2000 St=RFPEMIIEE =8X MeH H11=(9911)

LAN #7l E48 £33 WWWo] EAAd 7]3]&= o3
Ben Lee'- Andreas Schmid'- 11 & &tt. 2 31 EH

2 o

1990 2710 A7 Az WWW2 1 ol g9 FAW J4oE LANS HR 74u& 2 $A% 2 Hss
A2 A =t olef EEe AEHY el LAN ©l&¥IE Mgt ol@ $isle] HP LAN Protocol
Analyzer$} tepdump ZEIHEE AHSSHGon LAN EdEs EYE ZR2EZ A4S BHE 348 F9ich 53
ol MEYa 22EZH JEHA Ao F2 ALHT YA 1 FFY F4uE, 37 5L ATSA £F WWW
7} A LAN A% % oJd viFE AXstn lod, #2 ofd MIMERHS dojert Abe8n YeAE d7stgch
£ A7 23 mad, dAHo2 S2r)de LANS o3 W HFeo) 3y A2d& 9§ NFS ZE2EZo| 43
7V & uFE AR glom WWWe o882 o dud X @itk @ gREY eI e 4 delHs =
594 $AY 2717 AL ¢, a3 MTUL gste 2719 #4319 2970 diEe 328

LAN Packet Trace Analysis-What is the Extent of WWW Traffic?

Ben Lee' - Andreas Schmid' - Jin Gwang Koh'' - Han-Tak Kwak'

ABSTRACT

Since its introduction in the early 1990s, the quick growth of the World Wide Web (WWW) traffic raises the
question whether past LAN packet traces still reflect the current situation or whether they have become obsolete. For
this study, several LAN packet traces were obtained by monitoring the LAN of a typical academic environment. The
tools for monitoring the network were a stand-alone HP LAN Protocol Analyzer as well as the free-ware software tool
tcpdump. Our main focus was placed on acquiring a low-level overview of the LAN traffic. Thus, we could determine
what protocols were mainly used and how the packet sizes were distributed. In particular, we were interested in
establishing the amount of WWW traffic on the LAN, and what MIME-Types this traffic is subdivided into. Our
results indicate that in a typical academic environment such as ours, conventional sources of LAN traffic such as NFS
are still predominant, whereas WWW traffic plays a rather marginal role. Furthermore, we verified that a large portion
of the network packets contains little or no data at all, while another significant portion of the packets has sizes around
the MTU. Consequently, research in the networking field has to direct its focus on issues beyond the WWW.

=EE 197 EAgSR auf HeHA Qe oahe

FYUUR BRAZ A
Aoy 2s
U AR 19994 98 Y

wn

1. Introduction

Starting out with the invention of the popular LAN
Ethernet at Xerox PARC in the early 1970s, over the
development of the internetworking protocols IP, TCP,
and UDP around 1980, and culminating with the
introduction of the WWW in the beginning of the
1990s, networking has become one of the most
prominent paradigms of our time. Statistics[8] suggest
that the internetworking (i.e., Internet) and the WWW
have experienced an exponential growth since their
inception. The quick spread of the usage of net-
working therefore poses a major challenge to the
research in the area. Consequently, research efforts
have targeted the physical transmission lines, the
interfaces between computers and networks as well
as the networking protocols and their implementation.
As a result, the bandwidth of networks has increased
tremendously from a few Kb/s to several Gb/s.
Network interfaces have also become faster, and more
efficient protocol implementations have reduced the
processing time for transmission and reception of
network messages.

This paper targets these issues. Inspired by the
catchword "multimedia”’, the main goals of the paper,
are to investigate the extent of LAN traffic on typical
academic and office environments, such as ours, that
can be classified as muitimedia data, and how to
possibly improve the network performance for this
kind of traffic. Furthermore, we wanted to examine
whether previous studies concerning non-HTTP traffic
were still up~to—date.

The paper is organized as follows: Section 2
highlights some of the research efforts in the area of
networking. The devices and tools that were
employed to monitor a departmental network are
presented in Section 3. The results of the performed
network measurements are presented in Section 4.
Finally, Section 5. provides a brief conclusion and
addresses the future work to be done in the area.

