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An Efficient List Scheduling Algorithm
for Multiprocessor Systems

Gyung-Leen Park'- Hyun-Seung Choo''- Jeong-Hoon Lee'

ABSTRACT

Scheduling parallel tasks, represented as a Directed Acyclic Graph (DAG) or task graph, on a multiprocessor system has

been an important research area in the past decades. List scheduling has been a typical approach for solving the problem.

List scheduling algorithms assign priorities to a node or an edge in an input DAG, and then generate a schedule according
to the assigned priorities. This paper proposes a list scheduling algorithm with effective method of priority assignments. The
paper also analyzes the worst case performance and optimality condition for the proposed algorithm. The performance comparison

study shows that the proposed algorithm outperforms existing scheduling algorithms especially for input DAGs with high

communication overheads. The performance improvement over existing algorithms becomes larger as the input DAG becomes

more dense and the level of parallelism in the DAG is increased.

1. Introduction

Efficient partitioning and scheduling of parallel pro—
grams onto processing elements of parallel and distrib-
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uted computer systems are difficult and important is-
sues in concurrent processing [1-7]. The process con-
sists of partitioning a parallel program’s tasks into clus-
ters and efficiently scheduling those clusters among the
processing elements of a parallel machine for execution.
Once an application program is partitioned into clusters
or tasks, it can be represented by a DAG (Directed Acyclic



Graph), or a task graph, which represents the prece-
dence constraints of the program tasks. The goals of
the scheduling process are to efficiently utilize re-
sources and to achieve performance objectives of the
application (e.g., to minimize program parallel execution
time).

Since it has been shown that the multiprocessor
scheduling problem is NP~complete, many researchers
have proposed scheduling algorithms based on heuris-
tics [8]. The scheduling algorithms can be classified into
two general categories : algorithms that employ task
duplication and algorithms that do not employ task
duplication. Task duplication algorithms attempt to re-
duce communication overhead by duplicating tasks that
would otherwise require interprocessor communications
if the tasks were not duplicated [9-18]. One of the major
problems with task duplication is the issue of data dis—
tribution and preserving of data integrity. This paper
assumes that the system does not allow task duplication.

Most of the non—duplication scheduling methods can
be classified as either a clustering algorithm [19, 20] or
a list scheduling algorithm [1, 8, 21, 22]. The clustering
algorithms basically perform the following operations :

1. Initially, each task is considered to be a cluster.

2. An edge between two clusters is selected accord-
ing to a priority assigned to the edges by the clu-
stering algorithm.

3, The edge is removed (call edge zeroing) if it satis-
fies certain conditions specified by the algorithm.
Once an edge is zeroed, the two clusters connected
by that edge will be merged into one cluster.

4, Steps 2 and 3 are repeated until all the edges are
examined.

5. The clusters are assigned to the processors in the
target system.

The List scheduling algorithms maintain a list of node
according to their priorities. A list scheduling algo-
rithm repeatedly carries out the following steps :

1. Tasks ready to be assigned (a task becomes ready
for assignment when all of its parents are sched-
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uled) are put onto a pricrity queue. The priority
criteria determines the order in which task are
assigned to the processors.

2. Select a “suitable Processing Element (PE)” for
assignment, Typically, a suitable PE is one that
can execute the task the earliest.

3. Assign the task at the head of the priority queue
to this PE.

4. Repeat steps 2 and 3 until the priority queue is
exhausted.

Typically, the list scheduling algorithms assume
bounded number of processors while clustering algor-
ithms assume an unbounded number of processors. This
difference is not significant since these assumptions can
be easily removed for each method. A more significant
difference between the list scheduling and clustering
algorithms is that list scheduling algorithms select only
a ready node for assignment while clustering algorithms
may select any node for this purpose.

