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Hyper-Geometric Distribution Software Reliability Growth Model :
Generalization, Estimation and Prediction

Joong-Yang Park' - Chang-Yeul Yoo'! - Jae-Heung Park'!!

ABSTRACT

The hyper-geometric distribution software reliability growth model (HGDM) was recently developed and successfully
applied to real data sets. The HGDM considers the sensitivity factor as a parameter to be estimated. In order to reflect
the random behavior of the test-and-debug process, this paper generalizes the HGDM by assuming that the sensitivity
factor is a binomial random variable. Such a generalization enables us to easily understand the statistical characteristics
of the HGDM. It is shown that the least squares method produces the identical results for both the HGDM and the
generalized HGDM. Methods for computing the maximum likelihood estimates and predicting the future outcomes are

also presented.

1. Introduction

In recent years software systems have been widely
applied to many complex and critical systems. Since

failure of a software system may result in serious
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damage, software systems are required to be very
reliable. Therefore software reliability has become one
of major issues in the software systemn development.
In order to quantitatively assess the reliability of a
software system during the testing and operational
phases, many software reliability growth models
(SRGMs) have been proposed in the literature. See
the review papers such as Goel[l], Ramamoorthy and
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Bastani[12] and Shanthikumar{13]. The SRGMs are
usually used to estimate the number of remaining
faults, software reliability and other software quality
assessment measures. Some of currently available
SRGMs enable us to predict probabilistically the
time to next occurrence of failure in the operational
phase. Another class of SRGMs let us to estimate
the number of software faults still remaining after
the debugging process. The HGDM advocated by
Tohma et al{l4] belongs to the latter class of
SRGMs. A series of studies on the HGDM has been
made recently by Hou, Kuo and Chang(?2], [3], Jacoby
and Tohma [6], Minohara and Tohma [9] and Tohma
et al.[15]. Hou, Kuo and Chang(4], [5] developed opti-
mal software release policies based on the HGDM.

This paper first generalizes the HGDM to make it
more realistic. The generalization is concernerd with
the sensitivity factor which is the key factor of the
HGDM. Then parameter estimation and prediction
problems are considered. Section 2 briefly reviews
the basic concept and formulation of the HGDM.
Assumptions on the sensitivity factor are generalized
in Section 3 to reflect the random behavior of the
test-and~-debug process. Then the generalized HGDM
is derived in Section 4. Section 5 considers the pa-
rameter estimation problem for the HGDM and the
generalized HGDM. The least squares and maximum
likelihood methods are dealt with. It is shown that
the least squares estimates for both models are
identical and that the maximum likelihood estimates
can be computed by the least squares method.
Section 6 suggests a method for predicting the num-
ber of faults newly discovered by future test opera-
tions. The method is based on the expected value of
the number of newly discovered faults on condition
that the cumulative number of faults is known.

2. Review of the HGDM

In this section we briefly review the HGDM. At
the beginning of the test-and-debug process a soft-
ware system is assumed to have m initial faults.

Test operations performed in a day or a week may
be called a test instance. Test instances are denoted
by ¢, i=1,2,-- in accordance with the order of
applying them. The sensitivity factor, w,, represents
the number of faults discovered by the application of
test instance ¢,. Some of the faults detected by ¢;
may have been detected previously by the applica-
tion of test instances ¢, j=1,-,i—1. The number
of faults newly discovered by ¢; is not necessarily
equal to w;. That is, each detected fault can be
classified into the two categories, newly discovered
faults and rediscovered faults. Let N; denote the

number of faults newly discovered by ¢ and C;=

,Z[M' The following assumptions are made on the
HGDM.

e No new faults are introduced into the software
system during the debugging process.

® Sensitivity factor w;, the number of faults dis~
covered by ¢;, is the faults taken randomly out

of m initial faults.
® Sensitivity factor w; is represented as a function

of m and the progress in test-and-debugging »;,
ie, w,=mp;.

p; is usually referred to as the learning factor. The
probability that x; faults are newly discovered by
¢; on condition that C;_; faults has been discovered
up to #,, is then formulated as

")
PN,=x1C,oy) = ~—2-D8 0l ()
(w,-)
where max{(0, w; — C;_|) < x, < min(w;, m— C;_,)

for i=1,2,--, C4=0 and xy=0. Thus the condi-
tional expected value of N; is

E(N|Ci-))=(m—Ci_))b;.

