7™ HE=(20006)
BA o)A 27 dlo|Eldo] A Al AElo) A 9]

Hel dlolE] A 71H

of 2 -1 T

]

2 o

golEl Mol LofM o) A i—E_ FAA77) A3 A e Addt gy
9 A AT A AHe] ALE FAF17] sl 47 A A A s 8 'ﬂ"]E] 27 498 83 A

i

i A AGDE, A g TEE 2R Duet 0 ﬂflsu A 27100 Adsl A1 Auel st A
o gtk Ziztel Aldlel G £F CReHE dE dolg g Ak dely AN sl 4*1 o wE] oy &
%}' U UHE Solm2A 29 Aol S22 ¢ wm Ao s A% B Awd A A% X609

Meta Data Caching Mechanism in
Distributed Directory Database Systems

Kang-Wao Lee'- Jin Gwang Koh'!

ABSTRACT

In this paper, a cache mechamsm is proposed to improve the speed of query processing m distribuled divectory database
systems Ta decrease search tme of reguested cbjects and query processing tme, query requesis and resulls aboul objecls
mn a remote site are slored in the cache of a local site Cache syslem avchilectwre 15 designed accordimg w the classified
information Cache schema are designed for each cache information Operational algonthms ave developed for meta dala cache
winch has meta data tree. This Lrec improves the speed of query processing by reducing the scope of search space. Finallv,
perfonmance evaluation 15 performed by comparing the proposed cache mechamism with X 500,

1. Intreduction

by describing resource atiributes. The propesed method

This paper addresses the challenge of localing peo—
ple, resources, and other objects in global Inlemet. As
the large internet grows bevond a million hosts in tens
of thousands of organizalions, 1t is increasingly difficult
to locate any particuiar object. Users lorate resources

t7 8 2l AR E YFEYUEIER B
tEas . Enme e DEE 9w
=R 10004 94 6%, AR 00 54 %6

provide last query processing in large intcrnet. The
need for distributed inlormation repository 15 requested
to efficiently manage lhe large amount of distributed
data One of the technologies to meet Lhe needs of such
requirements is the [TU's {International Telecommu-
nication Umon) X500 directory system [6, 71.

The X500 directory system is different [rom a gen-
eral-purpose DBMS(database management system) m

several aspects and thus can be considered as a spe-

cial-purpose DBMS. In a direcrory system, the stored
dala is stalic in nature with lLittle or no modification
In addition, Lhe distributed directory system allows
ternporary inconsistency since the system does not
require complete global commitment [1, 3.

The information held mn the direclory 15 called the
Directory Information Base (DIB} The DIB consists al
entries (or objects) which contain mformation about
entities, Entitics in the DIB are represented by enlries
in a global, uerarchical name space called the Directory
Information Tree (DIT) [3, 8]. Each object belongs to
at least one object class. The class determines the
atlnbules that can he present in the object. Each
altribute 10 an object is composed of a type and one
or more values. For naming service which searches an
ohject (rom distributed directory throughout the world,
we must understand the whole organization of the
communication network and esumare a unique path
name of the object or navigate all the paths. But it is
ditficult [or users lo know the orgamization ol the
comumumnication networl or path names of the olbyects
in which he/she 1s interested, and if we do nol know
Lhe path name of the object, one must search many data
repositories, In order to solve the ahove problem, most
current distributed systems use descriptive naming
service [, 9], Descrptive naming service searches
ohjects by describing altributes of object, for example,
“Sclect * from people where name = ‘kwlee’, and
1t 18 possible that the user can access the object withoul
tnderstanchng the name space slructure of complex
information. But descniptive naming service has low
porformance. "SEARCH” of X 500 is the mosL com—
monly used descripnve naming service and global
selection query [8]. Tn order Lo gel the result of a global
selecnon query, the user must search thousands of
databases [3, 6] The solution to low query performance
is hascd on the concept thal the cost [or searching a
local name can be reduced by using name caching [2,
5]. But in X.525 recommendation standards, only the
data replication scheme is provided without including
the data cache scheme.

This paper proposes a caching mechanism for storing

N

A

CIMEE IDERO|2 A0 2] OIE] BIOE) 204l 2| 1747

fueries of an cbject in remote sites and [or stonng their
results n cache al query request sites so that query
speed can be improved in distributed directory en-

vironments.

