1426 St=3ENe=e ==X M7 H55(20005)

2 ANA G Aade 98
Y A gl Y A7

of & &'

.{

2 o

BN ALDE 7|80 SAN2YTY B Ho|H oz A A BHANN ALEA LTANLE AYHo2 Jlgsn
Al =92 249 7143 P Wayel Fostn Utk BAAMA2E glol ARUA Y dgo] FaPdE
T dEHoz UARAAM FA VG Aol hate] A Fste o) FRAHA Ykch HAXT AN 2Y
A A% v 2 B BN YehE AASE Aol FREI] R, ol P A AA @AM AT Fst
= Al Fasith fapx & =RdME $4AAILH o) temporal logicH Petri net® o184 AY WA 71¥e A48
3 3ot Temporal logicel &/# BAH 714 & HlE 71¥ predicates® ol 8% &¢ o3t ol Ye)o) B4 Yejg 3
J3tH Petri net¥¥ & Ay B4 & o8¢ FHY YNE FUHEY =8¢ HAGED

Formal Specification Methods for Distributed
Object-Oriented Systems

Sang-Bum Lee'

ABSTRACT

As distributed computing systems become popular, many modeling techniques and methods have been developed to
specify the specification formally and verify the distributed/concurrent systems. In spite of importance of communication in
distributed object-oriented systems, specifying of communication method generally has not been emphasized in the design
phase. One reason is due to the system designer nmisurlderstanding, that is, a specification needs to be independent on the
implementation. However, since defining communicaﬁidi pattern in distributed object-oriented systems is more serious than
the required message passing method in the design phase, specifying the communication pattern is necessary instead of
postponing until the implementation.

In this paper, two formal specification techniques, temporal logic method and Petri nets method, for the communication
in distributed systems are discussed. One is based on the temporal logic, which specifies the different patterns of primitive
predicates. This method enables to define the underlying mechanism which can be interpreted as constraints. The Petri
net method helps to specify the dynamic behavior of communicational patterns using the properties of Petri nets.

1. Introduction dependent parallel-executable modules tend to
support the message passing for parallelism instead

Distributed systems which consist of a set of in- of having a shared global memory. Since object-
¥ o] dFE URYGE YYAFAYe e APos ATHAL. oriented systems and distributed systems share

: | s g .. . L
t @%2 : gﬁg‘{;ﬁ%@%ﬁ*}; i~ 59 309 similar properties, the combination of these systems

is somewhat natural [1]. An object in an object-
oriented system inherently has a suitable form for a
distributed systems [2]. Therefore, the distributed
object-oriented systems have been developed by
applying object-oriented techniques to distributed
systems.

Meanwhile the object-oriented approaches to soft—
ware development have received an increased em-
phasis since the early 1980°s [3]. These new soft-
ware development techniques are expected to be
used widely due to powerful features such as infor-
mation hiding, modularity, abstraction, and locali~
zation [4]. Systems designed from these approaches
consist of a set of object modules and the structure
of the system tends to be flat instead of hierarchical
structure. One of the main features in object-
oriented systems is message passing, lLe, a set of
objects communicates with each other by sending or
receiving messages. An object begins to be activated

when it receives a message from other object.

Most distributed object-oriented programming
languages support parallelism between objects, but a
few languages support inter-object concurrence.
Basically there are two different types of message
passing: synchronous message passing and asyn-
chronous message passing. The message passing
method of systems is mainly dependent on the com-
munication mechanism of implementation program-
ming language. While CSP (5] supports synchronous
communication, ABCL/1 [2], {6] supports asynchro-
nous message passing. Specifying of the message
passing method in the design phase has been
ignored because the system designers believe that a
specification needs to be independent on the imple-
mentation. However, since defining communication
patterns in distributed systems is more serious than
non-distributed systems, it is desirable to decide and
specify the required message passing method in the
design phase instead of postponing until the imple-
mentation phase. By doing this, an appropriate pro-
gramming language can be selected and the system

AR AA"HE 2

rot
oA
oo
0g
x
e
IS
=
2!
o
jped
-
=
o
-~

can be implemented properly without losing the
requirements of the system designer. In this paper,
two specification techniques particularly for the
message passing in distributed object-oriented sys-
tem development are introduced. The outline of this
paper is as follows. In Section 2, the background of
this work is introduced. The specification methods of
message passing methods are discussed in Section 3.