The expected value of C; was abtained by Jacoby
and Tohmal7] as
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E(C.-)=m[1—)tl,(l—ﬂ,»)]. 2)

The sensitivity factor is the key factor in the
HGDM. Various functions for w; have been devised
and successfully applied to real data sets. Functional
forms of the sensitivity factor are presented in
Table 1 of Jacoby and Tohmal7) and Minohara and
Tohmal9]. Recently Hou, Kou and Chang(2] intro-
duced two types of sensitivity factor based on the
leaming curve, They are respectively referred to as
the exponential sensitivity factor and the logistic sen-
sitivity factor. Next section discusses further on the
sensitivity factor.

3. Assumptions on Sensitivity Factor

As mentioned in the previous section, the HGDM
assumes that sensitivity factor w; is the w; faults
randomly chosen from m initial faults. Denoting by
F; the set of faults detected by ¢;, this assumption
can be divided into two statements below.

® The size of F; is w;, an unknown constant.
® The elements of F; are randomly chosen from
m initial faults.

We now argue that the first statement does not
reflect enough the testing process. Test items'for a
test instance are usually selected randomly from the
input domain. Different sets of test items for a test
instance would discover different number of faults. It
is therefore more realistic to postulate that the
number of faults detected by each test instance is a
random variable. Next consider the learning factor
p:, which represents the degree of test workers'
skill at the application of test instance ¢;. Assuming
that all m faults are detectable with equal probabil-
ity, the leaming factor can be practically regarded
as the probability that test instance ¢#; discovers a
fault. The sensitivity factor is thus assumed to be a
binomial random variable with parameters m and

pi, ie, for w;=0,1,-,m

P(W, = '”")=(;"u) PO M )

4. A Generalized HGDM

This section generalizes the HGDM based on the
following assumptions on the sensitivity factor. Other
assumptions remain unchanged.

® Sensitivity factor W, is distributed as Expression
3.

® Given that C;_, faults have been detected up to
test instance f;., and w; faults are detected by
test instance ¢;, the number of faults newly dis-
covered by ¢ is distributed as Expression (1).

We first derive the conditional distribution of N; given
that C,_, faults have been discovered up to test
instance ¢;_;. Multiplying Expressions (1) and (3),

P(N;=x;, W;=w,|C;_y)

=(m—c-'—l)( C_f_-;i)p.-"'u—p.-)'"-w'

X w;

=(m— Ci—l

P PR b

( ) P (RS R

W;—X;
Therefore
P(N; =x;1C;-y)

= EPT(N.'=X.', W=w,1Ci_y)

~(m o

X m—C,_,—x;
o )pra-e . @

This is a binomial distribution with parameters m—
Ci;-; and p; The joint distribution of N;, i=1,2,
-, n is then obtained as

P(N, = x,-,i=l,2, "',”)

= ,l:llP(Ni= xIN;=x;,7=1,2,--,i—1)

= [ ANi=xiciy)
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m—gx,

X

T D) n B )

-1
=("1,""f-x.) ‘l:[[p,-ﬂ(l_p’_)]",

[fia-20] "R ®)

where

(x"rf-x“) - x,!-"x,.!(':tri— ,2-11"")! '

Since ?;[piﬂ(l—pj)]=1—g(1—pi). the joint
distribution of N,, i=1,2,---,# is a multinomial dis-
tribution with parameters m and p,-E(l—p,-), i=1,
-+, n. Consequently C; is binomially distributed, i.e.,

P(C;=¢;)

=(2)[1_,1:11(1‘1’1')10'[,Il(l—ﬁ,-)]m_c'. @

5. Parameter Estimation for the Generalized HGDM

Let ¢; and x; be the observed values of C; and
N;. Suppose that the software system is tested up
to test instance £,. In order to estimate the current

number of residual faults and to predict the number
of residual faults after applying ¢,., for d=1, we
first need to estimate the parameters in the model
Due to the mathematical difficulty of the maximum
likelihood method, the least squares method has been
used for the HGDM. Tohma et al.[14] obtained the
least squares estimates by minimizing

2lei- BCOE. ®

This criterion was also employed in Hou, Kuo and
Chang[2], [3) and Jacoby and Tohmal7]. However,
Tohma et al.[15] minimized

