equal to any other circular string @;a;+1°*°a.a a2
@iy for 1£/<n.

This problem was motivated by an effort to impl-
ement state transition functions of cellular automata

t F4384 olFdittn P R AR FAY 2F
=EHT 11998 39 59, AR 119989 79 13¢

[1]. A cell in cellular automata changes its state at
the next time step based on its state and its neigh-
bors’ states at the current time step. Since cellular
automata are isotropic, the neighbors’ directions are
irrelevant in det-ermining the next state. For exam-
ple, consider the following figure.

]

B | |E

o
oBg
EIBE

(38 1) A oy
(Fig. 1) rotational symmetry

Suppose that the cell at the center changes its
state from the state A into the state D at the next



2416 XFEMRIRST =FX| M5H H9%=(989)

time step. Then there should be an entry (ACBED,
D) in the table representing the state transition fun-
ction of the celluar automata. Since CA is isotropic,
the table needs not contain both (ACBED, D) and
(ADCBE, D). Only one of them needs to be included
in the table. If we decide to include (ACBED, D} in
the table, then neither of (ADCBE, D), (ABEDC, D),
and (AEDCB, D) needs to be included in the table.
In other words, only one of the cyclic shifts of the

sequence of neighbors’ states need go into the table. -

Also when we simulate the behavior of the cell~
ular automata, any of the above four configurations
ACBED, ADCBE, ABEDC, and AEDCB should yield
the next state D. So which one should be the rep-
resentative of all the cyclic shifts? A natural choice
would be the one that is smallest in the lexico~
graphic ordering. In the ahove example, BEDC is the
smallest among CBED, BEDC, EDCB, and DCBE.

A naive algorithm would compare n different
sequences to find the smallest, where n is the leng~
th of the sequence. It is easy to see that such an
algorithm needs quadratic time in the worst case.
Here we present a linear time algorithm. Previous
research results on this problem are by Booth(2] and
by Shiloach(3]. Booth gave a linear time algorithm
by generalizing the KMP string matching algorithm
[4]. Shiloach’s algorithm finds all the minimal cir-
cular strings. Both of these are complicated algori-
thms that are hard to understand. Qur algorithm is
not more efficient than the previous algorithms, but
it uses a different approach, is simple and easy to
understand, and fairly efficient.

2. Minimal Circular String Algorithm

Let us use the notation # { v when the string
% is lexicographically less than the string v, and
u<v when the string # is lexicographically less
than or equal to the stﬁng v.

First we introduce a lemma. The lemma says
that in a string that repeats a prefix, the circularly

shifted string that starts with the second repetition
of the prefix cannot be the minimal circular string
unless it is identical to the original string.

Lemma In a string % of the foorm = xxw,
where x and w are substrings, let ¥ be the cir-
cularly shifted string v = xwx. If u#+v, then v
cannot be the minimal circular string.

proof Since u+v, either u<v or v<wu. In the
case u{v, v clearly is not a minimal circular
string. In the case wv<{#%, xwx<{xxw. Hence
wx { xw by eliminating the prefix x from both
sides of the inequality. Then by appending the
string x to both sides, we get wxx {xwx =v.
But wxx is also a circularly shifted string of .
Therefore v cannot be a minimal circular string in
this case, either. [

Notation The notation Alk:m] is used to represent
the contiguous part of the array from Alk] to Alm],
and Alk*] the circular string starting from the
position k and ending at the position k-1. []

Now we present an algorithm for finding a mini-
mal circular string in a given string. The algorithm
takes the input string in an amay All.n] and
returns the starting position of the minimal circular
string.

Note that the problem of finding the minimal
circular string of w is the same as the problem of
finding the minimal substring of length ! in the
string ww. So first we double the array Afl..n] into
All.2n] in such a way that All.n] = Aln+1.2nl.
Now the problem is finding the lexicographically
minimal string of length n in A[l..2n].

We use the variable j to scan the array All..2n].
The variable start is used to keep track of the
starting position of the minimal sequence in A[l:j].
The variable chall is used to maintain the starting
position of the challenger string. That is, Alstart :



start+j-chall] = Alchall : jl. See figure 2. For
example, if Ally] = 342436524 3), then
start = 3 and chall = 8 Here note that Alstart :
start+j-chall] = Alchall : j] = (2 4 3). If there is no
challenger in A[ly], chall is set to 0. The challenger
has the possibility of turmning out to be smaller than
the currently minimal sequence.

(rssrrssrsrerss] FIITIITITITSS,
* *

i
v L] o

start T chall j n

start+j—chall

(3 2)
(Fig. 2)

The array P{l.2n) remembers the starting
position of the challenger when the champion(start)
and the challenger(chall) are compared. In more
detail, Pj] is set to chall when Alstart+j-challl and
Alj] are compared. P is used for not having to
backtrack the scanning varible j, when the chall-
enger becomes the champion and the new challenger
is looked for.

start is initialized to 1, chall to 0, and j to 2. As
the scanning variable j is incremented, start and
chall need to be adjusted. We consider the following
five cases:

(case 1) There was no challenger in A[l:-1].

