0B84 SRFEXMEITD =FA HTH H113(2000.11)

g Dol 7|23 £z ESo A A% =4

=13
=l

02
x
Ofn

o tt
"2 o

M

>
K=}
2 o

AZEG & Hardhz et dojzliz 1% vo|HE $Asld ALEg oo Ao A HAE HGrislr] Ysl
o] 7t AZESgo Ay A% RdEo] MEHAYL 1y olF MY 4P BdEL LZEJ] AL AL 84
of &3 ol Mo JiwkEta A7) W&, o] ZHAo] AjEA G 4ol AEo] =EA HAHE LZE 0] s
AMe AdsA go 48 990 72F 2ZEHe] Ay 2de UntFoz o g Mg a7E] g osd A
9] ~ZEGol9 tiH7) Fof LAZEYE dig AoR R B HAE AFE 23 @A gtk B =EMe
olelgt 7HHel ATHA 1t AR} Fo AZEHOE FAY H2ESE Wy 7lvte F dF 99 it AzE
o A4 4AEAE AAsln 1 FAH EAS AT o] REe EE dolHE o 243y WEd 7E 9HgdYy
AXEYO Al Rdd v HL HAE ¢He € ¥ Ao s 28 AZEYS Y §ARS: G
£3t7] 98w AR AHES Hagc

An Input Domain-Based Software Reliability Growth Model
Joong-Yang Park'- Dong-Woo Seo' - Young Soon Kim'!

ABSTRACT

A number of software reliability growth models (SRGMs) have been developed for evaluating software reliability growth
behavior by analyzing the failure data obtained during testing software systems. However, since these SRGMs are based on
several assumptions about software development and usage environments, SRGMs are inadequate for circumstances in which
such assumptions do not hold or software systems rarely fail. The existing input domain-based reliability models, which do
not require assumptions on software development and usage environment, deal the software system before debugging and
the software system after debugging independently. Therefore many test inputs are usually demanded. This paper thus
suggests an input domain-based SRGM, which does not require such assumptions and is based on the testing procedure that
tests concurrently both the software system before debugging and the software system after debugging. The suggested
model uses all the available data, the required number of test inputs can be possibly reduced. This reduction may compensate
for the excessive testing time caused by executing the software systems before and after debugging. Its statistical
characteristics are investigated and it is compared with similar approaches developed for the software maintenance phase.

1. Introduction

In recent years there is a growing use of computer

systems and software systems have been most im-

portant parts of many complex and critical computer
systems. Since failures of a software system could
produce severe consequences in terms of human life,
environment impact or economical losses, software
systems are required to be sufficiently reliable for their

A3 AN EE A% ug

= 3 oA g BARSHAAL £7) intended purposes. Software reliahility has become one
& 3 A AL g SA%D . .

=S 12000 79 18, AAgE 120009 109 279 of major issues in the software system development.

So far the only way to improve and evaluate software
reliability is software testing. That is, software testing
is a means of improving the software reliability by
probing the software system for faults and removing
them. A number of software reliability models have been
developed for analyzing the data obtained during testing
the software system. Ramamoorthy and Bastani [13]
classify software reliability models according to the
development phases of software life-cycle, while Goel
[7] divides them according to the nature of failure
process into time-between—-failures models, failure—
count models, fault seeding models and input domain-
based models. Recently Park et al. [15,16] suggest
several neural network model$ for predicting software
reliability. Henceforth we only consider reliability
models which are applicable in the testing and debugging
phase, Since fault corrections are necessary in the testing
and debugging phase, software reliability growth models
(SRGMs) taking fault corrections into account are
mainly used in this phase. Most of time-between-
failures models and failure-count models belong to the
class of SRGMs. Several researches [2, 4, 5, 8] indicate
drawbacks of SRGMSs : The usual assumptions made for
SRGMs are still questionable ; SRGMs do not suf-
ficiently account for the characteristics of the software
systems under testing ; SRGMs do not work well for
the software systems which rarely fail during testing.
We will thus consider the input domain-based models
which do not require assumptions on the software failure
and correction processes. Ramamoorthy and Bastani [13]
classify the input domain-based models into the class
of reliability models for the validation prlase. However,
the input domain-based models can also be applied in
the testing and debugging phase by treating the software
system after each fault correction as a new software
system. Nelson [11] estimates the reliability change as
more information becomes available under the assum-
ption that the reliability function remains constant.
Weiss and Weyuker [14] extended this approach by
treating reliability as a generalization of the probability
of correctness of the software system. Ramamoorthy and
Bastani [13] proposed an input domain-based model that

e HA0 71T ATERN MM o 2E 338

estimates correctness instead of reliability. They assume
that faith in software correctness can grow with the
number of tests correctly executed. However, the
attribute correctness is less useful than reliability since
it does not give information about the influence of
residual faults. We may further refer to Brown and
Lipow [1], MacWilliams [9], and Tsoukalas, Duran and
Ntafos [6].