Section 4 contains the conclusion.

2. Backgrounds

2.1 Formal specification languages

Compared to other system development, a few
specification languages are developed to represent
the specification of desired systems according object-
oriented approaches, A specification written by a
formal specification language helps to prevent dif-
ferent people from interpreting the system dif-
ferently. It enables to remove the ambiguity in the
specification. However, there is an overhead to
learn formal specification languages since these
typed languages are developed based on the math-
ematical theory and contain mathematical notations
in their syntax. Use of formal specification lan-
guages in software development has increased due
to their benefits. We have defined a formal spec—
ification language, called DOSL(Distributed Object-
based Specification Language), particularly for dis-
tributed object-oriented system development. Basically,
DOSL adopts some features form CSP, ABCL/1 and
temporal logic expression [7]. One of prominent
features in DOSL is its powerful message passing
statements which can express various commu-
nication patterns explicitly. The detailed features of
this language are introduced in [8] and [9].

2.2 Temporal logic and operators

Temporal Logic(TL), defined by Pnueli [7], is a
branch of the propositional logic and contains tem-
poral operations which helps simply to represent the
logical relationships among a class of time varying

1428 SRFEMLISE =X MHTA HEZ(20005)

events and also infers such relationship from them.

TL can be viewed also as a special case of
Predicate Logic or First Order Logic (FOL). The
proof technique for temporal logic is completely
decidable while that for FOL is only partially
decidable.

The advantages of using TL can be summarized
as follows. 1) The inference techniques for TL are
more powerful than that for FOL. 2) It has more
expressive or modeling power than that of the
Propositional Logic. 3) It has a completely decidable
inferencing method, like that of PL.

There exist many different types of TL that have
studied in mathematical logic and which have
applications in computer science. The various forms
of temporal logic differ from each other in two
aspects: the type of temporal operators or rela-
tionships that are allowed in the formulas and the
nature of underlying time scale.

Temporal logic formulas are defined by combining
temporal operators, logical operators and logical
expressions. Use of systems is introduced in [10]
and [11]. The basic temporal operators are as
defined as follows.

- [] = always true in the future
- O = the next state is true
- { = sometimes or eventually true in the future

These temporal operators are used to denote the
explicit communication patterns in distributed object-

oriented systems according to their semantics.

Sender Receiver Sender Receiver Sender Receiver

request

accept C)

Synchronous
message passing

(Fig. 1) The two message passing methods

Asynchoronous
message passing

3. Specification Methods of Message Passing

There are two different methods of communication
in distributed systems: synchronous and asyn-
chronous. These two patterns are introduced pic-
torially in Figure 1. In DOSL statements for mes—
sage sending and message accepting are defined
explicitly by attaching a temporal operator as a
prefix, i. e, the temporal operator precedes the
message passing statement to specify the specific
communication method. We assume that the mes-
sage passing pattern is determined by attaching a
temporal operator in front of the message sending
statement instead of specifying the same operator to
the corresponding message accepting statement
again. In Table 1, modified message passing state-
ments in DOSL are described. The full syntax and
formal semantics of DOSL are defined in [9],

While the two operators, [] and <, are used to
denote asynchronous message passing, and operator
O is used to represent synchronous message
passing according to their meaning. The operator [],
which means that the following statement is always
true, is used to denote asynchronous message
passing in which a sender object does not receive
any information back from a receiver object, ie., it
continues execution immediately after sending a
message. A temporal operator < is used to repre-
sent asynchronous message passing in which a
sender object will receive a requested information
eventually but it does not suspend its execution
during meantime. Another operator O is used to
denote synchronous communication in which a
sender object has to wait until a receiver object
gets the message.

In fact, there is no direct relationship between
temporal operators and message passing methods
but we match each other according to their
meaning. To complement this, two specification
methods which enable to represent the concept of

time are introduced in the following subsections to
specify formally the message passing methods. In
addition, these following methods can be used to
define the semantics of DOSL.

(Table 1) Message passing statements in DOSL

A AR ALY 212 My N LB B 91T 1429

different typed communication patterns, a set of the
predicates is defined in Table 2. Derivation of the
set of rules for specifying each message passing
method is introduced in the following subsections.