The critical part in both techniques is the develop-
ment of a method for assigning priorities to the nodes
or the edges of the input DAG. Since a large number
of different methods are proposed in the literature, this
paper briefly classifies them according to the parame-
ters used for the priority assignment : the node weight,
the distance, the critical path, and some combinations
of them,

The methods based on the node weight, such as that
in HNF (Heavy Node First), assign a higher priority
to a node with a larger computation cost [1]. The dis-
tance (defined as the sum of computation and communi-
cation costs of the nodes on a path) could be either the
maximum distance from a root node to the node under
consideration (top distance) or the maximum distance
from the node being considered to an exit node (bottom
distance). For example, HLFET (High Level First with
Estimated Time) algorithm assigns a higher priority to
a node with a larger bottom distance [8]. A large
number of scheduling algorithms use the length of the
critical path to assign priorities to the nodes and edges
of a DAG. Some examples include Linear Clustering
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(LC) [19] and Dominant Sequence Clustering (DSC) [20]
algorithms. Finally, some algorithms use combinations
of the above parameters to decide the priorities. For
example, Critical Path Node-Dominate (CPND} method
[22] uses the critical path and the bottom distance for
assigning the priorities to the nodes in the input DAG.

This paper proposes a new list scheduling algorithm,
Decisive Path Scheduling (DPS) [21], which assigns
the priorities to the nodes using the decisive path (de-
fined in Section 2). The performance comparison study
shows that the proposed algorithm outperforms existing
scheduling algorithms especially for input DAGs with
high communication overheads. The performance im-
provement over existing algorithms becomes larger for
denser and more parallel DAGs.

The remainder of this paper is organized as follows.
Section 2 presents the system model and the problem
definition. Section 3 briefly covers the related works.
The proposed scheduling algorithm is presented in
Section 4. This section also contains the worst case and
the optimality analysis of the proposed algorithm. The
performance of the proposed algorithm is compared with
that of the typical existing algorithms in Section 5.
Finally, Section 6 concludes this paper.

2. System model and problem definition

A parallel program is usually represented by a Di-
rected Acyclic Graph (DAG), which is also called a task
graph. As defined in [16], a DAG consists of a tuple
(V,E, T, C), where V, E, T, and C are the set of task
nodes, the set of communication edges, the set of com-
putation costs associated with the task nodes, and the
set of communication costs associated with the edges,
respectively. The computation cost and the communica-
tion cost represent the time for executing the task and
that for communication delay, respectively. T(Vi) is a
computation cost for task Vi and C(V;, Vj) is the com-
munication cost for edge E(V;, V;) which connects task
Vi and V;. The edge E(V;, V;) represents the precedence
constraint between the node Vi and Vj. In other words,
task V; can start the execution only after the output

of Vi is available to V;. When the two tasks, V; and
Vi, are assigned to the same processor, C(Vj, Vj) is as—
sumed to be zero since intra-processor communication
cost is negligible compared with the interprocessor
communication cost. The weights associated with nodes
and edges are obtained by estimation [23].

This paper defines two relations for precedence
constraints. The Vi = V; relation indicates the strong
precedence relation between Vi and V;. That is, Vi is
an immediate parent of V; and Vj is an immediate child
of Vi. The terms iparent and ichild are used to represent
immediate parent and immediate child, respectively.
The Vi— V; relation indicates the weak precedence
relation between Vi and V;. That is, Vi is a parent of
V; but not necessarily the immediate one. Vi — Vj and
Vi— Vi imply Vi— Vi. Vi=V; and V; = Vi do not
imply Vi = Vi, but imply Vi— Vi . The relation — is
transitive, and the relation = is not. A node without any
parent is called an entry node and a node without any
child is called an exit node.

(Figure 1) The sample DAG

Graphically, a node is represented as a circle with a
dividing line in the middle. The number in the upper
portion of the circle represents the node ID number and
the number in the lower portion of the circle represents
the computation cost for the node. For example, for the
sample DAG in (Figure 1), the entry node is node num-



ber 1 which has a computation cost of 10. In the graph
representation of a DAG, the communication cost for
each edge is written on the edge itself. For each node,
incoming degree is the number of input edges and
outgoing degree is the number of output edges.

For example, in (Figure 1), the incoming and outgoing
degrees for the node V1 are 0 and 4, respectively. A few
terms are defined here for a more precise presentation.

Definition 1 : A node is called a fork node if its
outgoing degree is greater than 1.

Definition 2 : A node is called a join node if its
incoming degree is greater than 1.

Note that the fork node and the join node are not
exclusive terms, which means that one node can be both
a fork and also a join node ; i.e., both of the node’s in-
coming and outgoing degrees are greater than one.
Similarly, a node can be neither a fork nor a join node ;
ie, both of the node's incoming and outgoing degrees
are one. For the sample DAG in (Figure 1), V1 is a fork
node while Vs is a join node. Nodes V3, Vs, V4, and Vs
are neither fork nodes nor join nodes.