Software reliability has been defined as the probability
that no failure occurs in a specified environment during
a specified exposure period. The time unit of exposure
period depends on the type of reliability model used.
Specifically SRGMs define the software reliability as

R;= Pr(no failure occurs within time period
[o, 7D,)

where T is the exposure period whose time unit is the
calendar or execution time. It is usually assumed that
R follows a certain probability distribution, for ex-

ample, Rr= exp (- fo Tz(t)dt) where 2(#) is the failure rate

function. The main concern of these SRGMs is to
estimate the failure rate function. On the other hand,
input domain-based reliability models define the
software reliability as

Ry = Pr (no failure occurs over N application runs }, (2}

where N is the exposure period whose time unit is
the number of application runs. Assuming that inputs
are selected independently according to the operational
profile, Ry= R" where R= R,.Since Ry can be simply
calculated from R, reliability R becomes the main
objective to be estimated by input domain-based
reliability models. Obviously R is closely related to the
operational profile of the software system. The op-
erational profile is the nature of the software usage,
which is in general determined by the systems that
interact with the software system. The operational
profile can be expressed by a probability distribution
over the input domain, which represents the frequency

of occurrence of each input in the input domain. Musa

3386 StRIEANEISH =FX H7H M11z=2(2000.11)

[10] described a step by step procedure to develop a
practical operational profile. In many applications, the
operational profile is very difficult to obtain and even
a crude approximation requires considerable efforts,
Operative usage of the software system can be un-
predictable, unknown or different for different users. It
is not easy or even impossible in some cases for testing
to follow the actual operational profile. Therefore, the
operational profile is usually unknown in the testing and
debugging phase. In this case, the uniform operational
profile is assumed.

This paper proposes an input domain-based SRGM
to describe the reliability growth behavior of a software
system. The proposed SRGM is based on a multi-stage
testing procedure, in which fault corrections occur after
each stage and two software systems, the software
system before fault corrections and the software system
after fault corrections, are tested at each stage. Random
testing is used to generate inputs from the input domain.
Section 2 describes the testing profile and the multi-
stage testing procedure. The input domain-based SRGM
is presented and its statistical characteristics are
investigated in Section 3. Then similar approaches
developed for the maintenance phase will be compared
with the suggested SRGM in Section 4. Conclusions and
remarks on future research are made in Section 5.

2. Testing Profile and Testing Procedure

Each software system has a specification which is
an input-output relation. That is, the specification S
is a set of ordered input-output pairs describing
functions of the software system. The collection of
inputs in S defines the input domain D of the software
system. If the software system produces output o on
input isuchthat (7, 0) = Sforany i € ID,the soft-
ware system is said to meet its specification. A software
system with specification S fails on an input if the
software system does not meet S at the input. When
a software system fails, the event is called a failure.
One or more defects in the software system related to
the failure are called faults. The input responsible for

the failure is referred to as a failure-causing input. Thus
the software reliability is characterized by the failure
probability when inputs are selected according to the
operational profile.

A systematic testing method should include a criterion
for selecting test inputs, a procedure for conducting the
testing and a criterion for deciding when to stop testing.
During testing we select inputs from the input domain
according to an input selection strategy and execute the
software system by applying the selected inputs. If
failures occur, we detect and remove faults which caused
the failures. Such an action is called a fault correction.
That is, a fault correction is an action aimed at localizing
and removing the faults discovered by testing. An input
selection strategy is called a testing profile. Therefore,
a testing profile describes how to select inputs from the
input domain. In general two types of input selection
strategy, random testing and partition testing, are
commonly used. The random testing selects inputs from
the input domain by sampling randomly according to
the testing profile, while the partition testing partitions
the input domain into classes and forces at least one
input to come from each class. Adopting the random
testing, we will develop an input domain-based SRGM
in this paper. However, design of a testing profile should
be guided by the operational profile of the software
system under testing to ensure that most frequently used
operations receive most frequent tests. In the rest of
this paper we assume that the operational profile is given
and the testing profile is the same as the operational
profile.

