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Steady—-State Simulations

JongSuk R. Lee'- HyoungWoo Park''- HaeDuck J. Jeong'''

ABSTRACT

In this paper we study the quality of sequential coverage analysis under a scenario of distributed stochastic simulation known as MRIP
(Multiple Replications In Parallel) in terms of the confidence intervals of coverage and the speedup. The estimator based on the F-distribution
was applied to the sequential coverage analysis of steady-state means, in simulations of the M/M/1/%, M/D/1/%, and M/Hy/1/> queueing
systems on a single processor and multiple processors. By using multiple processors under the MRIP scenario, the time for collecting many
replications needed in sequential coverage analysis is reduced. One can also easily collect more replications by executing it in distributed

computers or clusters linked by a local area network.

FINE : &4H XY (Sequential Coverage Analysis), tii(Proportions), MBTZHConfidence Intervals), ®AF AIR0| M (Dis-
tributed Simulation), HAMALEN AlBOIM(Steady-state Simulation), &E84(Speedup)

1. Introduction

Statistical analysis of output data of stochastic steady-tate
simulation is made difficult by the degree of serial correlation
often presents in the output. Methods such as batch means,
regenerative cycles, and spectral analysis are used to over-
come the above problem. An important measure of the robu-
stness of any output analysis method is the coverage of the
final confidence intervals defined as the proportion of confi-
dence intervals which contain the true value. Any good met-
hod of analysis of simulation output data should produce
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narrow and stable confidence intervals, and the probability
of such an interval containing the true value of the estimated
performance measure should be close to the assumed confi~
dence level. ‘

Some interesting results have been achieved in theoretical
studies in terms of coverage error for confidence intervals
arising in simulation output data analysis [4]. A coverage

" function (which is defined for all confidence levels between

zero and one) to measure robustness of confidence intervals
has been proposed [20], and coverage properties of confi-
dence intervals based on the average Bayesian posterior
probability have been studied [18]. Nevertheless, experimen-
tal analysis of coverage is still required to assess the quality
of practical implementations of methods used for determi-
ning the final confidence intervals, especially in the context
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of stochastic steady-state simulation.

The conventional interval estimator based on the normal
approximation has been widely used in experimental covera-
ge analysis {7, 10, 14-16, 20, 21]. However, alternative, more
efficient and accurate interval estimator based on the F-dis-
tribution of proportions is pointed out for analysis of propor-
tions in sequential steady-state simulations in [13]. A com~
parative study of properties of three interval estimators (ba-
sed on the normal distribution, the arcsin transformation, and
the F-distribution) can be found in [13].

There are a number of related facts with coverage analy-
sis. First, it is naturally limited to analytically tractable sys-
tems only, since the theoretical value of the parameter of
interest has to be known. Because of that, it has even been
claimed that there is no justification for experimental cove-
rage analysis, since there is no theoretical basis for extrapo-
lating results found for simple analytically tractable systems
to more complex systems, which are subjects of practical
silation studies [3]. On the other hand, no theory of coverage
for finite sample sizes exists, and in this situation, experi-
mental coverage analysis of analytically tractable systems
remains the only method available for testing validity of me-
thods proposed for simulation output analysis. Certainly no-
body is ready to accept a method of simulation output data
analysis showing very poor quality in experimental studies
of coverage.

Another fact is that coverage analysis requires execution
of multiple, independent replications of simulations. Very
large numbers of replications are often needed for determi-
ning coverage with satisfactory precision. Traditionally, co-
verage analysis was performed with a fixed number of repli-
cations, ranging between 50~500 replications [8-10, 19]. How-
ever, newer results of coverage analysis ([11, 12], and [16])
clearly show existence of high initial instability of coverage
in the region of 50~500 replications for three different met-
hods of mean value analysis : non-overlapping batch means
and SA/HW (spectral analysis in its version proposed by
Heidelberger and Welch [6]), and regenerative cycles. To
avoid taking the final result from this region, coverage an-
alysis has to be done over a sufficiently larger sample of
data or sequentially as recommended in [6]. In any case, one
needs to estimate the proportion of confidence intervals co-
vering the theoretical value of interest.

Sequential simulation analysis, however, raises its own
probiems [16]. One problem is that some of the simulation
experiments may stop after an abnormally short run, when

the stopping criterion for the sequential simulation is tempo-
rarily satisfied. Addressing this issue, some rules for the
sequential analysis of coverage have been formulated in [16].
As in the case of ordinary sequential simulation, sequential
coverage analysis is continued until the final result is obtai-
ned with the required statistical error. Thus, the properties
of interval estimators of proportions used for determining
precision of coverage play a crucial role in the sequential
coverage analysis.