LAN THZ! 848 &3t WWWO! E2/&01 7K g8 2001

2. Background and Related Work

Research in the area of networking concentrates on
several different topics. First, there is a Network
Interface (NI). At the University of Wisconsin-
Madison, Mukherjee et al. performed a survey on the
current NIs[14] and provided arguments for placing
the NI not on the I/O bus, but on the memory bus
[15]. They argued that the tighter integration between
the processor and the NI offers multiple possibilities
to increase the network performance. Other research
efforts have been directed at the development of
custom networks for high-speed parallel computing.
The StarT-Voyager Cluster area network, developed
at MIT, is such an example [1]. Each StarT-Voyager
node is a commercial PowerPC 604-based SMP where
one processor card is substituted by a Network
Endpoint Subsystem (NES) card. Thus, the NES with
its embedded service processor (sP) is located on the
application processor’s (aP's) cache-coherent memory
bus. The sP consists of a PowerPC 604 processor, a
memory controller and a DRAM. Its task is basically
to service remote memory references of the aP and
incoming memory requests from the network.

In the TCP/IP domain, research aims to improve
the protocol processing time. Jacobson et al [4,7]
studied the TCP processing overhead and concluded
that the data-touching processing overhead could be
reduced by limiting the number of data copies to one
(referred to as single-copy- or zero-copy-implementations),
and by incorporating the calculation of the Internet
checksum into the data copy[19]. summarizes further
TCP/IP improvements. First, it suggests the use of
caches for the Protocol Control Block (PCB) lookup.
For each TCP/IP connection, a PCB data structure is
used to store the IP addresses and port numbers of
both connection endpoints. Since the corresponding
PCB for each received message has to be found, the
employment of caches would be truly helpful.

In the area of Ethernet traffic traces, Mogul studied
the locality of LAN packets at the scale of processes
[16], thereby focusing on the IP protocol together with

2002 St=FENE=T =2X M M112(99.11)

TCP and UDP. Mogul also argued for the idea of a
"persistent-connection” HTTP (P-HTTP)(17]. P-HTTP
avoids the practice of HT'TP/1.0 [3] of using separate
TCP connections between WWW client and server to
transfer the HTML code as well as each inlined
image of a webpage. Consequently, this idea has been
added to HTTP in the latest HTTP/1.1 Proposed
Standard [6]. Finally, Mogul [18] evaluated the behavior
of a LAN containing a busy WWW server. This
study comes closest to ours, since Mogul also uses
the tcpdump tool to monitor the network. However,
the environments of a busy WWW server LAN and a
typical academic or office LAN can hardly be
compared especially since his findings conceming the
packet size distribution were quite different from ours.

Last but not least, Kay and Pasquale [10,11]}
evaluated two network traffic traces, one from a LAN,
the other from a WAN. They found that on the LAN
the median message sizes for TCP and UDP were 32
and 128 bytes, respectively. On the WAN, 99.7% of all
messages were at most 500 bytes long. In the
presence of such small messages, the non-data-
touching parts of the TCP/IP implementation become
relevant. [10, 11] show profiles of the processing times
for sending and receiving TCP and UDP messages
over a range of message sizes. These profiles
demonstrate that for small messages the non-data
touching processing overhead actually dominates the
overall processing cost. Moreover, the non-data-touching
processing overhead consists of many different,
independent operations, thus making speedups tedious
or even impossible to achieve without giving up the
present functionality.

3. Network Monitoring Setup

Our departmental network consists of about 300
nodes connected by the same 10Mb/s Ethernet. The
nature of the nodes is diverse. It consists of HP
workstations running HP-UX, Sun workstations
running Solaris, Intel machines running either Linux
or Windows NT, and NeXT computers. The tools

used for monitoring the network were the HP LAN
Protocol Analyzer and the software tools that run on
HPUX workstations. As suitable software tools, nett],
developed by HP, and tcpdump by the Lawrence
Berkeley National Laboratory (LBNL) were at our
disposal. For reasons of practicality we chose the
latter, tcpdump is the most widely used packet-
capturing tool, probably due to its platform in-
dependence and free availability. In addition, there
exist some applications that digest tcpdump’s output,
such as teptrace and xplot.