(case 2) There was a challenger in Allij-1] and
Alstart] > Aljl.

(case 3) There was a challenger in Allij-1] and
Alstort] < Alf] and Alstart+j-cull] < Alj]

(case 4) There was a challenger in Allj-1] and
Alstart] < Alj] and Alstart+j~call] > Alj)

(case 5) There was a challenger in All:-1] and
Alstar] < Alj] and Alstart+ji-chall) = A[j]

Before considering each of the five cases, let us
mention that the algorithm sees to it that the
intervals Alstart . start+j-challl and Alchall - j] never

A WY AEG 2417

overlap, by resetting chall to 0 when the two
intervals have grown to meet. Two intervals meet
when start+j-chall = chall, that is 2 * chall = start
+

When the two intervals meet, we know that
Alstart : start+j-challl = Alchall 1 j1 and that they
are adjacent. Hence, by the above lemma, it is safe
to give up Alohall:+] as a candidate for the minimal
circular string. So resetting chall to 0 is justfied.

Now we will consider each of the five cases.

(case 1) There was no challenger in A[13-1].

If Alstart] > Aljl, then set start to j. if Alstart]
= A[j], then set chall to j. If Alstart] < A[], then
there is nothing to do. []

(case 2) There was a challenger in A[l1y-1] and
Alstart] > Aljl.

Since Alstart] > Aljl, j becomes the new starting
position. There is no challenger at the moment. [

(case 3) There was a challenger in All3-1] and
Alstart] £ Alj] and Alstart+j-chall] < Alj1.

Since there was a challenger in Ally-1], we
know that Alstart : start+j-1-challl = Alchall :j-11.
Since Alstart+j-challl < Alj], Alstart : start+j~chall]
< Alchall : jl. Hence Alchall: j] cannot be a
challenger. So chall is set to 0. P{f] is set to chall.
P{j] remembers that the current challenger lost at
position j. [J

(case 4) There was a challenger in A[lj-1] and
Alstart] < Alj] and Alstart+j-chall] > Alj].

Since there was a challenger in A[lj-1], we
know that Alstart : start+j-1-challl = Alchall : j-1).
Since Alstart+j-challl > Alj), Alstart : start+j-chali]
> Alchall : jl. Hence the challenger wins and
becomes start.

Now who is the new challenger? The new
challenger is the first position in Alchall+1 : j] whose
value is the same as Alchall], if there is any. In




2418 SInYEX 2B =EX M5H H9(989)

order to find the position of the new challenger, we
do not have to compare each element in Alchall+1 :j]
to Alchalll. Instead we take advantage of the fact
that Alstart : start+j-1-chall] = Alchall : j-1]. We
check the value of Plstart+j~chaill If Plstart+j-chall]
= 0, then it means that there was no challenger
whe'n we were scanning Alstart+j-challl. Hence
there is no new challenger, either. If Plstart+j-chall]
% 0, then it means that there was a challenger
when we were scanning Alstart+j-challl and that
the starting position of the challenger was Plstart+j
-chall]. Hence the position of the new challenger is
Plstart+j-chall] + (chall-start). See figure 3.

Plstart+j-chall] new_chall

' '

022277222270 N
start A chal j n
start+j—chall
new_start
(a8 3)
(Fig. 3)

In this case, note that the scanning variable j
should not be incremented. We know that Alnew-
start : newstart+j-1-newchall] = Alnewchall : j-11. So
we should start comparing from Alnewstart+j-new-
cull]l and Aj]. O

(case 5) There was a challenger in A[lj~1] and
Alstart] < Alj] and Alstart+j-chall] = Aljl.

Since there was a challenger in Allj-1], we
know that Alstart : start+j-1-chall]l = Alchall :j-1].
Since Alstart+j~challl = AU, Alstart : start+j-challl
= Alchall : jl. Hence the competition between start
and chall has not been resolved yet. So they should
be again compared at the next repetition of the loop
with j incremented. The algorithm only has to
remember the starting position of the current chall-

enger by setting P{j] to chall.

But there is one thing to worry about : It could
be that Alstart] = A[jl. In such a case, should we
keep the position j as another challenger? Fortun-
ately, that is not necessary. The reason is as
follows : First, note that Alstart] = Aj] = Alstart+
j-challl. Hence the position start+j-chall must have
been a challenger bef-ore, but is not a challenger
any more. Now let us consider two cases : (i) Alstart
+j-chall 1 %] < Alj i »] and (i) Alstart+j-chall @ %] >
Alj @ #].