The other problem is that a sequential simulation of even
moderately complex simulation models in engineering and
computer science is often computationally intensive and re-
quires long runs in order to obtain the final results at a des-
ired level of the statistical error. For instance, in sequential
steady~-state simulations of an M/M/1/® queueing system
with traffic intensities of 0=0.99 and e =0.999, the estima-
tions of the mean response time require roughly 8.3 minutes
and 1.3 days on a Pentium I with 350Mhz, to achieve an
estimate with the relative statistical error of at least 5%
respectively [13]. For an open queueing system with traffic
intensities of =099 and o =0.999, the required times to
get the steady-state mean response time are approximately
3 hours and 7.3 days respectively [13]. The obvious solution
is to speedup such a sequential simulation by executing it
in distributed computer systems, possibly using computers
or clusters linked by a local area network.

In this paper, we discuss the interval estimator based on
the F-distribution in the context of its application on se-
quential coverage analysis of the SA/HW methed in se-
quential steady-state simulations of the M/M/1/, M/D/1/
oo, and M/Hz/1/°° queueing systems. To see whether the
interval estimator based on the F-distribution works in the
case of very time consuming simulation experiments or not,
we have executed all our experiments under a scenario of
distributed stochastic simulation known as MRIP (Multiple
Replications In Parallel) [17], in which muitiple workstations
within a local area network work as independent simulation
engines, producing data for global output data analysers. The
quality of sequential coverage analysis for the SA/HW
method executing it with different numbers of workstations
is also discussed in terms of the confidence intervals of
coverage and the speedup.

2. Interval Estimator for Proportions

Binomial experiments consist of repeated trials, each with



two possible outcomes, which may be labelled success or
failure. The point estimator of the proportion p in a binomial
experiment is simply given by the statistic

count of successes in sample X

;: =

size of sample n

(0Y)

If a binomial experiment can result in a success with pro-
bability p and a failure with probability (1 - p), then the pro-
bability distribution of the binomial random variable X, the
number of successes in n independent experiments, is

bximpy=( %) 0" A= """ x=0,1,,n ()

The accuracy with which it estimates an unknown pro-
portion p can be assessed by the width of its confidence
interval at a given confidence level, i.e, by the probability

Pr(p— 0, < p<p+8,)=1-a

where 3 is the estimate of the proportion p, A; and A
are the offset for the lower and the upper limit of the con-
fidence interval of p, and (1- ) is the confidence level, 0
<ea <1. Ideally, this would mean that if the simulation
experiment is repeated many times, the resulting confidence
intervals would contain the parameter p in 100X (1- @)% of
cases. To determine A; and Az we need the exact distri-

bution of 3, or at least Var (5). In practice, only some ap-
proximations of these are possible.

The interval estimator of the proportion p, based on the
F-distribution, is described in following ways. Confidence
intervals for proportions can be formulated from the rela-
tionship between F and binomial distributions with the in-
complete and the complete beta functions. The ratio of two
successive terms in a binomial distribution b(x ; n, p) is

b(x+1; n,p) =(
Hx;np)

n—x p b .us —
1 X =7 ), x=0,1,-,n—1,
where x is the observed number of successes in the sample ;
see Equation (1). Using the transformations shown, for ex-
ample, in [1] and [5], the quantiles of the binomial distri-
bution can be obtained from those of the F-distribution, as

pr{p(rl. ra) < (——”—’—'ix—‘—’—)}

np+1 12

| (np+1)F(ry,73) }
= Pr =< = 4
(n—mp)+(np+DF(r,, r3)

where F(r,r;) is a random variable with the F-distri-
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bution of 7, = 2x(nxp +1) and r3=2x(n—nxp) degrees
of freedom. Thus, an 100X (1- ¢ )% confidence interval for

a proportion is given by ( 2,, 5.), where

~ (n3+1)f1—a/2(71,”z)
(n—n$)+(n3+1)f1—a/z(r1,rz)

and

. s
[~ =
np + (n=np+1)f1-q2(rs 7))

Here, n is the sample size, and f,_,/2(7y,7;) isthe (1-
/2) quantile of the F-distribution with (r,,»,) degrees of
freedom, where 7, =2x(nxp+1) and r,=2x(n—nx3),
while f;-,/2(rs,7;) is the (1- @/2) quantile of the F-dis-
tribution with (73,7, ) degrees of freedom, where », = 2x

(n~nxp+1) and r,=2xnx3p [5).