Next we consider the testing procedure which will
be used in this paper. A test run is an execution of the
software system by applying an input selected according
to the given testing profile. The term “test stage” refers
to some predetermined number of consecutive test runs.
The testing is performed stage by stage. If failures occur
during a testing stage, testing will not be interrupted
for fault corrections. Fault corrections occur at the end
of each testing stage. We denote by P, the software

system after fault corrections of (7— 1)st testing stage
(equivalently at the beginning of ith testing stage). The

failure probability of P;is denoted by &,. Moreover we
denote the number of test inputs for 7th testing stage
by #,. The existing input domain-based reliability
models treat the software system after each test stage
as a new software system. Thus they estimate 6; from
the failure data obtained during 7th testing stage. Two
software systems P;_; and P, are identical except for
the part debugged after (i—1)st testing stage. The
debugged part is likely to be a small portion of the
software system. This implies that the failure data
obtained before ith testing stage contains information
on the undebugged part of P, It is thus desirable to
develop a testing procedure through which relationship
among 4;’s can be derived. We thus propose the testing
procedure in which #; test inputs are applied to both
P;_, and P; for i=2. One exception is that only P,

is executed at 1st testing stage. This procedure will
provide us with a relationship between 8;,_, and 6.
Consequently it enables us to derive an algorithm for
updating the previous estimate of failure probability,
which may be referred to as an input domain-based
SRGM. Input domain-hased reliability models usually
require large test inputs for obtaining accurate reliability
estimates. Taking advantage of information obtained
previously, this procedure can reduce the required
number of test inputs. But, since we must exercise both
the previous and current software systems, it costs more
testing time. Thus this procedure is more economical
when the cost of test input generation is higher than
the cost of test input execution. The availability of the
specification S will make it easy to evaluate and classify
the outcome of each test input execution.

3. An Input Domain-Based SRGM

We suppose that the input domain and the random
testing profile are given and remain unchanged during
the testing phase. Further suppose that the testing
procedure suggested in Section 2 is used. Only P is
exercised in 1st testing stage. Execution of each input
in 1st testing stage results in one of the two outcomes,

I FAO 7= 2ZER0 dlEly HF 29 3387

success (S) and failure (F). The number of failures
occurred in 1st testing stage will be denoted by xf.
However, both P,-, and P; are exercisedin ;th testing
stage for ¢=2. Each test run in the ith testing stage
results in one of the five outcomes, SS, SF, FS, FFD
and FFS of which brief descriptions are presented in
Table 1.

(Table 1> Brief descriptions of outcomes of each test run

outcome description
SS both P,.; and P; succeed
SF P;_, succeeds and P; fails
FS P;_ fails and P; succeeds

both P;-; and P; fail and outputs of
P;_y and P; are different

both P;-; and P; fail and outputs of
P;., and P; are same

FFD

FFS

We denote the number of test runs and the occurrence
probability corresponding to each outcome by x;outcome

and p;outcome. Then x;p follows a binomial distribution
with parameters #, and &, and the joint distribution
of Xi58, Xisk, XiFs, X{FFD and XiFFS for 122 is given

by the following multinomial distribution :
f%iss, Zisp, Xips, Xippp, Xigps) =
n
(Xi8Ss XiSFs xm;, XiFFDs xiFFs) ®)
DiSSPSFDFSDFFDDIFFS

where

n;
(XisSy XiSF s XiFS» XiFFDs xiFFs)
n,!

255! X ispt X ips! X iprp! X ipEs!

Zigst Xisp+ Xips+ Xiprp + Xipps=n; and s+ busr
+ pips+ Piprp+ birrs= 1. The outcomes SF and FFD
are in general due to the imperfect debugging, ie.,
imperfect fault correction. Once a failure occurs, the
corresponding fault corrections may introduce new
faults. However, tracking the fault correction activities,
faults responsible for the failure can be eventually

3388 SRFENIET =2A M7E M11=(2000.11)

removed. We henceforth assume the perfect debugging.
Then only three outcomes, SS, FS and FFS, can occur
and the joint distribution of x5, xs and xmgs are

given by

A Xiss, Xips, Xipps) =
n o
1 z’in.ss {f.rs J_Cxus ’ 4
Xiss, Xirs Xirps pissbirs birrs, (4
where x5 + xips + xipps = n; and piss + Pips + Dirrs
= 1. In order to estimate reliability, we need to represent
Expression (4) in terms of #,’s. First note that the

following relationships hold.