2. Related work

The distributed system needs to improve the present
service level by providing information usability, per—
[ormance improvement and high conviction. This is
satislicd with allowing the duplication of cach entry and
operational informabon 14, 6, 91, The replication mecha-
msm ol the distribuled directory system in recom—
mendabion of X525 recommends master/slave model
Because replication mechamsm is used to improve per-
lormance in distributed environment, read requireinent
is managed by slave DSAtdirectory system agent)
where replication copes are placed, and write recuire-
nent 15 managed by master DSA where original data
are placed. While a write operation is exccuted, m—
cansislency is tomporarily permutted. In ils functional
aspect. DSA 10 master/slave modcl is the source of the
replication information. and then acts as a master or
a sender of replication mformation, This master/slave
model 15 composed of primary and secondary shad-
owing methods. [n ppmary shadowing, masler DSA is
unique replicalion mformation provider, and slave DSA
15 able 1o read. compare, search and open. All of the
madification operations are performed by masier DSA.
In the secondary shadowmg, master DSA is nok unigque
replicalion information provider, and some authorized
DSAs give modified information to master DSA. Such
a replication method could wnprove the systems per—
formance, but there are some problems, stch as the
overload of the master DSA. security and so on.

Sprite distributed file system suggests a name res-
olution protocol which combines all directory structures
ol file servers. The chenl system unproves performance
ol name resolution by storng address tables in caches
which maps the server's name to the address. But it
can'’t decrease the load of modificalon propagation for

modification and insertion

78 S REERREE =2 HTE MEz20006)

Many of cache mechanisins impraving response time
lor & user gquery by reducing overload cosi [or holding
replications have been studied [1. 2]. Based on the con-
sistency, there are strong consistent types and weak
congistent types. In the strong consistency method, the
source modification must be propagated into each re—
plicaticn The Mariposa system shows a rule—hased
modification propagation melhod As a strong cache
consistency avoidance method, a weall consistency
method treats cache information as hinr, and Quasi
caching permits an inconsistency manner [9, 10]. Bul
the madification propagation cost of sirong consislency
method 15 very high, and accuracy management of
weak consistency method is difficult.

Therefore, this paper designs the caching mechamsm
which uses meta data tree cache and holds consistency
according Lo the charactenstics of data, Tirst, we clas—
g1ty cache informalion inte appheation data information
and svstem data information according to consistency
maintenance of cache inlormation siared in the dis-
iributed direclory system, and classify previous query
information inlo meta data information to avoid similar
long distance access. Based on classified cache infor-
mation, we design cache syslem structure and storage
structure of each cache information, and develep a
cache management algorithm [or each cache infor-

mation.

3. Directory cache mechanism

I this seclion, to reduce Lthe communication over—
head among various DSA's, the use of cache which
stores repeated query and respeonse will be discussed.
And we will see the cache sirategy which delines the
storing method of the mela data tee reformed from
queries previously supplied mto meta data cache to

isolale query as a subset of scarch space

3.1 Meta data cache mechanism

The meta data cache slores guide information Lo
reduce the exhaustive searches of many hierarchical
name services, lilke X500, as a resull of reducing the

search space The decision of search space, in case a
new query happens, denves direct DSA access afler
monitonng the similarity with the guerles that
happened belore. To do these things. the queries that
happened before are reorganized as a meta data oree
and stored into the meta data cache The storage
structure of the mela data tree 1= shown as in (Figure
1) and s orgamzation holds a tree form as shown in

(Frare 2.

level dala ‘ptr_CNL ap ‘ next

poinler of sibling

cepmol entry erlry namz menterufcmld access point

(Flgue 1) Starage siructue of meta data cache

level | data a_p

level | dala ? a_p *—T——p

v

Subset of mela data tree

(Figure 2) Structure of meta data fres

Each nade on the meta data irec includes the enlry
level, an entry name, a child node pointer thal points
subentry, a DSA access point that mncludes an entry,
and a sibling node pomter that points to an entry on

the same level,

3.1 1 Adding an entiy into meta data tree

Alter getting the result ol a query which happened,
the query and 1ls result are stered mnto the data cache,
and meta data about the query should be stored in the
meta data tree for the reuse in near future. The addition
process to the meta data cache using the querv helow

can be performed as follows,

® query 1 - select * rom people where CommoniName
= Ywlee” and Couniry = k'