The HP 4972A LAN Protocol Analyzer, herein
referred to simply as the "Analyzer”, is a stand-alone
device that is directly connected to the network
through its transceiver interface.

tepdump [9] was developed by members of the
Network Research Group (NRG) of the Information
and Computing Sciences Division (ICSD) at Lawrence
Berkeley National Laboratory (LBNL) in Berkeley,
California. It serves as a LAN packet-capturing tool
and uses the library libpcap?), also written by NRG.

Since all available programs that digest tcpdump
data merely focus on TCP/IP traffic, a C program
called snarf was developed. It collects the desired
statistics from a tcpdump parsed data output. The
collected statistics include the packet and byte counts
for all known protocols, e.g., Appletalk, the Internet
Control Message Protocol (ICMP), the Address
Resolution Protocol (ARP), as well as all TCP and
UDP ports that appeared in packet headers along with
the number of data bytes sent to and from them. In
addition, the overall throughput in bytes per second is
calculated, and eventually the distribution of the data
byte sizes found in the packets.

Finally, tcptrace is one of the programs that is
freely available? which reduce the tcpdump data.
Unlike snarf, tcptrace exclusively examines the
TCP/IP packets in the tcpdump raw data tracefile,
including statistics of all HTTP connections found in
the file. Nevertheless, the functionality of the HTTP

1) tepdump and libpcap are available at http://ee.lbl.gov/
2) Available at http://jarok.cs.chiou.edu/software teptrace/teptrace.html

module was not sufficient as it failed to detect the
content type of the data, let alone statistics about how
many packets and data bytes per content type were
traced. Consequently, these features were added by
the authors.

4. Monitored Results

The various network monitoring tools described in
the previous section produced a respectable amount of
data. These results will be presented in this section.
We will start out with the results of the Analyzer in
Section 4.1, then continue with the presentation of an
unfiltered trace of tcpdump in Section 4.2. Section 4.3.
We will show the tcpdump traces with HTTP filter,
and all these results will be summarized in Section 4.4.

4.1 HP LAN Protocol Analyzer Resuits

The Analyzer measurements were performed by
choosing a 24-hour measurement time and a 144 min.
Sample time, thus vyielding ten samples and a
ten-sample average value over an entire day. The
days of the measurements were chosen arbitrarily seven
in total. The results are listed in <Table 1>. Additionally,
for illustration purposes, (Figure 1) shows the same
data depicted in a pie chart.

(Table 1> Seven-Day Summary of TCP/UDP Port Activity

TCP/UDP Port Percentage Frames
Fip 0.081570 2688590
Ftp-data 2.043720 60005650
Telnet 1.857451 54536630
Smtp 0.035122 1031210
Nfsd 16.934220 4.97E+08
Http 1.849966 54316860
Rwho_rlo 2.124210 62368930
Other 75.065600 2.204E+09
Total data bytes 117E+10

Total frames 2.94E+07

We notice that of seven detailed ports, the Netwark
File System (NFS) port was the most frequently
used. 16% of all frames had this port as either the
source or the destination address. Four of the remaining

LAN THZ! EME &3 WWWOI S41400 7iXle g 2003

ports were referenced by circa 2% of all frames each.
They are the File Transfer Protocol data (ftp-data)
port, the Remote Terminal (ielnet) port, the HTTP
(http) port, and the Remote Login (rwho_rlo) port. By
considering the total data bytes and total frame
number, the average data content of a frame is
calculated to be 398 Bytes. Furthermore, the average
throughput over the whole seven days was 19,345
Bytes/sec.

Despite its limitations, the Analyzer was still
valuable as a measurement tool that works independently
from the software tools whose monitoring results
will be discussed later in this chapter. The resuits
of both the Analyzer and the software tools will be
compared in Section 5.