6;—y = Pr(P;_, fails)
= Pr(P;_, fails and P; succeeds)
+ Pr(P;_, and P; both fail)
= Pr(P;_, fails and P; succeeds)
+ Pr(P;-; and P; both fail and produce

same outputs)
+ Pr(P;_, and P; both fail and produce

different outputs)

= pirst DirrsT PiFFp 6

and
8; = Pr(P; fails)

= Pr(P;_, succeeds and P; fails)
+ Pr(P;_, and P; both fail)

= Pr(P;_, succeeds and P; fails)
+ Pr(P;_; and P; both fail and produce

same outputs)
+ Pr(P;-; and P; both fail and produce

different outputs)
= pisrt Dirrst Dirrp. (6)

Since pisr = pirrp = 0 under the perfect debugging as-
sumption, Expressions (5) and (6) are simplified to
8;-1=pirst pirrs and 6;= pprs . The probabilities
s and pirrs are then expressed as pus= 0, — 6,
and pprs= 1-— piss— 6;-, + 8;. Substituting these into

Expression (4), the joint distribution of x,55, %z and

Xxrs can be rewritten as

n;
Rxiss AiFS xiFFS) = (
’ ’ X055+ XiFSs XipFS

05800, — 8™ (1= piss— Bi-y+ 8)™™. (D)
We now consider the problem of estimating the failure

probability of the software system. After completing i
testing stage, we have to estimate parameters ¢; and

p;ss for j<i, among which the most interesting pa-
rameter is 4; The maximum likelihood estimates

(MLEs) of the parameters will be derived in this paper
by maximizing the likelihood function L given as

("1)9’1‘”(1—01)”1"‘”, for i=1
_[%1

n1\ ox m—xe T n;
glm(l — 01) 1T xR I'I 7
X1 7=2\ X,;s5, X;Fs, X;FFS

58001 —)™ (1~ pss— 0,1+ 8)™™,
for 122,

MLEs are usually obtained by maximizing the log
likelihood function InL with respect to §;’s and p,ss
for j<i.Forthe case where /= 1,it can be easily shown
that 8 =x,s/n;. If i22, we have to estimate 6, and
Pjss for j<i Let us denote MLEs of 6, and p;ss
obtained after ith stage by 9,; and Diss.i. Ac-
cordingly 8, =x,5/n; obtained after 1st stage is de-
noted by 8,;. We will show by mathematical in-
duction that

9= 8-y and Pissi= biss.u-1

for j<(i—1),
_ MF L Zks
Bm e 3 s ®)
and
2o = s
bissi = n,

olnl _ X M XiF XoFs
301 91 1_01 01_52
o awrps
1 —poss— 61+ 6, 0 @

dlnlL _ X5 X2FFS =0
9bsss pass 11— pass— 01+ 0,

dlnl _ _ _ XFs XoFFs -
96, 61— 0 " 1—pass— 6+ 6

Substituting 8InL/88; =0 into 2lnL/36, =0,
then dlnL/d8, = 0 becomes the same with JinL/
88,= 0 for 1st stage. Solving dlnL/dpsss =0 and
dlnL/ 38, = simultaneously with 6, replaced by
¥, we can verify that &lnL/dps =0 and
dlnL/ 88, = 0hold only when 8, = x\r/ #y — xops/ 1y
and pogs = Xass/n5. Therefore

_ _ XiF _ _XgFs
91,2— 91,1, 92.2 P P and

X3ss
n

bass,2 =

are the unique solution of the likelihood equations (9),
ie,MLEsof 8, 8, and pyss. This is the desired result.