Definition 3 : The Earliest Start Time, EST(V;, Pi),
and Earliest Completion Time, ECI(V, P.), are the
times that a task V; starts and finishes its execution
on processor Pk, respectively. When the information on
the processor is not necessary, they are denoted just
as EST(V)) and ECT(V)), respectively.

Definition 4 : The critical path is the longest path
from an entry node to an exit node in the graph. A Crit-
ical Path Including Communication cost (CPIC) is the
length of the critical path including communication
costs in the path while a Critical Path Excluding Com-
munication cost (CPEC) is the length of the critical
path excluding communication costs in the path. For the
sample DAG in (Figure 1) as an example, CPIC is T(V1)
+C(V, Va) + T(V2) + C(Va, Vg) + T(Ve), which is 380.
CPEC is T(V1) + T(V3) + T(Ve), which is 160.
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Definition -5 : The level of a node is recursively
defined as follows. The level of an entry node, Vi, is
one. Let Lv(V;) be the level of Vi. Then Lv(Vy) = 1.
Lv(V) = Lv(V)+1, V; =2 V;j, for non-join node Vi
Lv(V;) = Max(Lv(V)) + 1, V; = V;, for join node V;. For
example, the level of node Vi, Vi, Vs, V4, Vs, and Vs
in the sample DAG are 1, 2, 2, 2, 2, and 3, respectively.
Even if there was an edge from node Vi to Vs, the level
of Vs would still be 3 since Lv(Vg) = Max(Lv(V)) +
1, Vi = Vs, for join node Vs. The level of a DAG is the
maximum level of the nodes in the DAG.

Definition 6 : The top distance for any give node is
the longest distance from an entry node to that node,
excluding the computation cost of the node itself. The
bottom distance for any given node is the longest
distance from that node to an exit node, including the
computation cost of the node itself. For example, the
top distance of Vs, TD(Vs), is 280 which is T(Vy) + C(Vy,
Va) + T(Vg) + C(Vy, Ve). The bottom distance of Vo,
BD(Vy), is 320 which is T(V2) + C(Vs, Vg + T(Ve).

Definition 7 : The Decisive Path (DP) to node Vi
is the path which decides the top distance of Vi. For
example, the decisive path to Vs , DP(Ve), is the path
through Vi, Vo, and Vs since the path decides the top
distance of Vs. The decisive path is defined for every
node in the DAG. For example, DP(V3) is the path
through Vi and Va. The critical path becomes a special
case of the decisive path defined for an exit node.

The multiprocessor scheduling process becomes a
mapping of the task nodes in the input DAG to the
processors in the target system with the goal of
minimizing the execution time of the entire program.
This paper assumes a complete graph for the target
system ; i.e., any processor can communicate with any
other processor. Interested readers may refer to [24] for
topology issues. The execution time of the entire
program after scheduling is called the parallel time to
be distinguished from the completion time of an in-
dividual task node.
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3. The related work

As discussed in the introduction, the critical issue in
list scheduling and clustering algorithms is the method
by which the priorities of the nodes or edges of the input
DAG are decided. Since most of the scheduling algo-
rithms use certain properties of the input DAG for de-
ciding the priorities, we classify the existing scheduling
algorithms into four categories according to the prop-
erties used ! node weights, distances, the critical path,
and some combinations of these parameters. This sec-
tion briefly covers a typical scheduling algorithm in
each category. The algorithms are used later for perfor-
mance comparison against the proposed method.

The Heavy Node First(HNF) algorithm [1] assigns
the nodes in a DAG to the processors, level by level.
At each level, the scheduler selects the eligible nodes
for scheduling in descending order based on computational
weight, with the heaviest node (i.e. the node which has
the largest computation cost) selected first. The node
is selected arbitrarily if multiple nodes at the same level
have the same computation cost. The selected node is
assigned to a processor which provides the earliest start
time to the node.

The High Level First with Estimated Time (HLFET)
algorithm [8] also assigns the nodes in a DAG to the
processors, level by level. At each level, the scheduler
assigns a higher priority to a node with a larger bottom
distance. The node with the highest priority is assigned
a processor which provides the earliest start time for
the node.

