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Motion Control on Animation Space
Ji-Hun Park'- Sung-Hun Park''

ABSTRACT

This paper presents a new methodology for specification and control of the motion of an articulated rigid body for the purposes of animation
by coordinate transformations. The approach is to formulate the problem as a coordinate transformation from the joint space of the body to a
user-defined animation space which is chosen for convenience in constraining the motion. Constraints are applied to the resulting coordinate
transformation equations. It is sufficiently general so that it can be applied to all common types of control problems, including closed loop as
well as open loop mechanisms. We also provided a new approach to simulate a closed loop mechanism, which is using animation space

transformation technique. The method is formulated in detail and is demonstrated by animating the motion of an inchworm.

FiNE : ofLiBHO|M(Animation), B2t HI0{(Motion Control), ZtEA| #M&(Coordinate Transformation), Kinematics

1. Introduction

It is by now well known that producing realistic ani-
mated motion of natural objects requires modeling the
dynamics which determine key aspects of that motion {5,
26, 271. Controlling very complex motions such as walk-
ing animals is a particularly challenging task. Ideally, an
animation system allows the animator to directly specify
the macroscopic features of the motion such as the in-
termediate goal configurations of a moving animal. The
direct specification of the kinematic features of the walk-

ing motion itself, however, is not at all desirable, since it
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is essentially impossible to achieve realism this way. In-
stead, a dynamic model of the animal is built which de-
termines these details. It is desirable that such models
be specified in terms of parameters which allow effective
and intuitive control by the animator of the relevant fea-
tures of the motion.

Dynamic models of articulated bodies typically have linear
or tree-structured topologies. In either case, they are open
loop mechanisms. That is, they can be modeled as links
connected by joints, where the links at the ends of the
structure have a free, unconstrained end. However, creatures
moving on the ground cannot always be modeled as open
loop mechanisms since the free ends of the links are often
constrained by the forces involved when they touch the
ground. In this case, a closed-loop model of the moving
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creature is needed. Closed-loop models occur in many other
situations besides locomotion. A human holding a cup or
lifting a barbell also requires a closed-loop model.

Given a model, we still need to determine values for the
dynamic parameters such as the appropriate torques on the
joints of the body for a forward dynamic simulation which
will give proper motion for a particular specified animation.
There are two basic approaches to determining these
parameters. One is to use heuristic algorithms which gen-
erate torque values for each motion increment and then
verify that they cause the proper effects. Another is to use
inverse dynamics to specify constraints on the dynamic
parameters which will cause the specified motion to
oCCur.

Either type of model can be specified in terms of the
generalized coordinate system or joint space of the model
itself. This space has a dimension for each degree of freedom
(DOF) of each of the joints in the model. The forces exerted
at each joint determine the motion of the mechanism in its
working space, which is normally Cartesian space with six
degrees of freedom in the case of a single open kinematic
loop. We can think of the working space as the space of
kinematic parameters input to the system, for which we
must compute the forces in joint space needed to achieve
the specified result using inverse dynamics. These dynamic
parameters can be applied using a forward dynamic simu-
lator to generate the resulting motion.

We can specify the relationship between joint space and
working space as a coordinate transformation from n-dimen-
sional joint space to 6 dimensional Cartesian space. Since
for most articulated creatures n is much larger than 6, a
number of unconstrained degrees of freedom are left in the
transformation. If in such cases a particular spatial con-
figuration of the articulated body has been specified, there
will be a large number of solutions to the transformation
equations which produce this result. This redundancy makes
motion control very difficult [22].

The usual approach to this problem is to add constraint
functions, and if the system remains underdetermined, to use
optimization techniques to find the required joint angle
velocities for given end effector positions and orientations.
From this information the joint angle values are obtained
by integrating. This approach does not lead to an easy

interface for animator specified parameters to be input to the

system.

