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Development of the Continuous-Time HGDM with
Binomial Sensitivity Factor

Joong-Yang Park' - Seong-Hee Kim'' - Jae-Heong Park'"!

ABSTRACT

The hyper-geometric distribution software reliability growth model (HGDM) was recently developed and successfully
applied to the problem of estimating the number of initial faults residual in a software at the beginning of the
test-and-debug phase. Though the HGDM is a time-domain software reliability growth model (SRGM), it is not
possible to compare the HGDM with other time-domain SRGMs. Furthermore the usual software reliability can not be
computed. These drawbacks are derived from fact that the HGDM is not described in terms of the execution time. Thus
we develop a continuous-time HGDM with binomial sensitivity factor in order to remove these drawbacks. Statistical
characteristics of the suggested model are studied and its applicability is then examined by analyzing real test data sets.
It is empirically shown that the continuous-time HGDM with binomial sensitivity factor can be used as an alternative to
the current HGDM.

1. Introduction

Computer systems play important roles in the
highly computerized society. The failure of a com-~
puter system caused by software faults may result
in enormous damage. It is therefore required to
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develop reliable software systems. Software reliabi-
lity, defined as the probability of its failure-free
operation during a specified time interval in a
specified environment, has become a central software
engineering concept. At the beginning of the test-
and-debug phase nobody knows definitely how
reliable the software system is. Test workers are
unable to certify when the software system can be
released into servicee Many software reliability



growth models (SRGMs) have been developed for
measuring and projecting the software reliability
during- the test-and-debug phase. The SRGMs allow
us to estimate the number of remaining faults, soft-
ware reliability and other software quality assess-
ment measures. Though some SRGMs usually works
better than others, there is no single SRGM that
works best for all software systems. Some of cu-
rrently available SRGMs probabilistically predict the
time to the next occurrence of failure or the number
of failures during a specified time interval. Another
class of SRGMs estimates the number of software
faults still residual at the beginning of the test-and-
debug phase. The hyper-geometric distribution soft-
ware reliability growth model (HGDM), advocated
by Tohma and Tokunaga [20], provides us with the
number of software faults still residual. A series of
studies on the HGDM has been published recently
[2-7,10,13,14,19-23]. It was successfully applied to
real data sets.

The HGDM belongs to the class of time-domain
SRGMs. Most time-domain SRGMs are described in
terms of time measurement associated with software
usage. The software reliability, defined in the pre-
vious paragraph, can be computed directly from the
time-domain SRGMs. However, HGDM granulates
the time and is described in terms of sequence
number of the granulated time even when a certain
software usage-dependent time measure is observed,
The observed time measurements are treated as the
resource associated with the learning factor. As a
result it is difficult to compare the HGDM with
other time-domain SRGMs and compute the usual
software reliability based on the HGDM. In this
paper we will first develop a version of HGDM
expressed in terms of the software usage-dependent
time measurement (execution time in mest cases).
The newly developed version of HGDM will be
called the continuous-time HGDM. Then we will
study its characteristics and demonstrate its appli-
cations to real data sets. The remaining presentation
is 'organized as follows. The basic concept and pre-
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cise formulation of HGDM are briefly reviewed in
Section 2. Section 3 develops the continuous—time
HGDM with binomial sensitivity factor. Parameter
estimation problem for the continucus-time HGDM
will be considered in Section 4. Section 5 gives
illustrative examples for real data sets. The last
section concludes by some comment.

2. Review of HGDM

This section briefly reviews the basic idea and
formulation of HGDM. At the beginning of the
test-and-debug phase a software system is assumed
to have m initial faults. Test operations performed
for a certain period, in a day or a week, may be
called a test instance. Test instances are denoted by
4, i=1,2,--, in accordance with the order of
applying them. With the application of test instances
t;, errors caused by faults manifest themselves as
failures. The sensitivity factor, w;, represents the
number of faults sensed by the application of test
instance ¢;. Some of the faults discovered by ¢ may
have been defected by the application of previous
test instances #, j=1, 2, -, i-1. Therefore the
number of faults newly discovered by ¢, is not
necessarily equal to w,. That is, each detected
faults can be classified into two categories, newly
discovered faults and rediscovered faults. Let N; be
the number of faults newly detected by ¢ and C;
be the number of faults already detected up to ¢.
Then Ci=I§Nj. The following assumptions are

made on the HGDM.

(A1) No new faults are introduced into the software
system during the debugging process.

(A2) Sensitivity factor w, is the faults taken rando-
mly out of m initial fauits.

(A3) Sensitivity factor w; is represented as a func-
tion of the number of initial faults m and the
progress in testing p;, that is, w;= mp,.