The Linear Clustering (LC) algorithm [19] is a tradi-
tional critical path based scheduling method. The sched-
uler identifies the critical path, removes the nodes in
the path and the edges attached to the nodes from the
DAG, and assigns them to a linear cluster. The process
is repeated until there are no task nodes remaining in
the DAG. The clusters are then scheduled onto a proc-
€SSOr.

The Dominant Sequence Clustering (DSC) [20] algo-
rithm is based on the dominant sequence which is a

dynamic version of the critical path. The dominant se-

quence is the longest path of the task graph for
un-scheduled nodes [20]. Initially, the dominant se-
quence is same as the critical path for the original input
DAG. At each step, the scheduler selects one edge in
the dominant sequence and zeros it if the edge zeroing
reduces the length of the dominant sequence. The
scheduler identifies a new dominant sequence since the
edge zeroing may change the longest path. The operations
are repeatedly carried out until all the edges are exam-
ined.

In the Critical Path Node-Dominate (CPND) algo-
rithm [22], the nodes in the input DAG are classified
into three categories : Critical Path Node (CPN), In
Branch Node (IBN), and Out Branch Node (OBN). A
CPN is the node on the critical path while an IBN is
a nodes which is not a CPN but from which there is
a path reaching a CPN. An OBN is a node which is
neither a CPN nor an IBN. The CPND algorithm tries
to schedule the CPNs first. If there are unscheduled
IBNs which are parents of a CPN, they are scheduled
in the descending order of their bottom distances. OBNs
are scheduled after all CPNs and IBNs are scheduled,
also in the descending order of their bottom distances.
CPND algorithm obtains a schedule using a FAST (Fast
Assignment using Search Technique) scheduler [22]. A
series of optimizations are then applied to the original
schedule to improve the performance of the application.
In this paper we use the original, un-optimized CPND
schedules since we are interested in investigating the
effectiveness of the priority assignment methods. The
optimization routines can also be applied to the proposed
algorithm later on.

The time complexity and the priority criteria for the
aforementioned algorithms are summarized in <Table 1>
The information for the proposed algorithm (DPS) is
also included in this table and will be discussed shortly.

As an illustration, (Figure 2), presents the schedule
obtained by each algorithm for the sample DAG of (Fig-
ure 1). In this example, P; represents processing ele-
ment [ ; PT is the Parallel Time of the DAG ; and
[EST(V;, Py), i, ECT(V;, Pi)] represents the earliest start
time and earliest completion time of task i. In the first



(Table 1> Characteristics of scheduling algorithms

ALGORITHM PRIORITY CRITERIA COMPLEXITY
HNF Level and Node Weight 0(ViogV)
HLFET Level and Bottom Distance o)
LC Critical Path o)
DSC Dominant Sequence O(V2ogV)
CPND | Critical Path and Bottom Distance | O(VY)
DPS Decisive Path ovd)

line of (Figure 2), (a), for example, [0, 1, 10] represents
that task V: starts and completes its own execution at
time 0 and 10 respectively, on processor P1. The figure
also shows the delay due to communication time. In
(Figure 2).(b) as an example, the start time of task Vs
is 140 since its immediate parent V4 completes its exe—
cution at time 80 and the communication takes 60 time
units. In this example, the proposed algorithm provides
the best parallel time compared to the other algorithms
under consideration.

pl : [0, 1, 10] [10, 3, 60] [60, 2, 801 [140, 6, 240}
p2 : [70, 4, 80]
p3 : [20, 5, 30]

(a) The Schedule by HNF(PT = 240)

pl < [0, 1, 10] [10, 2, 30] [30, 3, 801 (140, 6, 240]
p2 : [70, 4, 80]
p3 : [20, 5, 30]

(b) The Schedule by HLFET(PT = 240)

pl - [0, 1, 10] [10, 2, 30] [140, 6, 240]
p2 : {50, 3, 100]
p3: [70, 4, 80]
pd 1 [20, 5, 30

(c) The Schedule by LC(PT = 240)
pl: [0, 1, 10] [10, 2, 301 [50, 3, 100] [100, 4, 110] [110, 6, 210]
p2: [20, 5, 30]