Any minimal set of coordinates to specify a motion is
called a set of generalized coordinates [3] ; generalized refers
to the fact that they need not be only positional or only
angular coordinates. We extended generalized coordinates to
define animation space. By animation space we mean that
we allow any function, not only position or angle, meaningful
for our motion control to be modeled as a coordinate dimen-
sion. Our approach to the problem is to replace working
space with an arbitrary user—designed animation space with
up to nn dimensions. Typically, this user-designed space will
contain working space as a subspace, with additional dimen-
sions defined to represent features of the system which are
to be constrained by input from the animation specification.
We refer to techniques based on transformations between
generalized coordinate systems as animation space trans-
formation methods. Based on this generalized coordinate
transformation and differential relationships between joint
space and animation space, we introduce a dynamic formu-
lation which is based on the General Principle of D' Alembert
and virtual work. This approach gives a well-structured
matrix (closed) form for the control equations. This formu-
lation is particularly useful in the analysis of dynamic
system models. We have used this dynamic formulation for
several physical simulations including an open loop serial
chain (figure 3), an inchworm (figure 5) and a pin pointed
dropping chain.

The remainder of the paper is organized as follows. In
section 2 we review related work and in section 3 we
introduce our approach. In section 4 we provide motion
equations for animation of linear chain topologies. Sec-
tion 4.1 contains a new formulation of the geometry of
the serial structure of an articulated body. In section 4.2
we describe the animation space transformation
technique, and in section 4.3 we introduce a dynamic
formulation which is easy to use for analysis purposes. In
section 4.4 we show three ways to simulate closed loop
systems, and in section 5 we describe specific dynamic

simulation results.

2. Related Work

Much work has been done on the dynamic simulation of

moving creatures or articulated bodies in the past several



years. The most common approaches model a real creature
as an articulated body consisting of joints connected by
links, possibly also including springs and dampers {27,
26]. In [21], a specialized spring and damper body for
modeling the sliding motions of snakes and worms was
developed.

The motions of these models are determined in two basic
ways. Forward dynamics based systems provide realistic
simulations of the motion of figures but are difficult for an
animator to control since the specification of unknown joint
torques is required. Lagrangian [5], Gibbs-Appell [25], Arm-
strong’s Newton-Euler [2] and Featherstone's [20] formu-
lations of the dynamics have been used in such systems.
Iterative approaches, particularly the latter two, provide the
greatest computational efficiency among extant simulation
methods.

The basic problem in forward dynamics systems is finding
a set of torque functions to control the body. This requires
either a heuristic approach or an inverse dynamic (constraint
based) approach. In [16], a system allowing geometric con-
straints on the joints and specification of either accelerations
or torques on the joints for open loop systems 1s described.
Witkin and Kass [28] give a method which solves geometric
constraint equations on the joints along with constraints on
the control forces for the entire span of the simulation at
once [19]. discusses an iterative method to find a path
satisfying kinematic and dynamic constraints.

In [17), a method based on D’Alembert’s principle and
virtual work which allows inverse dynamic solutions for
both open and closed loop systems was developed. An
articulated body is defined in terms of a generalized coor-
dinate system with a dimension for each DOF of each joint
in the figure. Constraint equations involving one or more of
these DOF's can be specified. Lagrangian multiphiers for each
kinematic constraint equation are used to represent the
unknown forces required to satisfy the constraints. Other
techniques for handling closed loop systems have been
developed for robotics. Freeman [9, 11] has worked on
two dimensional serial chains and Stewart platforms.
His approach is to add selected joint positions and angles
to the working space to form a new space with the same
dimensionality as joint space. A constrained coordinate
transformation from generalized coordinates (joint space)

to this target space provides the solution to torques
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required.

Much of the recent research in motion control has been
devoted to developing various kinds of editing tools to
produce a convincing motion from prerecorded motion clips.
To reuse motion captured data, animators often adapt them
to a different character, i.e., retargeting a motion from one
character to another [14], or to a different environment to
compensate for geometric variations [29]. Animators also
combine two motion clips in such a way that the end of one
motion is seamlessly connected to the start of the other. We
survey the motion editing techniques developed so far.
Non-interactive motion editing involves motion editing with
constraints and large number of global controls (variables)
for parameter optimization.

A common approach in editing and reuse of existing
motion is to provide interactive animation tools for motion
editing, with the goal of capturing the style of the existing
motion, while editing the content. Gleicher [13] provides a
low-level interactive motion editing tool that searches for
a new motion that meets some new constraints while
minimizing the distance to the old motion. A related opti~
mization method is also used to adapt a motion to new
characters [14]. Lee et al [18]. provide an interactive multi
-resolution motion editor for fast, fine scale control of the
motion.

Gleicher [13] suggested a method for editing a pre-
existing motion such that it meets new needs yet preserves
as much of the original quality as possible. Their approach
enables the user to interactively position characters using
direct manipulation. They used spacetime constraints which
consider the entire motion simultaneously. These methods
enable the user to specify constraints over the whole motion
and use a solver to compute the best motion that meets
these requirements. Like more traditional keyframe and
inverse kinematics methods, the user makes adjustments to
an amimated character with direct manipulation, for
example pulling on a character’s hand to reposition it. But,
to achieve these new positions, the animation system
makes adjustments that attempt to preserve the original
motion.

Gleicher [5,14] suggested a technique for retargeting
motion that is the problem of adapting an animated motion
from one character to another. Their focus is on adapting

the motion of one articulated figure to another figure with
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identical structure but different segment lengths. Their
method creates adaptations that preserve desirable qualities
of the original motion. They identify specific features of the
motion as constraints that must be maintained. A spacetime
constraints solver computes an adapted motion that re-
establishes these constraints while preserving the frequency
characteristics of the original signal. Constraints are used
to identify features of the original motion that must be
present in the retargeted result. Specification of these
constraints typically involves only a small amount of work
in comparison with the tasks of creating the characters and
motions. Constraints are generally defined once for each
motion, and this one set of constraints is used for any
retargettings. Since there are typically many possible
motions that satisfy the constraints, they use an objective
function to select the best choice.

Lee et al [18]. suggested a technique for adapting existing
motion of a human-like character to have the desired
features that are specified by a set of constraints. This
problem can be typically formulated as a spacetime constraint
problem. Their approach combines a hierarchical curve
fitting technique with inverse kinematics. They employed
the multi-level B-spline fitting technique. Using the
kinematics solver, they can adjust the configuration of an
articulated figure to meet the constraints in each frame.
Through the fitting technique, the motion displacement of
every joint at each constrained frame is interpolated and
thus smoothly propagated to frames. They are able to
adaptively add motion details to satisfy the constraints
within a specified tolerance by adopting a multi-level
B-spline representation. The performance of their
system is further enhanced by the new inverse kinemat-

ics solver.

3. Our Approach

Our approach is an extension of the generalized coordi-
nate technique [10]. We relax restrictions on generalized
working space to define an animation space which is
allowed to have any number of DOF less than or equal to
that of joint space and to allow any function of the kinematic
parameters to form a dimension in animation space. These
newly added dimensions represent kinematic constraints

imposed on the dynamic model by the animation system in

which it is embedded. Their values are specified as inputs
to the dynamic model, which then solves for the torques
required to satisfy them. Our methodology is general enough
to handle open and closed loop mechanisms and most other
common types of control problems.

We will deal with highly redundant systems. In a redundant
system whose degree of freedom is slightly greater than that
of animation space, we can usually control motion by adding
constraints using Lagrangian multipliers. But because the
articulated body is highly redundant, we can not control the
shape of the body by Lagrangian multipliers alone. We use
Lagrangian muiltipliers in calculating pseudo inverse
matrices, but we also extended animation space to actively
control the shape of the body.

Our Animation Space Transformation technique can be
used in retargetting motion. We set a number of interest
points of an animated character. The points can be functions
representing either positions or orientations, for example.
These functions make a space what we call “Animation
Space.” We can extend our concept a little bit by allowing
any meaningful function for motion retargetting. Say we
have a set of source data of a source articulated rigid body.
We need to transform / retarget source motion to a target
body we desire. Target structure should be same, but we
can allow different link segment length, different DOF, and
different type of joints. The only resort for us to retarget
motion seems using positions and orientations of the
source body. The corresponding points of the target
should be assigned. The set of functions related with
points of the target makes a space called Animation Space.
The motion transformation from joint space to animation
space is what we call “Animation Space Transforma-
tion,” because joint space is also considered a subset of

Animation Space.

4. Motion Control Equations

4.1 Coordinate Transformations and Differential Relationships

If we are trying to represent a coordinate in terms of
another coordinate, we need to derive a set of equations
relating one coordinate to another. In robotics, this usually
means transforming from the generalized coordinate space
of the joints, where each dimension represents one DOF of
a joint, to Cartesian space, which is the normal type of



working space. Thus each object can be represented by a
set of positions and orientations. In special circumstances,
the working space can be spherical or cylindrical [3].
Freeman and Tesar [9,12] allow the working space to be
a generalized coordinate system consisting of Cartesian
space positions and orientations and joint angles. This
generalized system is required to have the same dimension
as joint space.

Usually the coordinate transformation from joint space to
Cartesian space is aimed to give output in Cartesian space
when the motion control is done in joint space. We may
interpret this in reverse, where if we want some output in
Cartesian space, we calculate the corresponding effective
change in joint space. We extend the idea of generalized
coordinate transformations by including implicit output
functions [10]. By implicit, we mean that the meaning of the
function is usually not as obvious as other position or
orientation functions. For example if we want to fix joint
i, then the function can be (#;,—a)* where a is joint angle.
Note that there are many ways of controlling the constraint.
We can use any arbitrary function in terms of joint angles
and positions and orientations in the ordinary working space
to control the motion of the articulated body. That is to say,
we create a new animation space whose dimensions are
defined by these functions. So our animation space can
include motion constraint space as well as positions and
orientations which are for motion control.

Let % denote a vector in the created m dimensional
animation space and ¢ a vector in joint space having n
degrees of freedom. Let us work on a general function,

fi ., (i=1,2,3), for animation space. Then
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where G is a gradient or Jacobian tensor. The tensor [Gj]

consists of
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£* denotes the effect in  space of a change in joint i.

Up to now we have discussed first order differential
relationships. But we also frequently need second order
differential relationships. An acceleration vector of % space,

7, can be expressed in terms of a gradient tensor and

Hessian tensor.
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Here f can be interpreted to be a very general function.
The position and orientation functions of an end-effector are
well-known cases of f, which are commonly used in
robotics. We can introduce additional functions as l(;ng as
the total does not exceed the number of degrees of freedom
of the articulated body.

The derivation of the differential relations between the
joint space and animation space dimensions is based on
[9, 12]. These relations describe the effective change of
every position (including the base of local coordinates)
of a serial kinematic chain as a result of a change in
a joint.

Now we have both direct and differential relationships
between  space and "% space. For example, geometry

(position and orientation) is a common direct relationship.
For control, we can assign some values to the vectors %
and % in the newly created space. By the constraints thus

imposed on % and . the articulated body is constrained
in motion. The simplest case is assigning the value zero.
If we assign zero to the velocity and acceleration functions
of the end-effector position, we convert an open loop chain
mechanism to a closed loop.

Usually the dimension of "2 will be smaller than that of
joint space. In this case, we need to apply optimization
techniques, as is commonly done in robotics [3, 22]. In
our simulation, we used a joint velocity minimization

technique.

42 Basic Dynamic Equations

Using the gradient and Hessian tensors we have derived,
we can formulate dynamics equations for a dynamic
animation. This section is heavily due to [9,12,24]. The
dvnamic equation is based on the Generalized Principle of
D’Alembert and virtual work, that is to say, the derivation
of the dynamic equation is based on the virtual work of
inertial loads. We can use other techniques based on
inertial power or Lagrangian methods to derive exactly

the same set of equations. Be ware that the dynamic

equation is based on three dimensional space. In order to
derive dynamic equations we need to derive kinematic
differential equations in terms of positions and orien-
tations. If we have external forces / torques, then we
also have to compute differential relations for each

corresponding positions.

4.3 Closed Loop Mechanisms
There are three methods for simulating the closed loop
mechanism : soft constraints, hard constraints and simu-

lation by animation space transformation technique.

4.3.1 Simulation by the Extended Generalized

Coordinate Transformation Technique

Ay

(x4, 30

@
? (x3,¥3)

¢
& 2 X
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(Figure 1) Example of Serial Chain

By this method closed loop mechanisms are easily
handled by including corresponding constraint equations
at animation space and by doing motion control appropri-
ately. Consider (Figure 1). Notice that this model is the
same with a human sitting on a chair. If we want to
simulate the human, then we need to make an animation
space. Because this example is highly constrained we
need to be careful. If there are lots of redundancy, it may
be easier to decide an animation space. Let us make

animation space and its control as follows. = (x3 y3 $3)",

% =(00 ¢)7, %= (00 )7 so that we can constrain
Fy= X3 = y3= y3=0 to fix (x3,yy). By differential
kinematic equations derived so far, we can calculate
corresponding joint velocity and acceleration values. Then
with this, we do inverse dynamic simulation. We still
need the simulation if there are external forces acting
on a body except the forces caused by hip constraints.
By this way, we can simulate human sitting on a chair.
Because this example is really simple, the animation

becomes straight forward.



4.3.2 Soft Constraints Technique

Soft constraints method models external forces to
constraint the motion by using stiff springs and dampers.
Consider (Figure 1). In order to fix a hip of a human body
which corresponds to (x3, ¥3), we need to use vertical and
horizontal direction stiff spring and dampers. Dampers
should work opposite direction than that of springs to
restrain wild action. We do forward dynamic simulation in
terms of time by including external forces caused by springs
and dampers. During simulation, the hip is moving a very
small amount which causes springs and dampers reaction
forces. Due to the reaction forces, the hip moves to opposite
direction. But by the small amount of displacement, the hip
get opposite direction forces due to springs and dampers.
But this approach is only effective for forward dynamic
simulation (so can not be applied in this paper approach) and
is very expensive in terms of computation time because we
need to make the integration time step very small especially
wild motion is involved. For some tip, even this simple
simulation is not easy because we need to carefully select
spring and damper coefficients, and integration time step,
and the most difficult part is the control of the body. We
used a weak variant of an optimal control method to get a
best set of controls for the human movement. Also a good
model of human foot is very important if the simu-

lation(animation) includes human jumping or walking.

4.3.3 Hard Constraints Technique

In this method, we use kinematic constraints to derive the
resulting constrained closed loop mechanism. In terms of this
approach the motion equation usually becomes messy. Our
dynamic model carries enough information that we can
model hard constraints in a closed form equation and is
shown in this subsection. Other dynamic formulation, for
example recursive algorithms [8], usually do not compute
enough differential kinematic relations and can not include
hard constraints straight forwardly because their equation is
not in a closed form. We have to derive kinematic constraints
for a set of joint angles and then has to simplify correspond-
ing dynamic equation.

Consider the closed loop mechanism (Figure 1) where the
hip of an open loop mechanism is fixed on the chair. Then
the velocity and acceleration of the hip are both zero. If we
want to derive dynamic equation using the recursive
algorithm [8] then we need to derive differential kinematic
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equation for hip position. Then as a result, we know
constraints such as velocity and acceleration of joints 1 and
2 have some relation (zero). By applying these kinematic
constraint equations to dynamic equations and simplifying
them, we get new dynamic equations for closed loop mecha-
nism. Joint torque 1 and 2 means reaction forces acting at
an ankle and knee in this case. But you can see that this
process is pretty messy if DOF of a mechanism becomes
higher and higher. But the method presented in this paper
is pretty neat. The method uses animation space transfor-
mations which is used in deriving closed loop dynamic
equations.

Let us make an animation space for the closed loop
mechanism the same with subsection 4.3.1. in order to include
hip constraints. We then derive differential kinematic equa-

tions [G%] and [Hg] and derive the dynamic equation in
terms of animation space. Then we get 7ul. The meaning
of _T’,f and ‘fyxl becomes hip reaction forces in horizontal
and vertical direction, and _T.m' is the same with _7:¢31
which is derived in joint space ~¢. Then we discard —7—:,3]

and _T’yzl, and use only ?ml for forward dynamic simu-

lation. Note that we are very flexible in selecting an animation
space. We can include any function if meaningful for our
animation and use it to constrain the motion. The constraint
do not mean fixed constraint in geometry. It can be any thing.

Now we shall work in general case. Basically the open
loop case and closéd loop case can be handled in the same
way in terms of our animation space transformation
technique. The only difference is the constraints assigned
as inputs to the system. If the dimensions of "3 and “u are
the same, the problem is easy. Usually the dimension of u
is smaller than that of 4, so we need to use optimization
techniques [3, 7, 22] and need to use different approaches to
solve the closed loop equation. We have tried several
optimization techniques, including joint velocity optimization
with weights and weighted joint torque optimization. Among
these weighted joint velocity optimization gave the best
results in our simulations. Also we can easily adjust joint
weights to modify the resulting motion.

let f:@0—Uand el ¢e0 u=U il
$ = () bo-$,) 7. Then [G4] and [H;] are derived from

the differential relationships. If f; is a linear combination of
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é; in 75, then [H,ﬁ] becomes zero.

In order to solve in terms of @, we need to decide
redundant and nonredundant joint sets. Then we solve
equations in terms of non-redundant joints by eliminating
redundant joints. We then solve for the unknown end-effector
forces and eliminate the forces from the equation. Thus we
can do forward dynaric simulation in terms of non-redundant
joints. The angular values of redundant joints can be calculated

from non-redundant joints.

4.3.4 Mechanism used for Inchworm Animation

A
? 23 5 27 T 2y .
| | e

/ 24‘/ Zs‘/ 23‘/ /

F 210

(Figure 2) Segmented Inchworm

Now we will introduce the specific mechanism used in
inchworm modeling. The mechanism is very important be-
cause some redundant mechanisms produce many singular
configurations. We used two DOF joints at each links
because these joints give fewer singular configurations
than the three degree of freedom ball joints. The
mechanism used for modeling an inchworm is shown in
(Figure 2). The inchworm has a very flexible body with
a great many degrees of freedom. We map the inchworm
body to a finite segmented articulated body. Before creating
a “u space, we need to check the degrees of freedom of
the mechanism so that we may decide the dimension for
our space. The open loop case is pretty easy, and the closed
loop case is determined by Grubler's equation [15]. Let us
assume one DOF at each joint, which means we assume
there are two joints at each segment. Then the DOF for
the closed loop is determined by the equation closed loop
d.o.f=6(n—1)—5; where n is the number of one DOF
links [15]. From this, we can decide the upper limit on the

dimension of « space.

5. Dynamic Simulation

Using the motion equations developed above, we have

done a dynamic simulation of an open loop serial chain, an
inchworm and a pin-pointed dropping chain. The pin-
pointed dropping chain is a famous simple example which
we used to check the correct operation of our system. For
inverse dynamic simulations, we used animation space
transformation method to get differential kinematic equa-
tions for the control of the motion.

The inchworm example given in Section 4.2 illustrates the
basic steps of our method of motion control. These steps

are :

@ Define a model of the object to be controlled for
animation.

@ Formulate the equations for motion control in the
animation space transformation basis.

@ Solve the inverse dynamics problem to obtain torque
functions.

@ Execute the forward dynamics simulation of motion,
both open loop and closed loop steps, using the

information contained in the torque functions.

Note that we still need forward dynamic simulation
because we need to in clude external forces/torques during

simulation.

The core of dynamic simulation is as follows :
a. Calculate kinematic information with current ¢
b. Determine # and .
c. Calculate _3, 7;5 using 74, .
d. Calculate torque set by inverse dynamics.
e. Do forward dynamic simulation.
f

. Obtain a new ¢, and go to step a.

Note that the motion control is applied at % and %
starting from the initial configuration.
5.1 Dynamic Simulation of Open Loop Constrained Mechanism

(Figure 3) Normal and Constrained Motion



(Figure 4) Closed Loop Mechanism

A dynamic simulation on a simple open loop mechanism
is shown in (Figure 3). The mechanism has ten DOF and
the control is only position based. So we have seven
redundant DOF in this example. The redundancy is solved,
as was discussed previously, with a joint velocity opti-
mization technique used in robotics [3,7, 22). This opti-
mization technique uses a Lagrange multipliers, which adds
artificial constraints by reducing the null space. But we
stress that this technique alone cannot control the shape of
the body. This is why we use animation space transfor-
mations for our animation. The left simulation is normal
movement, but the right simulation is constrained such
that the first segment is fixed. As can be seen from
(Figure 3), the segment is completely disabled. But when
a position is given which cannot be reached with the
constrained mechanism, the fixed segment eventually moves
to reach it. This is a kind of inverse kinematic problem
which was given unreachable position as an input. This
is a very simple control example of our animation space

transformation technique. We set f; = ¢% and controlled

by }'I:}l:O-

5.2 Dynamic Simulation of an Inchworm

The main purpose of using inverse dynamics 1s to get a
set of torque functions which can be used for forward
dynamic simulation. An inchworm has legs only at front and
rear. It lacks middle pairs of legs, so it moves by extending
the front part of the body while the rear grasps the
ground, and then pulling the rear forward while the front
grasps the ground [1, 41. When an inchworm extends the
front part, it can be modeled as an open loop mechanism.
When it pulls the rear forward, it can be modeled as a
closed loop mechanism. In the case of the closed loop,
there is only a single direction sliding motion at the rear
part of the worm.

The inchworm model controls its own motion, subject to
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the intermediate goal position constraints provided by the
animator, Motion planning is done by the worm to find the
best body positions, favorable torques etc. For this we used
a heuristic which checks a finite number of potential
directions to move at each moment and selects the best move
among them. (The easiest way to animate inchworm is let
end of an inchworm to reach a point on a ground. That is,
there is a controller which checks the distance between the
next intermediate goal and the tip of an inchworm. And it

determines % and 7. Then using the animation space trans—

formation, we get ¢, ¢ and . By inverse dynamics, we
get a set of joint torque values and do forward dynamic
simulation, If there are any external forces caused by
another figures during the simulation, the original
planned motion is corrupted. So the motion planner
modifies its original motion planning at the next time
instance such that it could satisfy the next intermediate
goal. For this animation, animator just need to give a
set of intermediate goals as inputs. Because it can be
simply asked to reach the goal position, the movement

continues. In this process, we can calculate slope ( z) of

displacement from current position to the goal position. %
also can be calculated by finite difference. In terms of pulling
rear part of the inchworm, we may constrain it to stay on
the ground.)

Because we simulate an articulated body with high
DOF, it is possible to fall into near singular configurations.
We tried several methods for handling this including
singular value decomposition (SVD) [23] and the damping
technique [6]. Some optimization schemes cannot be used

with the singular value decomposition method, so we

(Figure 5) Dynamic Simulation of an
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incorporated damping factors in calculating the pseudo-
inverse Jacobian matrix. The damping approach involves
adding some values at places needed for calculating the
inverse. These adjustments can cause small errors, which
we have not found to be significant. The damping tech-
nique has proven quite effective in handling singular con-
figurations.

To change steps, we need to change the base of the worm
from one end to the other. We need only two DOF at each
segment for motion, but the position of a segment is
specified with three DOF. Since there is a segment length
constraint between joints, we can change steps with only
two degrees of freedom. (Figure 5) shows several frames
from the dynamic simulation of an inchworm. A videotape
of an “inchworm race” has been produced to better illustrate
this simulation. In the simulation, we used two additional
constraint functions to control the shape of the body. These
functions are of the form A($) = (4,— @)* where @ is a
function of time.

For numerical integration, we tried Runge-Kutta fourth
order adaptive size control and the Stoer-Bulrish method
[23]. Both methods seem to have the same computing power.
We used the Stoer-Bulrish method for these results. For a
normal inchworm we assumed 0.005m and 0.001Kg for each
segment. The system is implemented in C. The core of the
dynamic routines is about 4000 lines. The computation time
varies depending on the number of degrees of freedom. The
inchworm simulation takes about three seconds on IBM
RS/6000 320 for one step of the inverse dynamic compu-
tation. We store only key frame data and display after the

whole computation.

6. Conclusion

In this paper, we have provided a new technique for
inverse dynamic simulation of both closed and open loop
systems. The technique is based on an extension of gene-
ralized coordinate transformations, which allows the use of
an animation space with arbitrary functions of kinematic
parameters defining its dimensions in place of the normal
Cartesian workspace. This provides a flexible technique for
designing the control interface for many types of articulated
body models. Using this technique, we have given three

approaches for the analysis of a closed loop, and we have

used the constraint control technique on both closed and
open loop mechanisms. We used a method based on the
generalized principle of D’ Alembert and virtual work for our
dynamic control.

The complexity of our algorithm is O(»®) (with some
optimization of the tensor multiplication), which is expen-
sive compared to the linear complexity of some iterative
dynamic formulations [3]. But usually linear complexity
formulations, including Newton-Euler, are not well-
suited to the design of control interfaces. Our dynamic
formulation is good for the analysis of mechanisms, and we
can use linear complexity algorithms after the initial
analysis for the forward dynamic simulation of the models.
A particularly attractive structural feature of this
formulation is that the equations for models with a given
branching topology are quite similar. This makes it very
easy to derive equations for new models once some
experience with the method is obtained. Our initial
experience with this technique indicates that it is a very
promising method for the development and analysis of
open and closed loop dynamic models as well as for
inverse dynamic control. Also the animation space
transformation technique is very useful for motion
control in kinematic level only. Because most animation
still depends on kinematic level motion control, we can
easily transform / constrain the resulting motion given
an input motion. Further research experience will be
required to understand how to determine good functions
for generating the desired motion and how well the approach
adapts to more complex modeling situations. The next step
is to go from moving inchworms to retargetting walking
humans, insects, octopi, Martians, etc. Since our animation
space dimensions are not simple geometric quantities, it can
be difficult to get a set of control functions by intuition. As
the dimension of "« space grows, these problems become
more difficult.

We have also experimented with the finite difference
method of two point boundary value problem of Witkin &
Kass [28] and a human jumping animation using musculo-
tendon-skeletal dynamics and weak variant of an Optimal
Control technique. Finite difference method of two point
boundary value problem involves making a continuous
time system completely discrete getting a set of

nonlinear equations. An index function is used to organize



these nonlinear equations so that they have some physical
meaning. This approach achieves computational efficiency
by giving up accuracy in modeling the physical world.
Optimal control finds the best motion which satisfies all
boundary conditions. This technique is very computation
intensive because it does forward dynamic simulation
while finding the best motion trajectory. We have produced
a worm-racing movie generated using the [28]'s method to
provide a comparison with the same animation using our
technique. The low quality compact movie can be
downloaded from the site http : //user.cholliannet/” shark

102/anim.avi.
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