Note that 0< p, <1, since 0< w;<m. The term
p; is usually referred to as the learning factor. Due
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to assumption (Al), the probability that x; faults
are newly discovered by #; on condition that c,.;
faults has been discovered up to ¢;_, is then for-
mulated as
m—ci-y )( Ci-1 )
X; wi—Xx; ()
w;
(&)

where max (0, w;—c¢,-1) < x; < min(w;, m—c,_), ¢
=0, x=0 and i=1, 2, -+ Thus the conditional
expected value of N; is

P(N=x;] Cioy=c ;)=

E(N;| Cioy=ci-)=(m—c,-)p;.

The mean value function, the expected value of C;,
was obtained by Jacoby and Tohma [6] as

BC)=ml1- [Ta-p)]. @

The sensitivity factor w; plays the key role in
HGDM. The sensitivity factor represents the number
of faults discovered or rediscovered during the app-
lication of test instance ¢;. It is usually assumed
that w;, ultimately p;, depends on the resources
used for executing test instance such as software
usage, number of test workers and test items. It is
further assumed that p; depends on the improve-
ment of test worker's skill along with the progress
of testing. The term p; is thus called the learning
factor. Various plausible deterministic functions for
p; have been devised and successfully applied to
real data sets (6, 10]. Recently Hou, Kuo and Chang
[5] suggested the exponential and logistic learning
factor based on the exponential and logistic leaming
curves.

Suppose that F; represents the set of faults de-
tected by ¢. Then w;=|F;|, where |-| is the
cardinality of a set. Assumption (A2) implies that
|F;l is deterministic, but the elements of F; are
randomly chosen from the initial m faults. This
does not reflect enough the random behavior of
testing process. Test items for a test instance are
usually selected randomly from the input domain.

The number of faults detected by the randomly
selected test items would not be deterministic. That
is, if different test items are executed for ¢,
different number of faults would be discovered. It is
therefore more reasonable to postulate that the
sensitivity factor is a random variable. Henceforth
we denote the random sensitivity factor by W,
Tohma and Tokunaga [20] attempted the normally
distributed sensitivity factor irrespective of i or the
resources used for executing ¢#;. However, the results
were not satisfactory. Park, Yoo and Park [14] assu-
med that W, is a binomial random variable with

parameters m and p,, that is, for w;=0, 1, - m
POW:= w) =11 o1 (1= )™ ™. 3

Then P(N;=zx;|Ci-y=c;-1, Wi=w;) is given by
Equation (1) and

PN;=x;| Ci-1=c¢i-1)

- (" gy,
It was further shown that if the least squares
method was employed, estimation and prediction
results of the binomial sensitivity factor HGDM are
identical with those of HGDM. This implies that the
binomial sensitivity factor HGDM performs at least
as well as the deterministic sensitivity factor HGDM.
The maximum likelihood (ML) estimation was fur-
ther suggested as an alternative to the least squares
estimation. We thus employ the binomial sensitivity
factor in the rest of this paper.

A continuous-time HGDM will be developed in
the next section. Thus the HGDM reviewed in this
section will be referred to as the discrete HGDM.

3. Continuous-Time HGDM with Binomial Sen-
sitivity Factor

The discrete HGDM is applicable to all kind of
test data. It enables us to estimate the number of
initial faults residual in a software at the beginning



of the test-and-debug phase. However, the HGDM
has some drawbacks mentioned in Section 1. This is
due to the fact that most time-domain SRGMs are
expressed in software usage-dependent time mea-
surement and the HGDM is not. The HGDM takes
the time measurement into account as one of
resources in modeling the learning factor p;. Thus
we modify the HGDM so that it is described in
terms of the time and the learning factor is still
dependent on the time. The modified HGDM will be
called the continuous-time HGDM.

Suppose that the obtained software usage-dependent
time measurement is the execution time. We denote
the cumulative execution time by 4. Then test
operations performed during [A4;-,,#%;) correspond
to ¢;, where h;’'s are the cumulative execution times
at which the test-and-debug process is observed
and #,=0. The cumulative number of faults newly
detected during [0,%) is denoted by C(h). We
further denote the binomial sensitivity factor by
W h,4kr), which represents the number of faults
sensed by the test operations during [, 2+ dk).
Here 4k is the execution time elapsed after 4.
Assumptions (A2) and (A3) are then replaced by the
following assumption:

(A2)" Sensitivity factor W h,dk) is binomially dis-
tributed with parameters m and p{h,4h).