(d) The Schedule by DSC(PT = 210)
pl : {0, 1, 10] {10, 2, 30] [30, 3, 80] [140, 6, 240]

p2 : [70, 4, 80]
p3 : [20, 5, 301

(e) The Schedule by CPND(PT = 240)
pl: [0, 1, 10] [10, 2, 30] {30, 4, 40] {40, 3, 90] [90, 6, 190]
p2 : [20, 5, 30]

(f) The Schedule by DPS(PT = 190)

(Figure 2) Schedules for the sample DAG
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4, The proposed algorithm

4.1 Motivation

The basic heuristic behind various multiprocessor
scheduling algorithms is that we can reduce the parallel
time by first scheduling the task node which will have
the most impact on the parallel time. For example, HNF
first schedules the heaviest node (the node with the
highest computation time), assuming that the heaviest
node has more effect on the parallel time than others.
The DSC, LC, and CPND algorithms focus on the crit-
ical path since it will most likely decide the parallel time
of the application. The proposed algorithm, DPS, fo-
cuses on the “decisive path” since the length of the deci-
sive path to a node most often determines its starting
time. Note that the critical path is a special decisive path
defined only for an exit node.

4.2 Algorithm description

A high level description of the proposed algorithm is
presented in (Figure 3). In step (1), DPS transforms an
input DAG to a DAG with only one entry node and only
one exit node. The transformation can be done simply
by adding a dummy entry node and a dummy exit node
with computation costs of zero. The dummy entry node
is connected to the actual entry nodes with commu-
nication costs of zero, Similarly, the dummy exit node
is connected to the actual exit nodes in the same way.
Any task graph with multiple entry nodes and/or exit
nodes can be scheduled by DPS algorithm since the task
graph can be easily transformed into a task graph with
only one entry node and one exit node in step (1) with-
out violating any constraint in the original task graph.
Step (2) identifies the decisive paths to all the nodes
in the transformed input DAG. The decisive path to the
dummy exit node becomes the critical path of the DAG.

Step (3) builds the “task_queue” which queues all the
DAG nodes, prioritized based on the lengths of their
decisive paths. The priorities are decided as follows :
DPS puts the CPNs into the task_queue in the ascending
order of their top distances (parents first) if there is no
IBN for a given CPN. If there are some IBNs reaching
a CPN, the IBN belonging to the decisive path of the
CPN is selected first among the un-queued IBNs. The
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same procedure is carried out recursively if an IBN has
parents which are not queued yet. After all the parents
are queued in the task_queue, the CPN is inserted, as
shown in the search_and_put() procedure . Finally, DPS
assigns the task_queue tasks (in FIFO order) to the
processing elements (PEs). At each step of the assign-
ment, the selected PE provides the earliest start time
for the task under consideration, taking into account all
the communications from the task’s parents (i.e., find
a suitable PE for assignment). If the completion time
of a task is larger than the sum of all the computation
costs of the nodes, DPS assigns all the nodes to one
processor and Sexits from the algorithm as shown in
steps (7) and (8).

DPS Algorithm
(1) Transform the input DAG so that the DAG has only one
entry and only one exit node ;
(2) Identify the decisive path to each node ;
/* the decisive path to the exit node becomes the critical
path, CP */
(3) task_queue = build_task_queue(CP) ;
(4) for each task,Vi, in the task_queue in a FIFO manner
(5) find the suitable processor for Vi ;
) schedule V; on the suitable processor ;
(N if ECT(V) = ZT(Vy), VVi
)

8 uni_schedule() ;
9 exit(0) ;

(11)  endif

(12) endfor

build_task_queue(CP)

/* Let CPN be a set of nodes belonging to CP. NQ is a set

of nodes which are not in the task queue yet. Initially, NQ

contains all the nodes in the input DAG. */

(13)  while (NQ#= &)

(14) for each task Vi, distance[Vi] < distance[V;],
YV, Vi, ViECPN, V;, V;ENQ

) if VVi €NQ, Vi =V;

) put V; into the task queue ;

) NQ = NQ - {Vi};

) else

(19) search_and_put(V3) .