-(Figure 1) Seven Day Summary of TCP/UDP Port Activity

4.2 Unfiltered tcpdump Traces

Several unfiltered LAN traces were collected in
order to determine what protocols were used across
the network and how much they contributed to the
overall network traffic. Another objective of these
traces was to further detail the measurements of the
Analyzer in terms of the TCP/UDP port activity. The
trace file to be presented here is the file marQSoutd.
<Table 2> outlines its basic characteristics The length
of the trace is 4000,000 packets. Such a lengths was
the result of the observation time of 43 min. 34 sec.
Recording this particular trace took the usage of the
system resources to its upper limit. The size of the

2004 StRFEMEHT =EX HEH HM113(99.11)

raw data output file was 58 Mbytes, and the output
file after the parsing step of tcpdump still had a
respectable size of 27Mbytes.

(Table 2> Unfiltered Trace mar0%ut4 of 400,000 Packets

_File Mar(8out4
Start of measurement Mon Mar 9, 17:59:51 1998
End of measurement Mon Mar 9, 1843:25 1998
Elapsed time 2614.323311 secs
Total number of frames 400000
Total Bytes on Net 126862520

<Table 3> shows the various types of protocols the
traced packets used. As can be seen, the majority of
the frames, pecifically 58%, were UDP frames. They
carried an overwhelming 91% of all data bytes. TCP
came in second with 32% of all frames, yet only
accounted for 35% of the total data bytes on the
network, which yields an average of merely 34 Bytes
per frame. The reason for UDP being more popular
than TCP lies.in the fact that UDP offers a faster
protocol processing. This comes at the price of the
lack of TCP features, such as reliability or flow
control. For applications that operate exclusively in the
trusted environment of a LAN, however, the UDP
services are deemned to be sufficient, Despite contributing
only 3% of all frames. Ethermet broadcast messages
are still responsible for 4% of the network data traffic,
due to an average of 415 Bytes per frame. They represent

(Table 3) Protocol Distribution of

various services, such as EtherTalk. The third largest
proportion in terms of frames is the Address Resolution
Protocol (ARP), which is used to determine the
corresponding Ethernet address of an IP address. It
represents 7% of all network frames, suggesting that
a lot of network traffic had either a source or a destination
host outside the LAN. The remaining protocols are:
the Internet Group Management Protocol (IGMP), which
used to manage multicast group; the Internet Control
Message Protocol (ICMP) that communicates error
messages on the Internet; and Open Shortest Path
First (OSPF), which is an interior gateway protocol.

<Table 4> lists a more detailed observation of those
TCP ports that are "well-known" and appeared as
either the source or the destination port in TCP
frames. "Well-known” means that these ports are
listed in the (in our environment HP-UX) file
/etc/services and have a certain kernel space service
associated with them. This service is indicated by
their official service name. All ports that are not
well-known generally belong to user-space applications.
We find that 51% of the TCP frames in <Table 4>
belong to telnet traffic, followed by 38% for ftp-data.
Since the telnet data per frame is only a single byte
on average, telnet accounts only for 2% of the data
flow of the well-known TCP ports. Considering the
data byte proportions it can be observed that HTTP
and therefore WWW usage is responsible for 63% of
this table’s data byte traffic. Since this amount of data

unfiltered Trace mar0Soutd.

Average Bytes/Total Bytes in
Protocol Frames Bytes Bytes/Frame o
Apoletalk 327 0183 456 0118
ARP 29272 B22416 8 0648
IGMP 183 5124 B 0.004
ICMP T 8 28 0.000
OSPF %2 11528 u 0.009
Ethernet broadcast 12150 503032 a5 3970
Other Ethernet 1874 109839 5 0.087
Frames Data Bytes %m;:s Datgyg’;“;i/f/:m Total Bytes TCP
TCP 127896 2400311 34 3476 B25151
Frames Data Bytes %m;’;s Datgwisyfﬁml Total Bytes UDP
UDP 271919 116317600 510 91688 121080817

(Table 4> Well-known TCP Ports appearing in Trace mar03outd.