® query 2 selecl ¢ [rom people where CommonName

= jhlee” and Orgamzation = ‘hongik’ and Country =

L]

T

With the state Lhat the resull of query 1 was already
formed in meta data wee, if lhe result of the query 2
is arrived, it should be added to the meta data tree as
a new node through the add algonthm. In case of ad-
dition, it is added to the mela dafa tree as a new node
through the mapping process with an existing meta data
tree. (Figure 3) shows the resull of recrgamzation after
adding the information of query 2 The addmg algo-

rithm of the meta dala tree is shown in (Figure 4),

. roat g 1--

[l & T ¢ Jhooxwein [~}
¥

[3]norgi{ o T 200365 T~
Ty

[4] es]_o [100200365 [~

[6]kwiee] ~ [100200365 | o

(Figure 3} Example of adding meta data cache

ADD NODE(Q result, LEVEL)
i LEVEL »= 4 relumn
if DIT SNODE ptr ONL = NULL then
ADD_LIST(Q resul{ LEVEL])
elog if SEARCH_LIST(Q resultdl LEVEL]) = FALSE then
ADD LIST(Q resultl LEVEL])
else LEVEL "= LEVEL 1 1
DIT SNODE . = CURRENT_LIST CHILD
ADD NODE(Q result, LEVEL}
retiirn
END ADD_NCODE
Fune AQD DIT SNODE(Q resuli)
Q_result{ AJIMAX_LENGTH], DIT SNODE

LEVEL .= 0
ADRD NODE(Q reaudt, LEVEL)
retirn

END ADD_DIT SNODE
(Figure 4) Adding algorithm

3.1 2 Searching meta data tree
The process of the decision of search space through
the search process ol the mela data trce stored in the

meta dala cache using queries helow is as follows.

® guery 3 ! select * from people where CommonName
=‘hsching” and Organization = ‘hongik’ and Counlry

=la’

The data cache {application data query cache or sys-

24 TIEED| BIOIZHI012 AARONMHE] ks CIOR 14 713 1749

lem dala query cache) is empry state bacause 1l is an
inilial slate when the query 1 happens

So, Lhe response for a query will be acqured through
the search function of X 500 aller scarching the numer—
ous DSA's, The result that is acquired by the query,
first, is shown to the user who requests the query And
after deeiding whether it 1s the application data query
cache. Lhe response of the query is stored nio the ap-
plication data cache. And in case ol the system daia
query, the query is stored mto the system data query
cache. In the meta data cachc, the wnformation ahout
the query 1 is reorgamzed as thc meta data tree as
shown in (Figure o). Il the query 3 1s arrived, on these
states, it is checked whether there exists the same que-
ry in holh the applicalion data query cache and system
data guery cache. In the above case, a cache miss hap-
pens, so lhe search space should be decided using the
meila data tree stored in the meta data cache. It is clear
that the search space of the query 3 is “Organization
=hongik” through the search algorithm of the mera
data iree m (Figure 6). So, the query 3 can access the
DSA lhat includes “hongik” entry duecly with the
access pont of “100.200.36.5" of the “hongik” stored
in the meta dala cache. The scarch algorithm aof the

meta data tree is shown m (Figure 6.

Lol g [-]-]

2] ke [o [r1oozan910 [~]
=

[3lhongi] o | s0dz003635 [~]

[4] os [¢ [moozm3ss [+]

[6[kwlea] ~ [100200365 [~]

(Figure 5} Search example of meta data

SEARCI_DIT_SNODE query!
S seructwre { e, 00 o, p Foguery S
if BIT SNODEpir CNL = NULL then return
alse if SEARCH LiST(querycl = FALSE then retun
else DIT_SNODE ' = CURRENT LIST.CHILD
f SEARCH LISTVquervn) = FALSE then
DATA_ACCESS{ DIT_SNODE cacheAddr!
glse DIT_SNODE = CURRENT LIST.CHILD
f SEARCH LISTVquery.ou) = FALSE then
DATA_ACCESS! DIT SNODE cacheAddr)
refurn
END SEARCH _DIT_ SNODE

{Figure) Searching algorithm

1750 g=EgEEc=z] =% M73 He=20005)

3.1 3 Deleting a nede from meta data tree

Deleted node in the meta data wee 1s a node ol query
information about eniry winch should e removed from
the data cache When has a data replacement by full
ol the data cache, delebimg a node from the mete data
Iree is occurred.