(Table 2> A set of predicates for the logic specification

« message sending statements
o(send x to Obj)
. synchronous message passing, receiving an acknowledgment
o(send x to Obj & get y/
.. synchronous message passing, receiving a refurn message
o(send x to Obj)
' asynchronous message passing without
a return message
o(send x to Obj & get y)
1 asynchronous message passing,
receiving a return message
* message accepting staternent
{accept x)

note: X is a set of parameters and Obj is an object.
y is a future variable where the return information be saved.

3.1 Temporal logic specification

In a logic specification, first of all, a set of ele-
mentary predicates which represents relevant pro-
perties about the states or the events of the system
needs to be defined. Based on these predicates, a set
of rules is introduced as a formal predicates fol-
lowed by an arrow which represents the implication
and followed by consequence of the predicates.
Detailed explanation of this approach can be found
in [9). With these rules the behavior of a system
can be formally specified. Here, we use the temporal
logic expression for specifying of communication
methods since it has the power of expressing the
lapse of time. Temporal logic specification method
[10] has received an attraction as a technigue to
specify a system whose behavior is relate to the

lapse of time, such as real-time systems.

The underlying meaning (semantics) of the mes-
sage passing statements, the specification of com-
munication, are defined using a temporal logic spec-
ification method. One of the important features is its
explicit expressiveness of the communication pat-

terns in the message passing statements. To specify

- send(Ol, (2, msg, t}
an ohject O! sends a message msg to another object 02 at
the global time ¢

- recetve(O1, (¥, msg, t)
an object O receives msg from another object (2 at the
global time ¢

- suspend(Ol)
an object O7 is in a suspended state.

note: msg can be replaced by ack. or reply which stand for an
acknowledgment and the required information, respectively.

3.1.1 Synchronous message passing

In synchronous message passing, an object which
sends a message to a particular object suspends
until its partner object sends back a message to it,
ie., the receiver object has to send back an ac-
knowledgment or a requested information to the
sender object to ensure that it has received a
message. The sender object can be active again
after it receives an acknowledgment or the required
information. This way of communication may meet a
deadlock situation when two objects send messages
to each other simultaneously. Moreover, it does not
fully support the potential parallelism because an
object has to suspend after sending a message until
it receives a message [12]. Rules for synchronous

message passing are defined as follows.

® send(O1,Zmsgt’) — < receive(02,01,msg,t)
M suspend(OI) N t" >t

remark) When an object Ol sends a message msg to
another object 02, 02 will receive it at time t" an Of

suspends for meantime.

o receive(Ol,_msg,t) N receive(Ol,_msg',t) — msg
= msg’
remark) If Ol receives two messages at the same time,
these two should be the same messages, te, O cannot
accept two different messages simultaneously.

1430 St=23EX2gs =X M73 M5 (20005

¢ receive(01,02,msg,t) — (send(01,02,ack,t’) U
send(O,02reply,t’)) N t' >t
remark) If Ol receives a message from 02, then OI will
eventually send back an acknowledgment or the requested
information to O2.

® suspend(Ql) N ((receive (Ol,_ack,_) U (receive
(Ol,_,reply,)) —> 1suspend(01))

remark) If OI is in a suspended state, it resumes execution
after receiving an acknowledgment or a reply from another
object, ie, before if receives a message it remains
suspended.

e send(O1,2,ack,t) —> 1(send(O1,02,reply,t))

remark) ack and rely cannot be sent simul-
taneously.

3.1.2 Asynchronous message passing method

The sender object, in asynchronous message
passing, continues its execution without waiting the
receiver object to receive a message but there are
two different cases’ The sender does not receive
any message from the receiver object and the
sender object will eventually receive the requested
message. The intermal behavior of these two are not
the same as those of synchronous message passing.
Here we explain each case separately.

8 In case of having no return message

® send(01,02msgt) — O receive(02,01,msgt’)
N y(suspend(O1)) N t' > ¢t

remark) When Ol send a message to OZ at time f, OF
eventually receives a message at the time t" but O will

not be suspended.

o receive(O1,02,msg,t) N receive(0Ol,02,msg’t) —
msg = msg’
remark) Two different messages cannot be accepted at the
same time.

m In case of having a return message

® send(01,02msg,t) — < receive(02,0lmsg,t’)
N qsuspend(O1))

remark) When O sends a message to 2 at time ¢, O2
eventually receives the message at time ¢’ and OI will not

be suspended.