Here p(h,4h) is the probability that a fault is
sensed by the test operations during [A, k+ 4h).
Then the probability that x faults are newly dis-
covered during [k, A+ 4k) on condition that (k)
faults has been discovered up to # and w faults
have been sensed during [4, h+4h) is then formu-
lated as

P(C(h +4h)— (k) =x| C(h)=c(h), Wh, 4h) = w)

(m—dh) (k)
= X )

m
(%)
where max {0, w— c(h)) < x < min(w, m— (4)) and
«0)=0. Since

Olgt et Hl=F 718 s AlZHE HGDMS! 7H% 3493

B(W(h, 4k) = w)
=('u'j)p(h,Ah)”(1~p(h,Ah))"'”,
the probability that x faults are newly detected

during [4, h+4%) on condition that (k) fauilts has
been detected up to A becomes

K C(h+4h) — C(B=x | C(h)= (k)
=2 P(Clh+ k) — ()= x | C(h) = (),
Wlh, dh)=w) - P(W{k, dh) = w)

6)

= ’”‘xc“') ) U, AR*L1 = pCh, 4] ™07

As discussed in the previous section, H(k,dh) de-
pends on the learning, i. e, the growth of test
team’s potential during [0, A+ 4k). Thus we simply
denote p(h,dh) by ph+ 4hk). Then Equation (6) is
written as

P(C(h+ak)— C(h)=x | C(h)=c(h) -

=( "B ) et a1 - g+ ) "R,

Since C(0)=0, by replacing k and 4k in Eguation
(7) with 0 and & respectively, we have

P(C(h) =)= P(C0+ k)~ C(0)=x | C(0)
=( % )T pm

That is, C(4) is binomially distributed with para-
meters m and p(k). The expected value and
variance of C(k) are thus obtained as mp(h) and
mp(B)[1— p(A)], respectively. If a software system
has been tested up to 4, and C(k,)=c,, the
software reliability is then computed from Equation
(7) as

Rkl hy) =P hy+h)—Clh)=01 O(h..)=c.)(9)
=[1—-plh,+W]"" .

The continuous-time HGDM derived above may
appear to be similar to the binomial-type SRGMs
(Jelinski-Moranda [8], Shooman [18], Wagoner [24],
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Schick-Wolverton [15, 16] and Littlewood [9] models
are the binomial-type SRGMs). The binomial-type
SRGMs are based on the following three assump-
tions :

(A4) Whenever a software failure occurs, the fault
that caused it will be removed instantaneously.

(A5) There are wm initial faults in the software
system.

(A6) Each failure, caused by a fault, occurs in-
dependently and randomly in time according to
the per—fault hazard rate z(h).

Then the times to failure of each fault are inde-
pendently -and identiially distributed as F(h), where
F(h)=1—exp(—f0 z(y)dy). It can be shown that

ACW=2=( TP T-FWI™* (10

¥ F(h) is replaced by #{%), Equation (10) becomes
identical to Equation (8). However these two types
of SRGMs are different in some respects. First the
conditional distribution of C(h+ 4h) given that C(h)
= (k) is different. The conditional distribution for
the binomial type SRGMs is obtained as

POk +dn)—~Xk)=x | C(B)=(h)

= ( ’”"x"(") )F(h+AhI ) av
(1= F(h+dh| B)}™ W=,
where
Hh+4h| h)= l“F(;) .

Comparing Equations (7) and (11) with F(h) re-
placed by p(k), we can find the difference between
these two types of SRGMs. Second the interpreta-
tion of p(k) and F(h) are quite different. F(h) re-
presents the failure time distribution of a fault, while
k) describes the learning process of testers.

4. Estimation for the Continuous-Time HGDM with
Binomial Sensitivity Factor

Suppose that the software system has been tested

up to h, in time or equivalently #th test instance.
Let ¢; be the observed values of C; or (&),
x;=c;—ci—y and p;=p(h;) for i=1 2, . (Note
that ¢;, x; and p; are used for both discrete and
continuous-time HGDMs.) Then the available test
data consists of pairs (k;, ¢;) or (k;, x;), i=1, 2,
-, n. In order to evaluate the quality of the software
system under testing, we need to estimate m and

the parameters associated with p; from the data.
Most previous researches on the discrete HGDM
obtained the estimates by the least squares (LS)
method. However, the LS estimates are of two
types. The first type of LS estimates minimizing

Slei— BC)Y 12)

was first considered in [21]. This criterion was also
employed in Hou, Kuo and Chang [4,5] and Jacoby
and Tohma [6]. The second type of LS estimates

'g[x.‘—E(Nil Cioi=c.-)1° (13

was suggested by Tohma et al. [23). This is equi-
valent to the minimization of

zg[“‘_E(CﬂCi—x =ci-D (14)

The discrete HGDM assumes that the number of
faults newly detected by ¢; depends on ¢;-;. At
the application of ¢, c¢,—; is already observed.
Therefore the minimization of (13) or (14) is more
appropriate than the minimization of (12).