LAN 2] 248 B3 WWWOI Sa01 7iXle g8 2906

TCP Ports
Average Data Data Bytes/ Total TCP

Port Name Port Number Frames Data Bytes Bytes /Fr;agle Data Bytes in %
Ftp-data 20 17987 510346 28 11.574
Ftp 21 439 5141 12 0.117
Telnet 23 238569 27235 1 0.618
Smtp 25 245 5558 23 0.126
Http 80 1110 954471 860 21.647
Pop3 110 541 2595 5 0.059
Portmap 111 32 0 0 0.000
Nntp 119 143 18972 133 0.430
Login 513 2534 3918 2 0.089
Printer 515 70 20 0 0.000
Msal 1111 497 259 1 0.006
Nfsd 2049 142 1687 12 0.038

resides only in 2% of all frames, this yields a high
ratio of 860 bytes/frame. As to the corresponding UDP

{Table 5) Well known UDP Ports appearing in Trace mar(9outd.

table, shown in <Table 5>, it is obvious that the frames
created by the NFS (nfsd), which provides remote

UDP Ports
Average Data Data Bytes/ Total UDP

Port Name Port Number Frames Data Bytes Bytes/Frame Data Bytes in %
Tepmux 1 12954 2010212 155 1.728
Domain 53 4333 27910 66 0.241
Bootps 67 35 10500 300 0.009
Bootpe 68 R3] 10500 300 0.008
Portmap 111 402 196512 49 0017
Netbios_ns 137 1046 55936 53 0.048
Netbios_dgm 138 270 57310 212 0.049
Snmp 161 337 25989 77 0.022
Biff 512 8 83 10 0.000
Login 513 262 99720 381 0.086
Krbupdate 760 977 148464 152 0.128
DAServer 987 1 124 124 0.000
Nfsd-keepalive 1110 2 54 27 0.000
Msal 1111 2 112 56 2o 0000 -
Rib 1260 1 3% % . 0.000
Clvm-cfg 1476 1 %0 90 0.000 -
Ingreslock 1524 1 32 32 0000 -
Nft 153 1 31 31 0000
Sna-cs 1553 1 22 22 0.000
Nepm-pm 1591 1 128 128 0000
Nepm-hip 1683 1 21 121 0000
Cvmon 1686 1 36 36 0000 "
Pmlockd 1889 2 177 88 0.000
Nfsd 2049 212623 114362992 - 538 98.320
Eklogin 2105 1 38 38 0.000
Netdist 2106 1 3 33 0.000
Rfa 4672 2 110 55 0.000
Veesm 4789 2 67 34 0.000

2906 o= 2MEI=D =FEX] MEA XI11=(99.11)

access to shared files across networks, by far outnumber
all others. They represent 91% of all frames and hold
98% of all data bytes. In second place follows the
tcpmux service, more than an order of magnitude
smaller in number, both for frames and sizesbelow 200
bytes and at 1480 bytes. The occurrence of many
small messages is striking. Specifically, 78% of all
messages contain no more than 200 data bytes. This
indicates that a huge bulk of messages simply consists
of control messages for data being transferred in the
other direction of the connection. On the other hand,
roughly 15% of all frames carry 1,480 byte data.
These frames can be attributed to large UDP messages
that have been split up into fragments based on the
Maximum Transfer Unit (MTU) size plus one fragment
for the remainder of the message.

Finally, (Figure 3) shows the throughput graph. The
throughput graph is admittedly somewhat densely
packed, but shall be presented anyway for completeness.

The bursty nature of the LAN traffic is nevertheless
still evident, with peaks reaching up to 730 Kbytes/sec.

Another interesting characteristic of the observed
LAN is the distribution of data field sizes for the
frames. (Figure 2) shows this distribution for the
marQSout4 trace in a resolution of 10 bytes. It is
immediately evident that there are two diametrically

(Figure 2) Distribution of Frame Data Sizes for mar09outd

opposed accumulations of data bytes. tcpmux [12] is
an internet standard that can be used by future TCP

services instead of using "well- known” ports.

4.3 topdump Trace with HTTP Filter

After capturing the unfiitered tcpdump traces,
several traces were gathered with a filter so that only
frames having TCP/UDP port 80 as a source or a
destination port were recorded. The raw tcpdump
traces were written to output files, which in turn
were used as input files for the tcptrace tool.

In the course of monitoring the HTTP traffic, it
soon became clear that the results obtained in
Subsection 4.1 of only 2% HTTP frames on the LAN
were indeed realistic. The largest trace that was
coilected with HTTP Filter, marlloutb, is composed of
60,000 frames, and it took more than 19 hours <Table 6>
to obtain it.