® receive(01,02msg,t) N receive(Ol,02,msg’,t) —

msg = msg’
remark) Two different messages cannot be accepted at the
same time.

® receive(O1,02msgt) — fsend(01,02,reply,t’))
N t'=t+n

remark) When Ol receives a message msg from O2 at the
time t, OI has to send back the requested message within

n time units

Note:: If a predicate in the right-hand side of the rule does
not contain any temporal operator, it is assumed that an
operator [] is attached as a prefix.

32 Petri nets specification method

Petri nets, designed by C.A. Petri [13], have been
widely used as tools for the design of commu-
nication protocols [14] and distributed/concurrent
computing systems [15]. The power of modeling a
system with Petri nets has been increased by
extension to the original Petri net model. There are
two approaches to use of Petri nets in software
development. One approach is to view the Petri net
model as an analysis tool where the system pro-
perties are analyzed and modeled in Petri nets which
then analyzed for such properties as safeness,
boundness, liveliness, and readability. A second use
of the Petri nets in the specification and design is to
use them for the entire specification and design
process, thus requiring the transformation of Petri
net representations into systems. A Petri net is
defined as follows but the detailed explanation of the
Petri nets is not included in this paper.

Definition:: A Petri net is a triple
N = (STF)
where
i) S and T are disjoint set of places and
transitions, respectively,
i) F U (SXT) U (TXS) is a relation between
places and transitions.

We assume that s; and t; represent the elements of
two sets, S and T. In the net, S, T and F are
represented by circles, bars and arcs, respectively.

Using the properties of Petri nets, the dynamic
behavior of message passing can be specified.
Compared to the previous method, it shows the dy-
namic behavior pictorially and easily to be under-
stood. We assume that two objects communicate
each other by passing messages. Ol and 02
represent a sender object and a receiver object,
respectively. In addition, we assume that initially

two objects are ready to communicate.

The meaning of synchronous message passing is
represented by a set of Petri nets and given in
Figure 3.1. Assume the two objects communicate
each other, the left half of the net represents the
sender object O1 and the right half represents the
receiver object O2. The sequence of movement of
tokens in Petri nets is explained as follows: Initially,
when Ol and O2 are ready to communicate, the
tokens are placed in the two places, t1 and t3, as
<a>. (The place having a token implies the current
execution state). After Ol sends a message, it
becomes an suspended state (s4) and O2 accepts the
message (t2 fires) and goes to the next state (s6)
as and <c> Meanwhile Ol waits until it
receives back the information or an acknowledgment:
t3 can only fire when the two places s4 and sb
have the tokens, that is, when 02 sends back a
message to O1, Ol resumes the execution by. firing
t3 as <d> and <c>

24 A AILRE P10 ZE TM 0 243 A5 1431

81: 4 message is in the queue of the sander object 01
st O 32: 2 massagn 1s in the quaua of the sander object 02
f s3: 02 is ready to recelve 2 message
1?2 54 01 is in the suspendad stale
“ s 5 5" a relurned messaga is in the queua of 1
W s6: 02 Is roady 10 axacute by interpteting the message
a g0 s 19ady o oxacute some slatement
@ 6 58: 02 is raady fo exscule 3ome slatemant
7 11101 sonds & magsage f0 02

12 02 racuives 4 message
13- C1 recaives back # message from 02
141 02 sands back a massage lo 01

(Fig. 3.1) The synchronous message passing

Asynchronous message passing which does not
receive back any information from the receiver
object is represented with a Petri net in Figure
3.2. Initially the places sl and s3 have tokens
which mean that the two objects are ready to
communicate. When Ol sends a message to O2,
the transition tl fires and consequently t2 fires: O2
has received a message from Ol. After that Ol
and O2 execute in parallel independently. Compared
to other cases, the Petri net for this case is much

simple.

O :
s1

(Fig. 3.2) The asynchronous message passing
without returning information

The meaning of asynchronous message passing
which requires to receive back an information or
acknowledgement from the receiver object is given
in Figure 33. The execution pattern of this
statement is very similar to that of synchronous
message passing expect that the sender object Ol
does not need to be suspended until it receives back
a message. However, Ol eventually receives back
the information from O2, that is, any of transition
(t3, t5, t7, ..) can fire at some time but it does not
affect on the execution of the execution of the
object Ol.