If the meta dala tree is stored in the meta data cache
as shown in (Figure 7) and the query of “sclect * from
people where CommonName = Fhlee’ and Orga-
nization = ‘etri’ and Country = ‘kr’™ is removed from
the data cache, then the nodes must be deleled [rom
the meta data tree. The deleting algorithm of the meta
data tree is shown in (Figure 3

Lo T 1]
u. ‘/a ‘womugm';\'
o
a|hnng|k[/u } 104 200 36 § |°'i—"|“| Sin l/u l 100 200 30 5 |~ |I
/ /

=]

H o5 l/a]muznosﬁs |\‘ 1 aw i0Dzzoaas | - |0
/_]

|5| Ihtza E o [100 200 38 3 |" |‘

(Figure 7) Example of deletng msta data tres

DELETE_DIT SNODE(entry, LEVEL DELETID)
if LEVEL >= 4 or DELETED = TRUE
return{ DELETED)
SEARCH _LISTlentrylLEVEL])
DI SNODE = CURRENT _LIST CHILD
i COUNTYDIT SNODE por CNL) = NULL (hen
refurnf DELETED)
else if COUNTUDIT SNODEptr CNL} >}
then IFLAG 1= (0
else FLAG .= 1
LEVEL := LEVEL + 1
DELETE _DIT SNODFE(entry, LEVEL)
if FLAG = 0 then { DELETED . =TRUE,
returnl DELETED) }
else DELETE _NODE(entryf LEVEL/])
END DELETE _DIT SNODE

(Flgure 8) Deleting algorithm

4. Performance measurements

In this section, we compare the casc of using the
meta data cache with the casc of not using it, and
evaluate both cases.

41 Comparson of using meta data cache
Assume that the DSA in Lhe distribuled direclory

environment is located at the level of “Organi-
zationUnit(ou)” in the (Figure 9), and that numbar of
“Country(c)” is M, “Organization(o)” is N, and “Or-
ganizalionUnit{ou)” is L

O=ht

O=ft Cr=hongik

L
O=ni (kny O=inic1
Ol=cs L]
OU:dbl O% OU=cs
L] [] []

L]
CN=hwlzc CN=hsclumg Ch=jhlez Cl=sminh ChN=oidille

{Figure 9) Piocess enviranment of example query

The average access frequency lo DSA for each
query 15 shown in <Table 1> When the number of
“Country{c}”. "Organization{o)”, and “Organiza-
tionUnit{ou)” changes by step respectively as shown
m <Table 2> And i hoth cases of using the meta
data and not usmg it the companson of the average
access frequency o DSA for each query is shown in
(IMgure 10) and (Figure 11). Espeeially, in the case of
query 6, query 7 and query 8, the DSA access fre—
quency [or searching object using the meta data 1s
more reduced than that of usmg the X500, And
(Figure 12) 13 compunson of performance result

proposed model and X500,

{Table 1> Average access frequency 1o DSA

Query | Using Lhe mela dala | Nol using the mela daia
quervl (W L)/2 (M+M=L)/2
query?2 .72 (M-N-L)/2
queryd (N-L)/2 (M--L)/2
nuerye L2 (M-N+L)/2
fueryh 1 0

quervl (VAN 1)/2 (MM LY/2
query? (M L3/2 (M+NHL)/2
querys L/2 \M-N+L)A2

& query 1 : select * [rom people where cn =
“kwlee” and ¢ = “kr”;

® query 2 : sclect * from people where cn =
“hschung” and ¢ = “kr”;

{Table ?» Change number of the DSAs by step

Entry Steps

T 1 | 2 [3] 4]65

Country 1] 1 1 1 1
Drganizalion 10 20 30 10 50
OrgamzationUnit 10 20 20 40 50

Total 100 | 4000 | 800 | 1600 | 2500

10000

1906

access renucney

10000

1000

access frequency

~+— prorqsed mocal
- 500 o]

naead [Teuency

ana
|
L

Uz -8

(Figure 123 Comparson of performance result i pro-
posed model and X.500

& gucry 3 - selecl * from pcople where cn =
“hschung” and o= “hongik” and c=
“kr”;