The above LS criteria are generally employed
when the corresponding variance, Varn{C,) or Var

(N; | Ci-1=1¢;-1), is constant. According to Equa-
tion (4), the conditional variance of N; is

Var(N,-lC.-_l = Ci-—l) =(m— Ci—l)ﬁi(l _Di)’

which is apparently nonhomogeneous. [x;— E(N; |
Cii=¢;-))? is likely to be large if Var(WN; |
Ci-1=c;-y) is large. Therefore the larger the con-



ditional variance of N; is, the less weight should be
allocated to x;. We thus consider the weighted least

squares (WLS) estimation method minimizing

[xi— B(N; | Ciz1=c;-))]?
= Var(N; | Ciy=ciy)

(15)

in which the weights are the reciprocal of the
conditional variance. The WLS criterion with equal
weights becomes the LS criterion. The LS and WLS
criteria for the continuous-time HGDM are obtained
by replacing N; and C;_; in Equations (12)~(15)
with N(h.-)=O(h,-)~O(h,»-1) and O(h,-_l).

We next derive the joint distribution of M#),
i=1,2 ', n

HN(h,) = Xis l= ]., 2, RS ”)
= LAY = 2,1 Clhi) = c,)

(s ‘)p.(l e

= IJ,[ m_x’;' ” }p?‘(l g R
=( ") ot M-
M Ha-s

1=

ol P 'I:L[H(l p)]i o
.['1:11(1~p.-)]

‘(x,. ) 1Y Y. La-»
[Ha-»] T

()] [»,Dﬁu 2]
.[g(l-p,-)] —

Noting that z;p;E(l—Pj)=l— g(l"bi)» we
can find that M&k;), i=1, 2, -, n are multinomially

pi 1‘1(1 ﬁ,)
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distributed with parameters m and p; {{(1-»)),
i=1, 2, -, n-1. Park, Yoo and Park [14] showed
that the joint distribution of N,’s for the discrete
HGDM with the binomial sensitivity factor also
derived as Equation (16).

Since the joint distribution of Mh;), i=1, 2, -,
n is available, we are now able to use the ML
estimation method for the HGDM. The ML method
is the estimation method maximizing the (log) like-
lihood function. When = is sufficiently large, the
ML method is generally preferred to the LS and
WLS method. The LS method has been used mainly
because it is mathematically easy to apply to the
HGDM.

Once the estimates of m and parameters in p;,
the software reliability is obtained by substituting
the parameters in Equation (9) with the estimates.

5. Application to Real Data Sets

This section applies the continuous-time HGDM
with binomial sensitivity factor to two real data sets
with software-usage dependent time measurement.
We only consider the exponential and logistic
leaming factors, since the exponential and logistic
curves reflect man’s learning curve very well. They
are respectively

—au.i)

pi=pir-(l~e
O U
bi pLT 1+Be—-au.l

for the discrete HGDM, and

KB=prr (1—e ™

KB =p,r- ’I‘I‘é‘g:ﬁ

for the continuous-time HGDM, where u;=hk;—h,_,

represents the execution time correspordding to ;.
Two data sets are analyzed by the LS, WLS and
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ML methods. The first data set is the test data of a
PL/I database application program [12]. The size of
the software is about 1.317 kilolines of code. The
test operations in a week were regarded as a test
instance. The data consists of 19 weeks of reported
detected failures. The execution times and the
number of observed faults are also reported. The
total number of observed failures is 328. The second
data sets is the failure data collected on a computer
program designed to solve a navigation program and
also contains the execution times and the number of
detected faults (24]. The number of the cumulative
failures is 107 during 15 weeks.