The likelihood equations for (i—1)st stage are given by

dlnl _ Xir M —XF XoFs
501 01 1— 61 01 - 02
_ XoFFs =0
1 —pass— 61+ 02
dnl _ X5 X2FFS =0
0P2ss Pass 1= puss— 61+ 0,
dlnl _ _ _ XwFs X2FFs -
26, 8,— 0, + 1—poss— h+ 6, 0 (10)
dlnl _
90;-;
___X(-2FS + X (i—2)FFS
Oi3— 0y 1= P-nss— Gzt Gz
p RGeS X (i—))FFS =0
Oiz—0i-1 1= pu-pss—Gi-z+ 8y
dinL _
0D (i-1)ss
X(i-DSS _

X (i—1)FFS =0
Pi-nss 1= DPu-nss— i—at 6y

XGoDFS X (i~ DFFS -9
02— 01 1= p-nss— izt iy

221 Hodol| Jixst AZEC MRIM ME D 3389

Suppose that the unique solution for the above
likelihood equations is given by

Biicn = - and Bis -y = Dissi-n

for ;j<(i—2),
X1F & Xps
Voo oy = KB Ejz__.L._
G-1,6-1 n = n
and
-~ X (i-1)8S
b G-pss.(i-n = ;‘i—l ,

that is, Expression (8) holds. Next consider the likelihood
equations for 7th stage, which consist of the likelihood
equations for (7—1)st stage with one modification and
the following two additional equations.

dlnL Xiss XiFFS

Obiss Diss L= piss— O+ 6; =0
dinL _ XiFs X FRs _
36, = B0 T T pme— 6,78 01D

One modification is that dInL/d8;-, = 0 for (i—1)st
stage is changed to

X (i—1)FS + X (i—1)FFS

Giy—0i-1 1=bi-pss— Ozt 8-

+ XiFs X iFFS —
01— 0; l—piss— 6118,

0.

However, if we substitute 2lnL/d8; =0 into dlnL/

36,_, =0, dlnL/36;., =0 for ith stage becomes i-
denticalto dlnL/af;_; = 0 for (i—1)ststage. There-
fore the likelihood equations for ith stage are composed
of the likelihood equations for (i—1)st stage and two
additional equations given by Equations (11). Letting

8i= Bu-pand Bisi= Biss-n for j<(i—1)
and substituting them into Equations (11), it is easily
shown that Equations (11) are satisfied only when

Diss = Xiss/n;,and 0, = (myp/ n)— l_g(%irs/ »;). There-

fore, the estimates given in Expression (8) are the unique
solution of the likelihood equations for 7th stage. Now
proof is completed.

3390 SERFEMEIDE =2A M7H H113(2000.1)

One noteworthy point is that the estimates obtained
in the previous stages do not change as the testing

proceeds. Thus we can simply rename 8, ; and biss

as /9/~ and 5;‘55, where /91 = xlF/nIy /9/' = ﬂ[p/nl
a (/egxkFS/n") and p;ss = n;ss/n;. We can further

derive a useful relationship

/Biz /9,'—1 - x:S for 1'22, (12)

i

which enables us to obtain the new estimate of the
failure probability by updating the estimate obtained in
the previous testing stage. In order to characterize MLEs
statistically, we compute the expected value and

variance of ;. Since

E(8) —E(8-)z;i&as)
=E("71:’)—§E(—’5;d) (13)

=6 ZP}FS

1=2
=6 _Ig(e;ﬂ)
—el'v

9; is an unbiased estimator for 4;.

V(?)—V(?l 3 2)

=2
v+ 5 v (14

- 1 5(1 g)+g_211"‘_5(_1n__2£ﬁ

7

(6,1, = 8)(1— ;-1 +6;
=,,191(1—01)+,§ i1 =)1 by, 1 6)

n;
and

(0,-,—6)1—-6,_,+8)

n;

Var(9;) = Var(B,_) +

Thus
Var 8;) = Var B, l)+_£5__(ﬁl__iFS_'

An estimate of V(9,) is obtained by substituting 8,
's in Expression (14) with ;. Similarly we can show
that ;s is also unbiased and its variance is
piss(1 — piss)/m;. Taking advantage of the asymptotic

normality of MLEs, interval estimation and hypothesis
testing on ;s and p;ss"s can be performed.

4, Comparison with Similar Approaches for the
Maintenance Phase

Recently Podgurski and Weyuker [12] and Dasu and
Weyuker [3] proposed economical approaches for
estimating reliabilities of successive software versions
resulting from the maintenance of software. Considering
only two successive software versions during the
maintenance phase, they proposed a heuristic algorithm
for updating the previous estimate of reliability. Since
their testing procedure is the same with ours, that is,
test inputs are applied to two successive software
versions, it seems desirable to compare each other. For
the sake of comparison, we use the same notations
defined in the previous two sections. Podgurski and
Weyuker [12] developed a method for estimating &,

under the following assumptions.