{Table 6) Trace marllouts with HTTP Filter

File mar] loutd
Start of measurement Wed Mar 11, 231552 1998
End of measurement Thu Mar 12, 18:22:04 1998

Elapsed time 68771.354752 secs
Total number of frames | 60000
Total Bytes on Net 33448902

In (Figure 4), the distribution of the frame data
sizes is depicted. The highest peak with 29,914 frames
or 49.9% of all frames is distinctly at zero bytes, so
consequently every other TCP packet had no data at
all, but just a header with flags such as an ACK or
a SYN. Another high peak, as seen in the unfiltered
trace, is close to the MTU size of 1,460 Bytes, where
32% of all frames reside. Note that this time the
maximum data size is 20 bytes less than in the
previous case, due to the fact that the TCP header
takes away 20 bytes as compared to the 8 header
bytes for UDP. Eventually, 4.2% or 2500 frames had
a data size of 520 bytes, and 1% of the frames carried

590 bytes. Hence, 87% of all frames have only one of

four distinct sizes.

(Figure 3) Throughput for mar0Soutd

Such a behavior of the frame size distribution was
not unexpected. Instead, it is typical of HTTP/1.0 [3],
which is currently used by WWW clients and servers.
In this version, the HTML text of a requested
webpage is first transferred. By parsing this HTML
document, the WWW client then determines all the
inlined elements, such as images or sound files. For
each inlined element to be transferred, the client opens
a separate TCP connection. Thus, a lot of overhead in
the form of TCP control messages is created, which
explains the large percentage of messages (49.8%)
that transported no data at all. The newer HTTP/1.1
Proposed Standard [6] alleviates this problem by

LAN Il 248 8T WWWOI S¢S0 7IXle 88 2907

adding the concept of "persistent TCP connections”
(17). This implies that only one TCP connection is
established between the client and the server to
transfer all subsequent HTTP requests and -their
rephﬂ&NﬁVerﬂle&ss HfTP/llhasnot?Etbemwt
to use in practice.

'Inwiﬁmhothemfmmﬁmcdwedbysnarf the
r@uksoﬁcpmscecmmmﬂay TherSh(mnm
<Ta¥ﬂe7>mtabtﬁarfmma:ﬂgrﬂﬁmaﬂym(?w
5). The most requested Muln*mmse intemet “Mail
Extension (MIME)-type was' image/gif representing
64% of all réquests, whereas mxage/]peg comes in
second with 20%, followed by text/html with 15%.
Eventually, audio/x-pn-real audio-plugin accounts for
1% of the recorded requests, where real audio is the de-
facto audio streaming standard on the Internet. All
other types play only a marginal role. When
considering the amount of data bytes sent, the picture
looks somewhat different, which is a phenomenon that
is mostly due to eight tremendously large requests for
the type application/octet-stream. Denoting either
binary files or files with unknown MIME-Type, the
type application/octet~-stream is used for binary and
general file transfers via the WWW Browser. Therefore,
the average requested file size of more than 11
MBytes is huge, but realistic. One order of magnitude
smaller, the three MIME-Types image/jpeg, image/gif
and text/html ensued.

{Table 7> Content-Types of HTTP Requests in martlouts.

Content-Type Requests Bytes Bytes/Request Bytes/Total Bytes
Image/gif 1283 5022950 3915 4812
Text/html 304 1664316 5475 1.595
Image/jpeg 397 6552625 16505 6.278
Audio/x-pn-realaudio-plugin i1 176 16 0.000
Application/octet-stream 8 91073218 11334152 87.254
Application/x-javascript 2 15809 7904 0.015
Application/zip 1 16399 16399 0.016
Text/plain 5 26459 5292 0.025
Application/java-vm 1 4807 4807 0.005
Total 2012 104376759 51877 100.000

2908 St=FEX2SS =X H6P H11=(99.11)

e L
Saze ol Frams Dats n Dyws

(Figure 4) Distribution of Frame Data Sizes for mar!louts,

appilicafion/ociet- application/s- appication/zip textiplain
siream avascripl 18 0%
sudiax-pn- 0% e applcationava-ym
realsudio- plugin 0%
19 v

Li o 2]
W%

texyiim

15%

(Figure 5) Shares of the different Content-Type Requests.