) endif

) endfor

) endwhile

) return the task queue ;

search_and_put(V1)
(24) for Vg, distance[ V4] + C(Vq4, Vi) = distance[ Vo] + C(V,, V),
YV Va2V, Vo=V, Vg Vo€ NQ
/* Vy is the iparent of and in the
decisive path to Vi */
(25)  search_and_put(Vy) ;
(26) put Vy into the task queue ;
(27)  NQ = NQ - {Vqg};
(28) endfor

uni_schedule()
(29) remove the schedule obtained so far ;
(30) schedule all the tasks on one processor ;

(Figure 3) Description of the DPS algorithm

Step (2) takes O(V?) time for identifying the decisive
paths to all the nodes. Step (3) also takes O(V?) time
since it examines all the edges in the input DAG. If
roughly estimated, the complexity of build_task_queue
in step (3) would be O(VE) since the while loop in step
(13) takes O(V) and the for loop in step (14) examines
all the edges. However, note that all the edges associ—
ated with each node are examined in step (14). The
number of edges examined becomes the number of the
edges in the input DAG. Therefore, the complexity of
the routine becomes O(E) which is O(V?), Step (5) takes
O(V) time since |V| processors are enough for this
scheduler. Thus, the time complexity of the DPS algo-
rithm becomes O(V?).

4.3 Analysis of the proposed algorithm

The worst case analysis of the scheduling algorithm
is important especially for real-time systems. At first,
we will show the worst case performance and the opti-
mality condition of the DPS algorithm for a tree struc-
tured input DAG. The tree structured input DAG means
a task graph which does not contain a join node. Then
the worst case performance analysis for a general input
DAG is presented. The notations used in the proofs are
first summarized :

® V., : the entry node.

® V. the exit node.

® Via i node Vi whose level is a.

® V, ! an iparent! of V., which means that V, is the
exit node in the original input DAG before the
transformation.

o LDP(Vi) : the length of the decisive path to the
task node Vi

® DPN(V)) : a set of nodes on the decisive path to
the task node V.

® FN : a set of fork nodes.

For a tree structured input DAG not containing a join
node, the worst case parallel time obtained by the DPS
algorithm is maxp{ZT(V;)) + ZCV;, V), Vi= V;, Vi e

1) Please refer to section 2 for the definitions of iparent and ichild.



FN, V;, V; € DPN(Vy), ¥V}, Vp= Ve That is, the worst
case parallel time is the largest ECT(V,) which is the
sum of computation costs of the nodes on the path to
Vo plus the sum of the communication costs from only
the fork nodes on the path. Theorem 1 proves this
assertion by induction. The proof basically says that,
for any ichild® V; of Vi, ECT(V;) = ECT(V;) + T(V}),
if Vi is not a fork node while ECT(V;) = ECT(V)) + C(V;,
V;) + T(V;) in the worst case if Vi is a fork node with
the basis that ECT(V;) = T(V.).

Theorem 1 : For a tree structured input DAG which
does not contain a join node, the worst case parallel time
obtained by DPS, PT(DPS), is max,{ZT(V;) + ZC(V;
Vi), Vi V;, Vi€ FN, V;, V; € DPN(Vy), ¥V, V,, = Ve

Proof :

The parallel time is the largest ECT(V,), VV,, V=
Ve, since C(Vp, Ve) = 0 and T(Ve) = 0. We are going
to show that ECT(V,) = ZT(Vy) + ZCV;, Vj), Vi=
Vi, Vi€ FN, V;, V; € DPN(V,), in the worst case.

1) Basis : For the entry node Vi, ECT(V;) = T(V,).
2) Inductive Hypothesis : for VVj, V; =V;
2.1) ECT(Vj) = ECT(V) + T(Vy), if Vi & FN.
2.2) ECT(V;) = ECT(V)) + C(V;, V) + T(V;) in the
worst case, if V; € FN.
3) Inductive Step : Let P« be the processor where
Vi has been scheduled.
3.1) If Vi € FN, V; = V;, the suitable PE obtained
by step (5) in the algorithm will be Pk since
P« gives the earliest start time EST(V)) =
ECT(V). Then ECT(V;) = ECT(Vy) + T(V;).
32) If V; € FN, V; = Vj, the suitable PE obtained
by step (5) will be Py if Py provides a start
time for V; which is earlier than ECT(V;) +
C(V,, V). Otherwise, step (5) will return another
processor where ECT(V;) = ECT(Vy) + C(V;,
Vi) + T(V)). Thus, it is guaranteed that ECT(V;)
=ECT(Vy + C(V;, V) + T(V)) in the worst case.
O