(A1) A program P;_; was modified to obtain a
program P; with the same requirements. That
is, P;_; was modified to correct a defect or to
improve its efficiency, not to add or remove
functionality,

(A2) P;_, and P, have the same interface, so that
a valid input to P;_, is also a valid input to P;.

(A3) The requirements for P,_; and P; define a
function from inputs to outputs,

(A4) It is reasonable to view usage of P;_; and P;
as random sampling from a shared operational
distribution, which will not change in the near
future.

(A5) The reliability measures of interest are the
probabilities #;_; and 8; that P;_, and P; fail,

respectively, when executed on a random
operational input.

(AB) We possess an estimate #;_; of 8;_, and seek
estimate 9; of 6;.

(A7) The modifications made to P;_| to vield P;
affect a small proportion of operational ex-
ecutions.

(AB) The cost of executing P;-; and P; is small

relative to the cost of checking whether an
execution conforms to reguirements.

We first note that assumptions (Al) ~ (A3) and
(AT) hold in the testing and debugging phase. It is
because the specification S is available and generally
remain unchanged during the testing and debugging
phase. If we assume that the operational profile is given
and the testing profile is the same with the operational
profile, assumption (A4) also holds in the testing and
debugging phase. Therefore the method of Podgurski
and Weyuker [12] is applicable to the testing and
debugging phase. As in Equations (5) and (6), we have

#;-1=Pr(P;_,and P;bothfail) + Pr(P,_, failsand

P; succeeds)
= pirr t Dirs
and
8;= Pr(P;_; and P;both fails) + Pr(P;_; succeeds
and P; fails)

= pirr T Disr,

where FF is the union of outcomes FFS and FFD.
Thus
0;= 0, — birs+ Disr. (15)

Podgurski and Weyuker [12] suggested x5/ %;
and x;7/nm; as estimates of pgs and pigr re-
spectively. Inserting the available estimate of 8;-,
and estimates of pus and p;g into Equation (15),
the failure probability of the new version is obtained
as B — (xips/ n) + (xisr/ n:). If the debugging is
assumed to be perfect, @, is estimated as 9., —

— (x,zs/ n;), which is identical to the recursive al-

B3 HA0 7IET AZEQN A2 M ZE 3391

gorithm given in Expression (12). However, they
did not make any comment on the estimate ;_,.
That is, it is assumed that ¥,_, is available or given.
And only heuristics for updating algorithms are
given. Therefore the results of the previous section
provide Podgurski and Weyuker [12] with statistical
justification.

On the other hand Dasu and Weyuker [3] considered
the same problem and proposed a different estimation
method. First note that

8; = Pr(P; fails)
= Pr(P; failsand P;,_;=P;) + Pr(P; fails and
P #P;)
=Pr(P; fails | Pioy=P,)Pr(Pi_1=P;) +
Pr(pP; fails | P,_#P;) Pr(P;,_#P;),

where P;_,# P; represents the part of the input
domain where P;_; and P;behave differently. Defining
Nig=XipsT Xisp+ Xippp and n;— ny=x;55t XFrs, Pr
(Piey=P), Pr(P;_#P;) and Pr(P; fails| P,_,
P;) can be estimated by (n,—n,)/n;, ng/n; and
x5/ n;, respectively. Further arguing that Pr(P; fails
| P,oy=P;) = Pr(P,_, fails), they suggested

/B,v= Pivl_n'% +"J—Cnéli (16)

However, it should be noted that Pr(P; fails| P;_,
= P;) =Pr(P,_; fails) does not in general hold. This
is satisfied when the operational profile is uniform. Thus
the updating algorithm given in Equation (16) is
applicable to the case of the uniform operational profile.

5. Conclusions

A number of software reliability growth models have
been developed so far, which are based on the assum-
ptions about software development and usage environ-
ment. In order to overcome the dependency on the
assumptions, we suggested an input domain-based
SRGM. The suggested input domain-based SRGM is
based on a multi-stage testing procedure in which both

3392 SIRFEANEIEE =X M7 H1=(200011)

the software systems before and after fault corrections
are tested simultaneously at each stage. The suggested
model was then statistically characterized and compared
with similar approaches developed for the maintenance
phase. The useful algorithm for updating the previous
estimate is shown to be identical to the updating
algorithm of Podgurski and Weyuker [12] developed for
the maintenance phase. That is, our study also provides
the heuristic of Podgurski and Weyuker [12] with
statistical justification. However, its practicability
should be validated and examined through applying to
real software testing. Since the multi-stage testing
procedure requires more testing time, the trade-off
between testing time and number of required inputs
should be investigated in order to determine the time
to stop testing. We also need to extend the input domain-
based SRGM for imperfect debugging environment.