5. Conclusion and Future Work

We started out with the goal of investigating the
extent of traffic on the departmental network that can
be classified as multimedia data, and how to possibly
improve the network performance for this kind of
traffic. In Section 4, the monitored results were
presented in detail. The conclusions that can be
drawn from these results are as follows:

As for the characteristics of the unfiltered trace,
our results correspond very well with the results
found by [11], who examined a LAN trace from 1992,
The monitored LAN traffic still featured a bimodal
characteristic, where most of the frames either have
very small data sizes or data sizes near the MTU.

The dominant protocol was undisputedly UDP, transporting
mostly NFS services.

It turned out that HTTP traffic constitutes only a
very small fraction of the overall departmental LAN
traffic. According to the Analyzer’s seven-day average,
this fraction amounts to enly 1.85% of all frames. In
the 43 min. 34 sec, trace marQ9outd, merely 0.28% of
all recorded frames were detetmined to be HTTP
frames, carrying 0.75% of all data bytes. Thus, it can
be stated that the emergence of the WWW may not
have yet brought about a significant change in the
utilization of a typical academic or office LAN.
Additionally, the HT TP traffic still features a bimodal
characteristic of the overall traffic. As a consequence,
speeding up multimedia network traffic implies
speeding up all network traffic, and vice versa.
Therefore, the fraction of messages that have large
data sizes does not pose any greater problem. More
important problem to deal with are the small-sized
messages, specifically those with null data bytes.

In order to decrease the number of HT TP-induced
TCP messages, it is necessary that the improved
HTTP/1.1 Proposed Standard is implemented. HTTF/1.1
will not be able to however alleviate the intrinsic
problems of HTTP that are caused by the requestreply
paradigm. Each request or reply forces the opposite
communication endpoint to answer with a TCP ACK
message. This ACK message does not contain any
data because the protocol layering and the time to
process the HTTP request or reply delay the generation
of data. An elimination of such empty TCP control
messages seems only feasible by collapsing the protocol
layers of TCP and HTTP.

The variety of the Content-Types of HTTP messages
is rather small. image/gif, image/jpeg and text/html
are clearly predominant. This fact, together with the
small share of HTTP LAN traffic, proves that the
academic environment has lost its role as the driving
force of the WWW. Responsibility for the rapid
growth of the Web now belongs to the private and
the business sectors. Therefore, improving the
performance particularly on academic LANs is best

achieved by concentrating the research on the further
development of the transport and the network layer
protocols. This next generation of the Internet must
not only provide an optimum efficiency, but qualitatively
different services than the current Internet. The
necessary services include the guarantee of quality-
of-service (QoS) attributes. Specifically, the guarantee
of the minimum bandwidth, the maxi mum latency,
and an upper limit on packet loss is highly desirable.
Other important aspects are to improve the data and
network security as well as providing a better
network scalability.

References

[1] Boon S. Ang, Derek Chiou, Larry Rudolph, and
Arvind. Message Passing Support on StarT-Voyager.
CSG-Memo-387, MIT Laboratory for Computer
Science, July 1996.

[2] Martin F. Arlitt and Carey L. Williamson. Web
Server Workload Characterization : The Search for
Invariants. In 1996 ACM SIGMETRICS Coryerence,
May 1996.

[3] T. Berners-Lee, R. Fielding, H. Frystyk. Hypertext
Transfer Protocol HTTP/L0. Internet RFC 1945,
May 1996

[4] David D. Clark, Van Jacobson, John Romkey, and
Howard Salwen. An Analysis of TCP Processing
Overhead. In IEEE Communications Magazine,
pages 23-29, June 1980.

[5] Thorsten von Eicken, David E. Culler, Seth C.
Goldstein, Klaus E. Schauser. Active Messages : a
Mechanism for Integrated Communication and
Computation. In Proceedings of the 19" International
Symposium on Computer Architecture, May 1992.

[6] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T.
Bemers-Lee. Hypertext Transfer Protocol HTTP/1.1.
Internet RFC 2068, January 1997

[7] Van Jacobson. Some Design Issues for High-speed
Networks. Networkshop ‘93, November 1993.