It is obvious that the parallel time obtained by the
DPS scheduler is always less than or equal to the sum
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of the computation costs of the task nodes in any DAG
due to steps (7) and (8) of the algorithm (Figure 3). We
will also prove that the parallel time obtained by the
proposed algorithm is always less than or equal to the
length of the critical path, CPIC, for any input DAG.
Note that the parallel time is the same as ECT(S,), and
the CPIC is the same as LDP(S.). Therefore, proving
that the parallel time is always less than or equal to
CPIC is equivalent to proving ECT(S.) < LDP(S.).

Theorem 2 : For any input DAG, when using the
DPS algorithm for scheduling, ECT(S.) < LDP(Se).

Proof by induction :

1) Basis : ECT(Vkz) < LDP(Vy2).

At level one, ECT(V,) = LDP(V,) = T(V,) since V; is
the dummy entry node. Then ECT(Vk2) = ECT(V;) +
T(Vy) if Viz € CPN. If Vi2 & CPN, the suitable PE is
the processor where V; is scheduled if EST(Vi2) <
ECT(V:) + C(V,, Via). Otherwise Vi will be scheduled
on a different processor where ECT(Vy2) = ECT(V,) +
C(Vy, Vi2) + T(Viz). Therefore, it is guaranteed that
ECT(Vip) < ECT(Vy) + C(Vy, Vik2) +T(Viea). Thus, ECT(Vio)
< LDP(Viy) since LDP(Vi2) = LDP(V,) + C(Vy, Via) + T(Vio)
for any Vio.

2) Inductive Hypothesis : if ECT(Vy;) < LDP(Vy;)
then ECT(Viir1) < LDP(Vigju1)

3) Inductive Step :

Viin1 will be scheduled on the processor where Vi,
Vk; = Vi1, has been scheduled if EST(Vii+1) < ECT(V;)
+ C(Vyj, Viia). Otherwise Vi will be scheduled on a
different processor where ECT(Vyi1) = ECT(Vy;) +
C(Vii, Viia) + T(Viis). So it is guaranteed that ECT(Vy;1)
< ECT(Vy;) + C(Vi;, Vi) + T(Vie1). Thus, ECT(Vi;.1)
< LDP(Vyia) if ECT(Vy;) < LDP(Vy;) since LDP(Vij+1) =
LDP(Vi;) + C(Vij, Vi) + T(Viier).

According to the inductive step, the completion time
of any node is shorter than the length of the decisive
path to that node, including the exit node. That is, the
parallel time is always less than or equal to the CPIC. []

5. Performance comparison

We generated random DAGs to compare the perfor—-
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mance of the proposed DPS algorithm with that of the
existing scheduling algorithms through a simulation study.
We used four parameters the effects of which we were
interested to investigate :

1. The number of DAG nodes : DAGs of varying
sizes, including DAGs with 20, 40, 60, 80, and 100
were considered.

2. The CCR (Communication to Computation Ratio) :
CCR is the ratio of the average communication
cost to the average computation cost. CCR values
of 0.1, 05, 1.0, 50, and 10.0 were considered.

3. The depth or maximum level of the DAG : We
were interested to investigate the effect of the
degree of parallelism in a DAG on the scheduling
algorithms. For a fixed number of nodes, a DAG
with a shorter depth (maximum level or level of
the dummy exit node) displays more parallelism
compared to a DAG with a longer depth. If K is
the average number of siblings at a level, and N
is the number of DAG nodes, then the average
depth of the DAG will be N/K. Thus, for a fixed
number of DAG nodes, if the average number of
siblings at the same level (K) is small, the DAG
represents a tall and lean graph which has a low
degree of parallelism. On the other hand, a large
value of K generates DAGs with more parallelism
among the siblings. In our studies, we ranged the
number of siblings (K) from 2 to 10.

4, The average out-degree of a node : The average
out-degree of a node controls the density and
amount of communication among the nodes. The
larger the average out-degree, the denser the DAG
is and more communications are generated. We

considered the average out-degrees of 2 to K.