» guery 4 : selecl * from people where cn =
“kwlee” and o = “hongik” and ¢ = “kr”;

® query 5 ¢ select # from people where cn =

B4 Cl21ER] HIOIEMI0LR AlsiolAe) HIE HOE e 71> 1731

“kwlee” and o = “etri” and ¢ = “kr™;
* query 6 : select # from people where cn =
“kwlee” and ou="db” and c = “kr";
* qucry 7 : select # from people where con =
“hschung” and ou = “cs” and ¢ = “kr”;
® query 8 scleet # from people where ¢n =
“psshin” and ou = “cs” and c= “kr”;

5, Conclusion

The paper designs a caching mechamsm that im-
proves the query performance in a distribuied directory
environment by storing the query and results of remote
site objects m the query request site. The main pro-
perlies are summarized as [ollows. First, we classify
the information stored and managed in distributed di-
vectory systems as appheation data, system daia and
meta data, Second, we designed the structure of the
cache system and the storage structure of the classilied
cache information. Third, we propose an operational al-
gorithin of the meta data cache which stores the mela
data {ree organized by previous queries (o speed up the
query pracessing by reducing the search gpace of que-
ry. Finally, we show that the number of access fre-
quency to DSA in the proposed model using the meta
data is more reduced than the ohjecl searching tech-
nique of X.500. The overhead of our proposed method
15 a cost of cache processing in a local site. But we
didn't consider thal ame because the cosls are litle

than commumcalion costs

References

[1] R. Alonso, I Barbara, H. Garcia-meling, “Dala Ca-
ching Tssues in an Informaban Relrieval System.”
ACM Transactions on Database Systemns. Vol 15,
No.3, Sept. 1990, pp.355-384

[2] Malthew Addiscn Blaze, “Caching in Large-Scale
Disaihuted File Systems,” Ph.D. Thesis, Universily

of Princeton, January 1993

1762 SFREEMc=g =27 B Je=@20006)

(3] Jean—Chrysostome Bolot, Hossam Afifi, “Evaluat-
g Caching Schemes [or the X 500 Directory Svs-
tem,” The 13th ICDCS, Pittsburgh, Pennsylvania,
May 25-28, 1993, pp.112~118.

[4] James Gwertzman, “Autonomous Replication in
Wide-Area Internetworks,” Ph.D Thesis, Um-
versity of Harvard, April 1985

[5) Yixiu Huang. Roberl H. Sloan, Ourn Wolfson, “Di-
vergence Caching in Chenl-Server Archilectures.”
Proceedings of the third ICPDIS Austin, TX, Sept.
1694,

[6] ITU, “The Directory : Recommendations X 500,
X001, X509, X511, X518, X519, X520, X521,
X525 ITU Blue Book, 1991

[7]1 I. H Lee, “A Design of Ohjecr-Active-Knowledge
{OAK) Directory Database Model {or Telecom-
mnication,” Ph.D. Thesis, Hongik Umv. 1996. 8

[B] B.Chifford Neuman, “Scale i Distributed Systems,”
Readings in Distributed Compuling Systems, IEEE
Computer Society Press. 1094,

19] Ordille, J.J. "Descriptive Name Services for Large
Internets,” Ph.D. Thests, Wisconsin Univ., Neow, 1993.

[10] D. B Terry, “Cachmg Hinls in Distributed Sys-—
tems,” IEEE Transaclions on Soltware Engineering,
Vol SE-13, No.l, Jan. 1887.

O[o ‘I_
e-mail © kwlec@tiger.seonam ac.kr
1987 Fel izt 7 AAks))

FH(e1Z4h

1980 A=rE W A ApA] stk
EU(FHAH

1997+ el dabH ey
il

wht o

19008~ Adstae AREARLTAGE 20
Lok ik wlefefu]o] L, ARG dloje| e o]

Bk A2

il

[‘.‘

LN

e-mal kjg@sunchen ac kr
19824 FulEa A

£ (e]5pa)
161 FAAE AAR
19979 FelHebE A% 4o

1984 ~1988d S dAEdE A4

1988 24 s PFE e A
199333 ~198.0 S) FEE s S
g
19973 ~1998d eldFdnsn RIS PE
s
WAk dlojelulel », 2R 7). HRBA,
CALS/EC