The discrete and continuous-time HGDMs are
applied to these data sets. LS, WLS and ML esti-
mation results were computed and summarized in
<Table 1~8>. The estimates were obtained by using
the nonlinear least squares procedure of SAS sys-
tem. Based on the values of the sum of squares of

(Table 1> LS, WLS and ML estimates of the con-
tinuous-time HGDM with the exponential
learning factor (first data set)

Parameter .LS WLS ML
eshmgﬁbes esngg_l_:a_cms estimates
m 385.7199 360.0671 371.6025
a 0.1207 0.0886 0.1099
brr 0.1139 0.1515 0.1204
SSE 1846.3834
Weighted SSE ‘ 97.9797
kel
L e o

(Table 2> LS, WLS and ML estimates of the dis-
crete HGDM with the exponential learning
factor (first data set)

Parameter LS WLS ML
estimates estimates estimates
m 497.3346 386.5658 4060651
a 0.5976 0.1833 0.2285
brr 0.0568 0.1065 0.0920
SSE 1969.7523
Weighted SSE 109.3967
Log Likelihood
function -105.9766

errors (SSE), weighted SSE and log likelihood func-
tion, we can say that the continuous—time HGDM
with logistic- learning factor is appropriate for the
two data sets. (There might be some controversies
for the first data set. The (weighted) LS criterion
favors the continuous-time HGDM with the logistic

(Table 3> LS, WLS and ML estimates of the
continuous-time HGDM. with the logistic
learning factor (first data set)

estumates estimal es%tes
m 331.9789 331.5802 3300000
a 0.0669 0.0687 0.0600
8 196342 20.6839 17.0000
brr 1.0000 1.0000 0.9000
SSE 1530.7446
Weighted SSE 21.6428
Likelihood
bogfunction ~97.7406

(Table 4> LS, WLS and ML estimates of the
discrete HGDM with the logistic learning
factor (first data set)

IS WLS ML

Parameler | estimates | estimates | _estimates
m 65697 | 33638 | 349853
a 0039 | 00510 00619
s 8421 | 61057 411%
it 05273 0.3453 0.2762
S8 15876275

Weighted S 22

o

s e

(Table 5> LS, WLS -and. ML estimates of the con-
tinuous-time HGDM with the exponential
learning factor (second data set)

. WLS ML
Parameter |LS estimates estimates estimates
m 108.8947 112.6791 111.9783
a 0.1667 0.2319 0.2257
brr 0.2626 0.2213 0.2270
SSE 109.6058
Weighted SSE 24.2425
kelihood
man‘i‘u‘?’;n 374310




(Table 6> LS, WLS and ML estimates of the dis-
crete HGDM with the exponential lear-
ning factor (second data set)

LS WLS ML
Parameter esti_u_;a;tes estimates estimates
m 110.4614 114.4543 113.6587
a 0.1043 0.2017 0.1943
Pt 0.2436 0.2002 0.2056
SSE 129.5066
Weighted SSE 31.7969
Likelihood
Lngunction ~30.8853

(Table 7> LS, WLS and ML estimates of the
continuous-time HGDM with the logistic
learning factor (second data set)

estimates estimates estimates
m 100.2321 111.2738 111.3619
a 0.4603 03311 0.3907
B8 6.9413 4,4966 5.184
12%4 0.2546 0.2408 0.2371
SSE 74.8797
| Weighted SSE 50214
Log Likelihood
function 33424

(Table 8> LS, WLS and ML estimates of the dis-
crete HGDM with the logistic learning
factor (second data set)

Parameter ,LS WLS ML
estimates estimates estimates
m 110.0833 112.3437 112.0672
a 0.2087 0.1512 0.2027
B 46279 35150 4.1656
bt 0.2464 0.2312 0.2304
SSE 90.5119
Weighted SSE 50348
Log Likelihood
function ~33.764

learning factor while the ML criterion does the dis-
crete HGDM with the logistic learning factor.) The
corresponding estimates seem reasonable. One note-
worthy point is that estimates are more sensitive to
the model than to the estimation method. In order to
show performance of the selected model, the con-
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(Figure 1) Plots of ¢ and LS, WLS and ML esti-
mates of EC) for the continuous-time
HGDM with the logistic learning factor.
(first data set)
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(Figure 2) Plots of ¢ and LS, WLS and ML esti-
mates of E(C) for the contihuous-time
HGDM with the logistic learning factor.
(second data set)

tinuous-time HGDM with the logistic learning factor,
its LS, WLS and ML estimates of E(C;) and c;
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(denoted by LSCI, WLSCI, MLCI) are plotted in
(Figures 1~2), respectively. The selected model
works well enough for both data sets.

6. Conclusions

Most time-domain SRGMs are expressed in the
execution time. However, the current discrete HGDM
is not described in terms of the execution time; even
when the execution time is observed and recorded
during the test-and-debug phase. We discussed the
drawbacks stemming from this. In order to eliminate
the drawbacks, this paper developed the continuous-
time HGDM. It was shown that the continuous-time
HGDM retains the desirable characteristics of the
discrete HGDM. Estimation problem was studied and
its practical applicability has been illustrated empi-
rically. Future research will be directed to usefulness
and efficiency of the continuous-time HGDM.
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