There are 25 combinations of the DAG sizes and the
CCR values (5x5). Since there are 9 levels (from 2 to
10) for each combination and each level K has (K-1)
cases of outgoing degrees (from 2 to K), there are 45
(1+2+..+9) cases for each combination. Since we gen-
erated 5 random DAGs for each case, the number of

DAGs used for the performance comparison study is

5625 (25 X 45 X B). The scheduling algorithms dis-
cussed in section 3 ; i.e., HNF, HLFET, LC, DSC, and
CPND, were compared against the DPS algorithm.

For performance comparison, we define a normalized
performance measure named Relative Parallel Time
(RPT), which is the ratio of the parallel time to CPEC,
For example, if the parallel time obtained by the DPS
is 200 and CPEC is 100, RPT of DPS is 2.0. If LC
provides a parallel of 250 for the same DAG, then its
RPT is 25. A smaller RPT value is indicative of a
shorter parallel time. The RPT of any scheduling al-
gorithm can not be lower than one since CPEC is the
lower bound for completion time of the DAG.

(Figure 4) compares the performance of the sched-
uling algorithms with respect to the number of DAG
nodes. Each case in (Figure 4) shows an average RPT
value from 1125 runs with varying CCR, K, and average
out-degree values. The average values of CCR and K
turmed out to be 3.3 and 5, respectively. As shown in
(Figure 4), the number of nodes does not significantly
affect the relative performance of scheduling algorithms.
In other words, the performance comparison shows sim-
ilar patterns regardless of N. The pattern shows that
for the same set of DAGs, DPS provides a shorter par-
allel time than the existing algorithms.

B HNF
O HLFET
|LC

£ DSC
W CPND
W DPS

(Figure 4) Performance comparison with respect to N
(for average CCR =33 and K = 5)

(Figure 5) depicts the RPT values for varying CCR
values. When CCR is less than one, DSC slightly out-
performs the other algorithms. When CCR is one, all
the algorithms perform evenly. However, as the CCR



value is increased, DPS outperforms the other algo-
rithms. The performance gap becomes larger as CCR
values are increased.

B HNF
0 HLFET
W

[ DSC
W CPND
| DPS

0.1 0.5 1

(Figure 5) Performance comparison with respect to
CCR (for N = 100 and average K = 5)

(Figure 6) shows the effect of the degree of par-
allelism in the DAG (represented by K = average num-
ber of sibling nodes at each level) on the scheduling
algorithms. Recall that for a fixed number of nodes in
the DAG, a smaller K value results in a more serial
DAG, while a larger K results in a more parallel DAG.
In all cases the proposed DPS algorithm outperforms
the other scheduling algorithms, however, the perfor-
mance gap becomes more pronounced for DAGs with
a higher degree of parallelism. This is an important result
because it shows that the decisive path heuristic does
a good job of discriminating the nodes in the difficult
case of having many parallel nodes as well as the easy
case of having many serial nodes in the input DAG.

8 HNF
€1 HLFET
.

@ DSC
W CPND
W OPS

2 3 4 5 &6 7 8 9 10
Number of Siblings

(Figure 6) Performance comparison with respect to
number of siblings (K)
(for N = 100 and CCR = 10)
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Finally, (Figure 7) depicts the performance results when
the amount of communication, represented by the av-
erage out-degree of the nodes, in the DAG is varied.
It seems the studied scheduling algorithms are not
sensitive to the degree of communication (or dependen-
cy) in the DAG. The relative performances remain fixed
for varying average node out-degrees. However, in
almost all cases, DPS outperforms the other algarithms.

RPT
16

14
12
10

8

8 HNF
CIHLFET
mL.C
[@DsC
M CPND
mDPS

O N s

20 29 38 47 55 64 7.3
Average Degree

(Figure 7) Performance comparison with respect to
average out-degree of a node
{for N =100, CCR =10, and K = 10)

6. Conclusion

One of the critical issues in a list scheduling algo-
rithm is the development of a method for assignment
of priorities to the nodes or edges of an input DAG. In
this paper we proposed a novel method, called decisive
path scheduling, for determining node priorities in a list
scheduling algorithm. Through an extensive perfor-
mance study, it is shown that the proposed algorithm
outperforms many of the existing list scheduling , as
well as clustering, algorithms. The paper also establishes
an optimality condition and provides a worst-case analysis
of the proposed algorithm for a tree structured DAG
which does not contain a join node.
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