Slxi— BN G2, ©

The minimization of Expression (9) is equivalent to
the minimization of

,g;[c,.—E(c,.lc,._lnz, (10)

since E(C;|C;—\) = Ci-;+ E(N;ICi-)) and C;=
C;—y + N;. We should note that because of sequen-
tial application of test instances, C,_; has been al-
ready realized and observed at the time when ¢; is
applied. The distribution of N; or C; thus depends
on C;_,. Therefore, it seems that the minimization
of Expression (9) or (10) is more appropriate than
the minimization of Expression (8). The above least
squares criteria assume that the variabilities of C;’s

or N;'s are homogenous. But this assumption does

not hold for the HGDM. For example, the variance
of N, is obtained as

(m~C;))Ci— 19,1 —1;)

Var(N;1C;- ) = 1

Clearly Var(N,;|C;_;) is not constant for all i. In
the circumstances the weighted least squares method
is generally known to be adequate. Park et al[ll]
thus suggested that the estimates be computed by
minimizing

[X.'“E(N.'|Ci—1)]2
= Var(N,I Ci—l) !

Next we consider the problem of estimating para-
meters of the generalized HGDM. It is not difficult
to obtain from Expressions (4), (6) and (7) that

E(NJICi-)) = (m—Ci_\)p;,
BN = mo [l -2)

B(C)=m]1 —ln(l—i),-)].
These expected values are identical to those for the

HGDM. If we estimate parameters by the least squares
method, the estimation and prediction results for the
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generalized HGDM are the same with the correspond-
ing results for the HGDM. This implies that the
generalized HGDM performs at least as well as the
HGDM.

The previous studies on the HGDM employed the
least squares method mainly due to the mathematical
difficulty of the maximum likelihood method However,
sometimes the maximum likelihood estimates can be
computed by the least squares method. This approach
is illustrated by means of the generalized HGDM.
The log likelihood function is obtained from Expres-
sion (5) as

L(m, p)=§“[1nr(m—c,~_,+1)+x,1np,-
+(m—C;)In(1—p,)]

where p is the vector of p;'s and I'( -) denotes
the gamma function. Instead of maximizing L(m, p),
we may minimize L(m, p)=—L(m, p) with re

spect to m and p. Note that /;’s are all negative

and Z(m, p) = ,g(z.-—\/ — 1) where z;,=0 for all

i. Therefore the maximum likelihood estimates are
the least squares estimates for the nonlinear regres-
sion model z;=V —/+e¢; where e is the error
term. The available nonlinear least squares proce-
dures can be used for computing the maximum
likelihood estimates.

6. Prediction for the Generalized HGDM

Suppose that we want to predict the number of
faults newly detected by next o test instances. Such
a prediction problem occurs when we determine the
software release time or further test instances
required to meet the given software reliability
objective. This prediction problem can be solved by
estimating E(N,,,+ -+ N,+dIC,).

Replacing » in Expression (6) with n+d, the
joint distribution of N;, i=1,2,--,n+d is obtain—

ed as

P(N;==x,,i=1,2,,n+d)

=(x1,' x..u)‘ff[ n:(l—ﬂ,)]
[JI(I""‘)] " (11)

Division of Expression (11) by Expression (6) results
in the conditional distribution of N,.;, i=1,2,--,d

P(Nn+:_xn+nz le ]_1 )
_P(Nn+l—xn+nl dlc)

=(xu+r:'_' ?x,,w) ,li[pu«i-iﬂ(l —p”,)]x' .

This is also a multinomial distribution of which para-
meters are (m—C,) and pyy, (1=, i=1.2,
-,d. Then

P(Nyy1+-+Nya=xIC,)
=(m—xC,,) [1_ ,I:[(l—ﬂm)]x'
[113(1 —ﬂni)] e

Thus

E(Nysy+ -+ Nyrdl C,)
=(m— c,.)[l—g(l—p”,-)]. 12

By replacing the parameters in Expression (12)
with the corresponding estimates, we can predict the
number of faults newly discovered by next dJ test
instances.

7. Conclusions

SRGMs are useful statistical tools for monitoring
and evaluating the quality of a software system. It
is necessary to develop new SRGMs and modify
existing SRGMs in order to model the test-and-debug
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process more realistically. Thus we generalized the
HGDM by assuming that the sensitivity factor is a
binomial random variable, not a constant. The gen-
eralization enables us to easily apply the HGDM and
characterize its statistical properties. Methods for
parameter estimation and prediction were discussed.
Further generalization will be to incorporate the concept
of imperfect debugging into the generalized HGDM.
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