1432 S=ZJENMEISE =EX HMT7H HISB(20005)

(Fig. 3.3) The asynchronous message passing
with returning information

4, Conclusion

One of important concem during the specification
and design phase of distributed object-oriented system
is how to specify their communication patterns
appropriately. Two specification methods for messages
passing have introduced. One is the temporal-logic
specification method which can specify the different
pattern of communication by introducing a set of
rules. This methods enables to define the underlying
mechanism which can be interpreted as constraints.
A set of primitive predicates is pre-defined for this
methods and temporal logic like formulae, rules, for
each messages passing method are derived. The
Petri net methods helps to specify graphically the
dynamic behavior of communication patterns using
the properties of Petri nets. Use of Petri nets in
software development is increased.

In the future, we will extend these specification
methods to be applied to the entire system spec-
ification of distributed object-oriented systems. Fur-
thermore, since there seem to exist similar properties
in temporal logic expression and Petri nets, the
relationship between temporal logic expression and
Petri nets will be investigated.

References

[1]1 HE. Bal, “Programing Languages for Distributed
Computing System,” ACM Computing Surveys,
Vol.21, No.3, Sept, 1989, pp.261-322.

[2) A. Yonezawa and M. Tokoro, {ed) ‘Object-
Oriented Concurrent Programming’, The MIT
press, Cambridge, MA, 1987.

[3] G. Booch, “Object-Oriented Development,” IEEE
Trans. on Soft Eng., SE-12,2 Feb. 1986, pp.211-
221.

[4] G. Booch, ‘Software Engineering with ADA’
(2nd eds.), The Benjamin/Cummings, Redwood
city, CA, 1991.

(5] CAR. Hoare, ‘Communicating Sequential Pro-
cesses’, Prentice-Hall Int, 1985.

[6] A. Yonezawa (ed.), ‘ABCL: An Object-Oriented
Concurrent System’, The MIT Press, Cambridge,
MA, 1990.

[7] A. Pnueli, “The Temporal Logic of Concurrent
Programs,” Theoretical Computer Science, Vol.13,
1981, pp.45-60.

[8] S. Lee and DL. Carver, “Specification of Dis-
tributed Systems with Object-Based Speci-
fication Language, DOSL,” the Technical Report,
Louisiana State University, July 1992.

[0] S. Lee, ‘A Formal Methodology for the Speci~
fication of Distributed Systems from an Object
Perspective’, Ph. D Dissertation, Louisiana State
University, 1992.

{10] B. Baniegbal, H. Baringer and A. Pnueill (eds.),
“Temporal Logic in Specification,” LNCS, Vol.398,
Springer Verlag, 1989.

[11] H. Barringer, “Using Temporal Logic in the
Compositional Specification of Concurrent Sys-
tems,” University of Manchester, TR UMCS~96-
10-1, 1986.

[12] A. Corradi, and L. Leonard, “Parallelism in

Object-Oriented Programming Languages,” [EEE
1990 Intl Conference on Computer Languages,
1990.

[13] C. Petri, ‘Kommunikationmit Automen’, Ph.D
Dissertation, University of Bonn, Bonn, West
Getmany, 1962.

(14] S.J. Song, ‘The Modeling, Analysis, and Design
of Distributed Systems Based on Communi-
cation’, Department of Electrical Engineering and
Computer Sciences, UC Berkeley, 1988.

[15] JL. Peterson, ‘Petri Net Theory and the Mo-
deling of Systems, Prentice-Hall, Inc., Englewood
Cliffs, NJ. 1981.

HE

FZRRE AIARE 2B FY EM LYol 2ot o+ 1433

of &
e-mail . sblee@anseo.dankook.ac.kr
19833 sheFidtu vIAEE &
A (3h
1980 ¥]5t Louisiana State Uni-
versity #AFstEH(A AL
19921 v} Louisiana State Uni
versity HAHSHH(HAL)
198311~ 19861 AU F 2 (F) TR
19924 ~1993d st AAEAY, AdD T
19933 ~ @A wulsta A AN G 2
AMEok: ARG ndad, zaad Ao, FEA
g, B A 2 A g do]Ef o] 2