LAN 2] 2448 @St WWWO| BLIM0 7Kl 88 2909

{8] Gregory R Gromov. History of Internet and WWW :
The Roads and Crossroads of Internet’s History.
Webpage at http : //www.internetvalley com/intval htm!

[9] Van Jacobson, Craig Leres, and Steve McCanne.
Tepdump(1) dump traffic on a network. Unix
Manual Page, 1996.

[10] Jonathan Kay and Joseph Pasquale. The
Importance of Non-Data Touching Processing
Overheads in TCP/IP. In SIGCOMM ‘93, pages
259-268, 1993.

(11} Jonathan Kay and Joseph Pasquale. Profiling and
Reducing Processing Overheads in TCP/IP. In
IEEE/ACM Transactions on Networking,
December 9%

[12] M. Lottor. TCP Port Service Multiplexer
(TCPMUX). Intemmet RFC 1078, 1988.

[13] Alan M. Mainwaring and David E. Culler. Active
Message Applications Programming Interface and
Communication Subsystem Organization. U.C.
Berkeley Technical Report #CSD-96-918, October
1996.

[14] Shubhendu S. Mukherjee and Mark Hill. A Survey
of User-Level Network Interfaces for System Area
Networks. Technical Report 1340, Computer
Science Department, University of Wisconsin-Madison,
February 1997.

{15] Shubhendu S. Mukherjee and Mark Hill. A Case
for Making Network Interfaces Less Peripheral. In
Hot Interconnects V, 1997.

[16] Jeffrey C. Mogul. Network Locality at the Scale
of Processes. In SIGCOMM ‘91, pages 273-284,
1991.

[17] Jeffrey C. Mogul. Network Locality at the Scale
of Processes. In ACM SIGCOMM ‘%, pages
299-313, August 1995,

[18] Jeffrey C. Mogul. Network Behavior of a Busy
Web Server and its Clients. Research Report 95/5,
DEC Western Research Laboratory, October 1995.

[19] Craig Partridge. Gigabit Networking. Addison-Wesley,
1994.

2010 SIEJEXEISD =BX M6 HM11=@1)

Ben Lee

e-mail : benl@ece.orst.edu

Ben Lee received the BE. degree
in electrical engineering from the
State University of New York
(SUNY) at Stony Brook, New
York, in 1984 and the PhD.
degree in computer engineering from The Pernnsylvania
State University, University Park, in 1991. He is
currently an associate professor in the Department
of Electrical and Computer engineering at Oregon
State University. His research interests include computer
system architecture, multithreading and thread-level

speculation, parallel and distributed systems, and
program partitioning and scheduling. Dr. Lee is a
member of the IEEE Computer Society.

Andreas Schmid
e-mail : schmidan@ece.orst.edu
Andreas Schmid received the B.S.
degree in electrical engineering from
= University of Stuttgart University,
&y 7 Germany, and the M.S. degree in
computer and electrical engi-

neering at Oregon State University.
He has won the robot race at the IAS of University
of Stuttgart, and interests in network computing,

computer system and embeded controllers.

I
e-mail * kig@sunchon.ackr
1982 Fdidta FoE
A} A Y7 (o] AL
19849 Fojuista dishyd Az
A2 83} (0] B4 AL)
19974 Fdign digd HA
A 218 7o) B kAL)
1984\ ~1988'd FUHAENY HAAA D AR
1988~ @A cHNTE AA A HFei A
g
199319 ~1994 Fdigtw FAAE AFe T I
WF S
19974 ~ 199840 QAAFANIT AFE TR FRS
AR} dolEulol s, EARM T, FUEA,
CALS/EC &

Z 8 &
e-mail ! hantak@ece.orst.edu
Hantak Kwak received the B.S.
degree in electronic engineering
from SungKyunKwan University,
Korea, in1984, the M.S. degree

in electrical engineering at South
Dakota State University in 1987, and the Ph. D. degree
in computer and electrical engineering from Oregon
State University in 1998. His reseach areas are
microarchitecure, parallel and distributed computing,
SMP, and software and hardware multithreading.

	hbhrt:
	ytry:
	gergerg:
	grwtgrt:
	ferfer:

