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An Efficient Dynamic Load balancing Strategy
for Tree-structured Computations

Injae Hwang' - Dong-Kweon Hong''

ABSTRACT

For some applications, the computational structure changes dynamically during the program execution. When this happens, static partitioning
and allocation of tasks are not enough to achieve high performance in parallel computers. In this paper, we propose a dynamic load balancing
algorithm which efficiently distributes the computation with dynamically growing tree structure to processors. We present an implementation
technique for the algorithm on mesh architectures, and analyze its complexity. We also demonstrate through experiments how our algorithm

provides good quality solutions.

FI9E : YEHRE|(parallel computer), ¥3HEA (load balancing), B§${mesh), E2|FX(tree structure)

1. Introduction

Parallel processing is one of the most promising ap-
proaches to solve computationally intensive problems. These
problems arise in many different fields of science and en-
gineering. Even though multiprocessor systems have such
an enormous raw computing power, they can be utilized only
when the problems are efficiently parallelized. To keep all
the processors busy, we have to partition the problem into
many components that can be executed in parallel by the
processors in the systems. The term “load balancing” refers
to the activity of distributing or redistributing the workload
among the processors to achieve high performance.

In this paper, we propose an efficient load balancing al-
gorithm for executing algorithms with dynamically chang-
ing workload on parallel computers. When the task al-
location is performed for parallel computers, task inter—
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action graph is constructed for the application. The task
interaction graph represents the amount of computational
workload and the communication needed between the tasks.
For some algorithms, the task graph is allowed to change
during the course of program execution. In this case, static
partitioning and allocation of task graph is not enough to
achieve high performance in parallel computers. Examples
of such algorithms are those that have dynamically grow-
ing tree structures. Searching algorithms often employ trees
to explore solution spaces. These algorithms are useful me-
thods for solving optimization problems. Adaptive mesh re-
finement[2] is another example of such algorithms where
fine mesh is imposed on those regions with steep curve as
the computation proceeds. For these algorithms, it is nece-
ssary to reassign workload dynamically in response to the
changes in the computational structure of the program. In
this paper, we present an efficient dynamic load balancing
algorithm which tries to balance the workload among the
processors while keeping the communication cost under the
acceptable limit. The interconnection networks of parallel
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computers are assumed to be mesh.

2. Related Work

Load balancing and task allocation problems in both dis-
tributed and parallel computing environment were exten-
sively studied by many researchers. In this section, we sur-
vey some of the related works to this paper.

Hanxleden and Scott [6] developed a testbed for different
balancing techniques including scatter decomposition, bi-
nary decomposition and some dynamic balancing strategies.
They also introduce a simple decentralized balancing strate-
gy in which each node computes the amount of its own wo-
rkload, and broadcasts it to other nodes as load distribution
information ; since this is just a single number, there is little
communication overhead. These approaches were imple-
mented on Intel iPSC/2 distributed memory parallel com-
puter and their effects on the message size and the number
of messages were observed.

Kopidakis [6] proposed two heuristic algorithms for the
problem of task allocation in heterogeneous distributed sys-
tems. The objective is the minimization of the sum of pro-
cessor execution and intertask communication costs. They
transform the problem to a maximization one, where they
try to determine and avoid large communication costs and
inefficient allocations. Their performance is evaluated
through an experimental study.

So far, we surveyed a few load balancing methods and
most of them are based on static strategies. There are also
many papers which propose load balancing algorithms for
dynamically changing workload. we survey a few of them
in the rest of this section. Pilkington and Baden discussed
a partitioning strategy for non—uniform scientific computa-
tions running on distributed memory MIMD parallel com-
puters[8]. They considered the case of a dynamic workload
distributed on a uniform mesh, and compared their method
against other two methods. It was shown that their method
is superior to the other two in rendering balanced work-
loads.

A parallel method for the dynamic partitioning of unst-
ructured meshes was developed by Walshaw and Cross [9].
The method introduced a new iterative optimization techni-
que known as relative gain optimization. Experiments indi-
cated that the algorithm provided partitions of an equivalent
or higher quality to static partitioners and much more ra-
pidly. The algorithm also resulted in only a small fraction
of the amount of data migration compared to the static
partitioners.

Most of the approaches discussed so far fall into one of
the two categories ; centralized and decentralized. In cen-
tralized schemes, load balancing decisions are made by a
central processor. In decentralized schemes, each processor
has to make its own decisions about load balancing after
collecting the necessary status information from only a sub-
set of all the processors. It also takes less time to collect
the information from the subset of processors, and it is not
necessary to broadcast the results of load balancing deci-
sions. Centralized schemes however, have the advantage of
making more accurate decisions over decentralized schemes.

In the approach proposed in this paper, global workload
information is used to make the decision on the redistribu-
tion of workload since it is more accurate than local work-
load information used by decentralized methods. However,
by making all the processors work on making load balancing
decision, we can obtain the quicker solution. In addition to
that, the results of the decision need not be broadcast to other
processor. The actual workload migration occurs after ma-
king the decision on workload redistribution, and usually this
step can take more time than the load balancing activity it-
self. In our approach, the workload migration can take place
while the task distribution is being computed, which results
in reduced load balancing overhead. The above advantages
are the major motivations for developing the load balancing
strategy proposed in this paper.

3. Problem Formulation

There are many algorithms which have tree-structured
task graphs. In such algorithms, the corriputation starts with
root node and the tree grows dynamiba]ly as each node
produces its children. A node in the tree corresponds to a
task and an edge corresponds to communication between the
parent node (task) and the child node (task). After producing
children, the parent waits until it receives results from their
children, then terminates. When the child tasks are executed
on the processors different from those on which the parent
task is executed, inter-processor communication is nece-
ssary for migrating the child tasks and receiving messages
from them.

With the above tree structure, the problem is assigning
the nodes of a dynamically growing tree to processors. This
is a very difficult problem since we can not predict the future
growth of the tree. To make the problem more tractable, we
synchronize the computation on all the processors at each
level i of the tree. The tasks at level i in the tree are ge-
nerated and assigned to processors at the same time. The



child task should be migrated from the processor where it
was produced to the processor. where it is to be execiited.
After the execution of the child task is done, the result should
be sent back to the parent task. If we assume that the
computational cost of each task and the size of message
between the parent and child are known, then our problem
becomes one of distributing the child tasks to processors,
so that computational workload is balanced among proce-
ssors and the maximum communication cost is minimized.
To formulate the execution time of tasks at level i, we
introduce the following notations :

G = (V, E) : processor graph where V is the set of proce-
ssor nodes and E the set of communication links

S < set of tasks generated at level i

E, : execution time of task 2

M, : cost of sending the message generated by task a to
an adjacent processor

B, : cost of sending task « to an adjacent processor

d{(p, p,) * communication distance between processors #
and p, inG

f: S—V: fla is the processor where task a was gene-
rated

g §S—V :task assignment function ; g(a) is the proce-
ssor where task a is executed

h: V—2° inverse of g; k(s is the set of tasks assigned
to processor p

Then the total execution time of tasks at level ¢ is given
as follows.

T;= max yev( fh.'.()E,z )+ max o5 (d(f(a), g(a) (B, +M,)
as k)

The first term represents the sum of computational work-
loads of the tasks assigned to processor p and the second
term represents the inter-task communication cost. Then
our load balancing problem can be stated as follows : Given

G, S, f determine g (and hence k) such that 7 is min-
imized. ‘

This problem can easily be shown to be intractable. If we
ignore communication cost and assume that there are only
two processors, partitioning problem can be reduced to this
problem. Since partitioning problem was already shown to
be NP-complete [4], this problem is NP-hard.

4. Proposed Approach

In the approach we propose, we treat inter-task communi-
cation cost as a constraint and try to find an allocation of
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tasks which minimizes the maximum computational cost
while satisfying the constraint. With this strategy, the form-
ulation of our load balancing problem is modified as follows :

Find f (and hence g) such that max ,y 2 seip E, is
minimized with the constraint that max ,.,d(f(a), g(a))
(B,+M,) <Cru, Where Cp. is the acceptable limit for
inter-task communication cost. The parameter C,x provi-
des the desired trade-off between computational and com-
munication costs and can be set based on the nature of the
application and the architectural parameters such as ratio of
communication bandwidth to computational capacity in the
system. When the execution time of each task E, and the

number of processors N are given, Cp., iS set to %

so that the communication cost cannot exceed the average
computational cost per processor. In our heuristic algorithm,
Cmax Will be used to limit the maximum distance that each

task can migrate from the processor where it was generated.
In the heuristic we propose, we first assign a label ¢, to

each task a that indicates the maximum distance it can

migrate from its currently assigned processor. Initially,

™

t=1 B.+ M,

1, that is, ¢, is inversely proportional to the

amount of communication required for the task. Each time
a task needs to move by distance d during a balancing step,

t, decreases by dand when ¢, becomes zero it remains
assigned to its current location.

For balancing the computational load, we use a recursive
procedure, that is, first balancing load between two halves
of processors and then applying the procedure recursively
to the two halves. In order to balance the workload between
two halves, we order the tasks in each half in non-increasing
order of ¢, values (only tasks with strictly positive ¢, values

are considered). We move tasks from overloaded half to
under-loaded half in the above order. The intuition behind
this order is that if tasks with larger ¢, values are allowed

to migrate first, they can also migrate during the later
iterations of the algorithm allowing a better chance to
balance the workload. Also from the point of view of task
migration cost, smaller sized tasks are preferred over larger
sized tasks.

We consider an approach for implementation of this
heuristic on multiprocessor systems. In this approach, each
processor first creates a “token” or a “packet” for each task
that it has. This token contains information about the task
such as the amount of communication required, presently
assigned location(processor), ¢, value etc. During the load
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balancing procedure, every processor first broadcasts all the
tokens it has, to every other processor in the system. During
the first iteration, each processor does the same computation,
namely attempt to balance the load between two halves of
processors using the proposed heuristic. During the second
iteration, all the processors in a half do the same compu-
tation, namely attempt to balance the load between two
quadrants of that half. Thus this process proceeds up to
log N (assuming N to be a power of 2) iterations, where

during the #-th iteration (0 < i < logN—1), a group of zﬁ

processors performs the same task of balancing workload
between two halves of the group. In the next section, we
give details of the algorithm and analyze its time complexity.

5 Load balancing Algorithm

In describing our algorithm, we use a mesh architecture
though the algorithm is easily applicable to other regular
topologies such as hypercubes. The number of processors
is assumed to be N (VN processors in each row and column
labeled from 0 to VN — 1). Each processor is denoted by P;;

(0 <i< VN—1, 0 <j< VN —1). The detailed description of
the algorithm is as follows.

1. Generate a packet <E,t,C,> for each task a to be
allocated where
E, : Execution time of task a
t, : The maximum distance task @ can migrate from its
current location
C, : Index of the processor to which task e is currently
assigned Initially, C, is set to the index of the proce-
ssor where task a was generated
2. Each processor broadcasts the packets generated in pre-
vious step to all other processors using multinode broad-
cast algorithm [3].
3. After processors receive the packets, they execute the fol -
lowing algorithm.

Procedure LoadBalancing
1LV_cut =1 // When V_cut is 1, workload is
balanced between left and right sets of processors //

2. for k= 0 to logN — 1 do

3. if V_cut = 1 then

4. for each P, , do in parallel

5 Let A be the left set of processors

6. Let B be the right set of processors

7 Call MigrateTasks( A, B)

else // if V_cut =0 (When V_cutis 0,

workload is balanced between upper and
lower sets of processors in the same way) //

8 V_cut = (V_cut+1)mod+2
end Procedure LoadBalancing

Procedure MigrageTasks (A, B)
1. Let Ly be X E,
C.=A

2. Let Ly be 2 E,
C,eB

} L,— Ly |
2
.if . > ethen // e is a small number denoting
load imbalance tolerance limit //
if La>Lg then //Move tasks from A to B.//
let S={alC,=A,E, <4 and >0}
7. Find Dy =min{¢,| a€S}
and Dpe = max{t, |a&S)
8 Partiion S into Sp,."", Sp..
where S;={aeS|t.=j).

©w

by =

=N

o o

9. for n = Dyax to Dy, do

10. Let T,={a,:. a;} where a;€S,,

1L Call SelectTask (7T,, a1 r)

12. for each task «;€T,

13. if E, < E,, then

14, Send task a; to the nearest processor

in B, and change C,, to the index
of the processor.

15. LA=LA—E45, LB=L5+EB‘_
16. A= ILA;LB|
endif
17. if Ay <e then return
endfor
endfor

else // if La<Lg//

18. do similar task migration from B to A.
endif

end Procedure MigrageTasks

Procedure SelectTask (W, s,r)
Given a set of tasks W= {ay, ay, @}, and a positive integer &,
return an index r such that the following is true : :‘EZW E;< & and
2 Ea

ie Wi
where W,=(1<i<I|E,<{E,) and W!={1<i<!|E,<E,)}
“This procedure is just a weighted selection problem and can be solved
by a divide-and-conquer algorithm just as in the selection problem
[1] ; we omit the details here.
end Procedure SelectTask

In the above procedure, all the processors compute the
same task distribution between the left and right halves of
the processors during the first iteration of the loop. During
the second iteration, each half of the processors compute the
task distribution between upper and lower quadrant of the
processors. During the final iteration, each pair of processors
compute task distribution between them. By having many
duplications of the same computation among processors, the
result of the computation does not have to be broadcast to



other processors. After each iteration, all the processors have
the necessary information for task migrations between the
two sets of processors. All the processors use the same tie-
breaking policy to get the same result for identical compu-
tation. At line 14 in procedure MigrateTasks, the selected
task can be sent to any processor in the set B. Since it can
further migrate to other processor in the later iteration, sen-
ding it to a particular processor is not necessary. And, the
processor does not need to wait until the execution of the
algorithm is completed. Since computing task distribution
needs only packets not actual tasks, computation can proceed
while tasks are being migrated. Therefore, task migration
and computing task distribution can overlap in our algorithm.
If task a@ was selected to be migrated but it is not available
yet, the processor just need to remember its destination, and
it is sent to that destination when available.

The analysis of time complexity of our load balancing al-
gorithm is as follows. In step 1, a packet is generated for
each task. This will take O(m,,) time where m g, is the
maximum number of packets a processor generates. For step
2, following resuit will be useful. Suppose there is a linear
array of N processors, each having a certain number (not
the same number) of packets with a total of M packets.
Broadcasting can be achieved in O(M+ N) steps where at
each step, a processor can send (and receive) a packet to (from)
its neighbors. From this result, step 2 takes O(M+ N). Let’s
derive the time complexity of step 3, namely the pmgedure
LoadBalancing. Lines 1 -8 in procedure MigrateTasks
takes O(M) time. Since procedure SelectTask takes O(|W|)
time, lines 9 - 17 take O(M) time on for all the iterations
of loop 9. Procedure MigrateTasks is called log N times.
Hence, step 3 takes O(MlogN) time. Including all the four
steps, the total time complexity of our load balancing algo-
rithm is O(N+ MlogN).

6 Experimental Results

We performed simulation to test the accuracy of solutions
provided by our load balancing algorithm. We randomly
generated the trees, and applied the proposed load balaneing
strategy to assign the tasks to processors. For the first few
generations, the number of tasks can be much smaller than
the number of processors, and load balancing is not imper-
tant during that time. Therefore, we assumed that the proce-
ssors initially have a certain number of tasks (No_Tasks)
and the number of child tasks created has an exponential
distribution with a mean value of 1. We also assumed that
the computational costs of tasks have a uniform distribution

“
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in the range [MIN, MAX]. The communication cost between
a parent task and a child task is assumed to be proportional
to the computational cost of the child task with the parameter
C-COST being the constant of proportionality.

Since finding optimal solutions takes too much time, we
used the following four yardsticks to compare our algorithm
against : (a) average amount of computation per processor
which is a trivial lower bound (referred to as LB) for any
solution, (b) solution value for list scheduhng heuristic with
communication constraint, (c) solution value for decreasing
fit heuristic, (d) solution value for Kopidakis' task assign-
ment algorithm({6]. In the rest of the section, weuse L,, L,,
Lyand L, to denote respectively our load balancing algori-
thm, list scheduling, decreasing—fit heuristics and Kopidakis’
algorithm,

In our experiment, we started with 5 tasks per processor
and then went through 1000 generations. We obtained the
average objective function values for the heuristics under
consideration. The following tables respectively indicate
how the performance of the heuristics vary with C-COST,
number of processors, variance of execution times, initial
number of tasks per processor (No_tasks) and average ex-
ecution time of tasks.

As can be seen in <table 1>, L, and L, give good sol-
utions regardless of C-COST while L; performs better only
for very small values of C-COST when balancing workload
plays a more important role than reducing communication
costs. When C-COST is larger than 0.1 (which means that
communication cost is more than 109 of computational cost),

L, and L, perform better than L, and L;. When the
distance between the two processors is relatively large, as
in meshes, L, has the advantage over L, because the
communication cost is constrained under a certain value
while workload is balanced.

With respect to sensitivity to number of processors, L,
our heuristic performs the best in most of the cases as can
be seen in <Table 2>. This can be attributed in part to the
ability of the algorithm to keep the communication cost to
a minimum while retaining the opportunity to balance the
workload among the processors.

{Table 1> Solution values for different C-COST values

C-COST LB L, L, L L,
0.01 516 59.5 585 57.1 575
0.1 516 61.7 61.1 59.6 60.2
0.2 51.6 63.5 64.4 721 63.1
0.3 516 65.9 69.5 715 66.7
04 51.6 63.6 740 90.9 69.1
0.5 51.6 706 76.8 97.2 72.8
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{Table 2> Solution values for different numbers of processors

No.of Proc. LB L, L; L, L,
32 450 543 582 615 549
64 463 585 60.1 647 58.1
128 516 659 695 715 664
256 646 769 80.4 891 | 717
512 8.2 834 893 1058 84.1

(Table 3) Solution values for different variances of execution

times
MIN-MAX LB L, Ly L, Ly
8-12 515 62.2 64.9 75.6 63.0
6-14 51.6 62.7 65.2 75.8 62.2
4-16 516 65.9 69.5 75 66.7
2-18 51.7 66.6 70.1 1.7 66.8
0-20 51.7 68.3 718 789 68.1

With respect to variance of execution times, we see that
L is not much influenced while the objective function val-
ues obtained by L,, L, and L, increase with large variation
in execution times of tasks. But since L; keeps the commu-
nication cost small, the total cost is smaller than that of L,
or L,. L, performs similarly as L,. The reason for smaller
communication cost is attributed in part to the fact that
communication cost for a task is proportional to its execution
time and with wider variation in execution times, tasks with
heavy communication costs are not allowed to migrate too

far while tasks with light communication costs can migrate
further.

7 Conclusions and Future Work

In this paper, we discussed a dynamic load balancing pro-
blem that arises in mapping computations with tree-struc-
tured task graphs onto multiprocessor systems. We formul-
ated the objective function which includes both computation
cost and communication cost between tasks. The heuristic al-
gorithm we proposed in this paper tries to minimize the
maximum computation time among the processors while
keeping the communication time under a certain limit. In
addition to analyzing its complexity, we also experimentally
analyzed the accuracy of solutions provided by our heuristic
algorithm.

Our future work will be concerned with the more difficult
task of developing an efficient load balancing algorithm
which can be applied to arbitrary task graphs where commu-
nication can take place between any pair of tasks. Especially,
we are interested in developing load balancing algorithms
which are useful for massively parallel architectures.
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