(case i) Alstart+j-chall : ] < Al : *].

The position start+j-chall was a challenger before,
but is not any more, which means it has been
determined that Alstart+j-chall : *] cannot be a
minimal circular string. But Afj: *] is even greater
than or equal to Alstart+j-chail : *]. Hence Alj: *]
cannot be a minimal circularstring, either. So it is
safe not to keep the position j as another chall-
enger.

(case ii) Alstart+j-chall : *] > Alj : *].

Recall that Alstart: start+j-challl = Alchall : jl.
By concatenating strings we can see that Alstart :
start+j-challlAlstart+j-chall - ] > Alchall : Al : *].
Hence Alstart : *] > Alchall : #]. Therefore the cur-
rent challenger will beat the champion(start) even-
tually. Then chall will be the new start, and j will
be the new challenger. So we don’t have to keep j
as another challenger this time. It will be considered
later. [

Now the algorithm follows:
Input : an array A[l.n] of symbols { n. > 2}

Output : the starting position start of a minimal
circular string.

(1) fori:=1 to 2n do Plil :=0
(2) for i =1 to n do Aln+i) = Alil
QB start =1, chall = 0; j =2

(4) while G<n) or ((chall=0) and (chali<n))

(5) if chall = 0 then {case 1}



(6) if Alstart] > Alj] then start = j

(7 else if Alstart] = A(j] then chall := j
(8 i=i+1

9 else if Alstart] > Alj] then {case 2}

(10) start = jichall =0, j=j+1

(11 else if Alstart+j-chall)] < Alj] then {case 3}
(12) Pl = chall; chall = 0; j = j + 1
(13 else if Alstart+j-cfalll > Alj] then {case 4}
(14) dist = chall ~ start

(15) start = chall

(16) if Plj-dist] = 0 then

(17) chall = 0

(18 else

(19) chall = Plj-distl+dist

(20) if chall = start then chall := 0

(21) else {case 5}
(22) Plil:=chall; j:=j+1

(23) if 2 * chall = start + j then chall = 0
{by the lemma)}
(24) return start

3. The Efficiency of the Algorithm

Now we will show that the loop terminates, and
does so in no later than 2n repetitions. First, note
that start + j always increases : At each repetition
of the loop, j always increases except one case, that
is, case 4. In this case, j is stationary, while start
increases by advancing to the position that used to
be the challenger. Hence start + j always increases
at least by one at each repetition of the loop. Since
J is always ahead of start, j is greater than (start
+7)/2. Therefore after 2n repetitions of the loop, j
gets greater than n.

Observe that chall is also greater than (start+)/2
unless chall is zero. It is because, as we observed
above, when the interval Alstart : start+j-chall]l has
grown up to meet the interval Alchall:jl, chall is
reset to 0. Hence chall is always to the right of the
middle point of start and j unless it is 0. Hence
after 2n repetitiong of the loop, chall either gets
greater than n or is zero. Therefore, the loop does

Bt
3
o

g/\

7

2419

terminate no later than 2n steps. Thus the proposed
algorithm’s time complexity is O{(n) .

4, Conclusions

We presented an efficient algorithm for finding
the lexicograhically smallest sequence among all the
cyclically shifted sequences of a given sequence.
This algorithm was motivated by an effort to effi-
ciently implement the state transition functions of
isotropic cellular automata, but we expect other
applications of this algorithm in the problems invol-
ving sequences.

References

(1] C. C. Langton, "Studying artificial life with cell-
ular automata”, Physica 22D, pp.120-140, 1986.

[2]1 K. S. Booth, “Lexicographically least circular
substrings”, Inform. Process. Lett. 10(4), pp.240-
242, 1980. '

[3] Y. Shiloach, “Fast canonization of circular strings”,

J. of Algorithms 2, pp.107-121, 1981.

[4] D. Knuth, J. Morris, and V. Pratt, "Fast pattern
matching in strings”, SIAM J. Comput. 6(2), pp.
323-350, 1977.

H oo

1978 A &oidta $8taH(8hA})

1984 University of Wisconsin
- Madison A4teta(ol 8
442

1992\ Indiana University - Blo-
omington. A4 (o] 8}
HAh

19939 ~8A o}Fistn HELYFEH IR 204

BHEL: HFE ol




2420 StYEX (BT =X M5 HIE(3BI)

of & &
1986\ N &HetE $eta g o]
ehap)
1988 oFFieR WA AN
(FEHAD
1990\ UJF - Grenoble 1 di%x
$85%3HDEA)
19934 UCB - Lyon 1 tHeFi HAHA|4bka( 3 ehubap)
19939~ A o}FAE FuFAReG s
BHE: WHY A4, 9P L2AF, 9 VISI ¢

2IdF