References

[1] J. R. Brown and M. Lipow, “Testing of Software
Reliability,” in Proc. Int. Conf. Reliable Software,
Los Angeles, CA, pp.518-527, April, 1975.

[2] R. W. Butler and G. B. Finelli, “The Infeasibility
of Quantifying the Reliability of Life-Critical Real-
Time Software,” IEEE Trans. on Software En-
gineering, Vol.19, pp.3-12, 1993.

[3] T. Dasu and E.]J. Weyuker, “Updating Software
Reliability Subject to Resource Constraints,” Proc.
American Statistical Association Proc. Joint Stati—
stical Meeting, 1999.

[4] T. Downs and P. Garrone, “Some New Models of
Software Testing with Performance Comparisons,”
IEEE Trans. on Reliability, Vol.40, pp.322-328,
1991.

[5] J. R. Dunham, “Experiments in Software Reliability :
Life-Critical Applications,” IEEE Trans. on Soft-
ware Engineering, Vol, SE-12, pp.110-123, 1986.

[6] J. W. Duran and S. C. Ntafos, “An Evaluation of
Random Testing,” IEEE Trans. Soft. Eng., SE-10,
pp.438-444, July, 1984.

[7] A. L. Goel, “Software Reliability Models : Assum-
ptions, Limitations, and Applicability,” IEEE Trans.
on Software Eng., pp.1411-1423, Dec. 1985.

[8] B. Littlewood, “Software Reliability Modelling :

Achievements and Limitations,” Proc. COM-
PEURO, Bologna, 1991.

[9] W. H. MacWilliams, “Reliability of Large Real-
Time Software,” in Proc. IEEE Symp. Computer
Software Reliability, New York, pp.1-6, May, 1973.

{10] J. D. Musa, “Sensitivity of Field Failure Intensity
to Operational Profile Errors,” Proceedings of the
5th International Symposium on Software Reliabil-
ity Engineering, Monterey, Calif., November 6-9,
pp.334-337, 1994.

[11] E. Nelson, “Estimating software reliability from test
data,” Microelectronics Reliability, Vol.17, pp.67-74,
1978,

[12] A. Podgurski and E. J. Weyuker, “Re-estimation
of Software Reliability After Maintenance,” IEEE
Trans. on Rel, Vol.l, pp.79-85, 1998.

{13] C. V. Ramamoorthy and F. B. Bastani, “Software
Reliability-Status and Perspectives,” IEEE Trans.
Soft. Eng., SE-8, No.4, pp.354-371, July, 1982.

[14] S. N. Weiss and E.]. Weyuker, “An Extended
Domain-Based Model of Software Reliability,”
IEEE Trans. on Software Eng., Vol.SE-14, No. 10,
pp.456-470, 1988.

[15] J.-Y. Park, S.-U. Lee and J.-H. Park, “Neural
Network Modeling for Software Reliability
Prediction from Failure Time Data,” Journal of
Electrical Engineering and Information Science,
Vol4, pp.533-538, 1999.

[16] J.-Y. Park, S.-U. Lee and J.-H. Park, “Software
Reliability Prediction Using Predictive Filter,”
Transactions of Korean Information Processing
Society, Vol.7, No. 7, pp.2076-2085, 2000.

% 5
e-mail : parkjy@nongae.gsnu.ackr
1982 At &85 A 5
(A}
1984 =437 AdE st
SEEAHE(HAD
1949 $=3gelr| e Aqldeta)
SEEA A F(AD

19849 ~1989d A diste AibgA g ns

19893 ~ &84 gt FAS w4

TARel: AZES] MNFA AAT HE A vy

HAEAYY 5

MESF

e-mail se03129@netian.com

19973 ZAwste A%
(3kAh

1999 ~ &4 A3dista et
A £57)

HAIEOE: AZE o] M=, A

A, A A4 29,

Helgulolx 5

3 @0l 71T 2ZEN MEM HE DE 3303

PARR: I
e-mail : coaskim@hanmail net
1994d B4t n FA s
(A}
19989 74 dEe §A g
(HAh
20000 ~ 73St B A s
(AL #A)
Dok AZEY S AA, AAY HY FA 1Y,
AEALE §