3. Numerical Results

The results of half-width of confidence interval of cove-
rage and the speedup, which are obtained during evaluation
of the SA/HW method proposed for sequential estimation
of steady-state means, are reported in this section, The SA/
HW method has proved to be the most satisfactory method
for confidence interval estimation in sequential simulation
[16]. All simulation runs were executed using of Akaroa-2,
which is a fully automated simulation tool designed for run-
ning distributed stochastic simulations under the MRIP sce-
nario, in which multiple processors operate as multiple si-
mulation engines generating independent sequences of out-
put data and submitting them to a global data analyser for
analysis {2]. In the case of sequential steady-state simula-
tion, Akaroa-2 automatically detects the length of initial tra-
nsient period and determines the location of, and analyses
the collected simulation output data at each consecutive che-
ckpoint [2].

Properties of the SA/HW method were investigated both
in the case of ordinary sequential steady-state simulation
on a single processor and in the case of distributed simula-
tion under the MRIP scenario. All numerical results in this
paper were obtained by stopping the simulation experiments
when the final steady-state results for the mean response
time have reached the required relative statistical error of
5% or less, at the 0.95 confidence level. By following the
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proposed rules for experimental coverage analysis in [16],
all coverage results were filtered of unusually short simula-
tion runs by discarding runs which are shorter than the
average of run-lengths obtained from all collected replica-
tions minus the standard deviation of run-lengths obtained
from all replications. This guards against the influence of
unusually short runs on experimental results. These steps
are taken to ensure that the results are typical of what would
be considered to be a well-managed simulation experiment.
Also at least 200 confidence intervals not covering the the-
oretical value in sequential coverage analysis were collected.
This number of observed ‘bad’ confidence intervals has been
recommended in [16], for ensuring representativeness in the
analysed data.
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(Figure 1) Half-width of confidence interval of coverage for the
SA/HW method using the interval estimator based on
the F-distribution (Simulation using P =1, 2, and 4
processors under the MRIP scenario)

The influence of parallelisation of simulation in the MRIP
scenario on the quality of the final results is depicted in (Fi-

gure 1). Numerical results of half-width of confidence inter-
val of coverage are obtained from sequential coverage an—
alysis of the SA/HW method, when estimating the mean
response time using the interval estimator based on the
F-distribution, in simulations of the M/M/1/o0,

M/D/1/, and M/Hz/1/%° queueing systems on a single
processor (P =1) and multiple processors (P=2 and P = 4).
For three different simulated models, as increasing the num-
ber of processors the half-width of confidence intervals at
heavier traffic intensities is clearly decreasing. For exam-
ple, the half-width of confidence-intervals of coverage at the
traffic intensity of e = 0.9 has more than halved as the enga—
ged processor increased 1 to 4. For the other interval estima-
tors of proportion based on the normal distribution and the
arcsin transformation, we also observe the very similar
behaviour such as (Figure 1).

The total number of collected replications in sequential
coverage analysis of the SA/HW method on a single pro-
cessor (P =1) and muitiple processors (P =2 and P =4),
when estimating the mean response time with the required
relative statistical error of 5% or less, at the 0.95 confidence
level, is presented in <Table 1>, <Table 1> shows that
sequential coverage analysis executed using more proces—
sors collects more numbers of replications.

{Table 1> The number of replications collected in sequential co-
verage analysis of the SA/HW method on a single pro-
cessor (P = 1) and multiple processors (P = 2 and P
= 4) (When estimating the mean response time with
the required relative statistical error of 5% or less, at
the 0.95 confidence level)

M/M/ 1/ M/D/ 1/ M/Hz/ 1/
P=1|P=2|P=4{P=1{P=2|P=4|P=1|P=2|P=4
01 3076 | 4381 | 5002 | 3857 | 4231 | 3936 | 2888 | 375 | 4179
0.2 3439 | 3501 | 7052 | 4106 | 3718 | 3737 | 2660 | 3896 | 4131
03 3463 | 4317 | 5586 | 3450 | 3334 | 3373 | 2479 | 3056 | 3860
04 2398 | 3923 | 4775 | 2807 | 3124 | 2368 | 2431 | 3266 | 3684
05 2718 | 3243 | 4533 | 3321 | 5240 | 5615 | 2311 | 2822 | 4087
06 2403 | 3590 | 4440 | 3022 | 3539 | 4811 | 2302 | 2905 | 3601
07 2306 | 3538 | 4154 | 2385 | 3110 | 5085 | 2319 | 2806 | 4010
03 2135 | 3098 | 4061 | 2294 | 3670 | 4211 | 1961 | 2550 | 4070
09 2191 | 2545 | 3732 | 1893 | 2604 | 3638 | 1802 | 2149 | 3671

Load

This suggests that conducting  stochastic simulation in
parallel on multiple processors under the MRIP scenario us—
ually leads to a reduction of half-width of final confidence
intervals of three considered queueing systems by increasing
the sample size (say, the number of collected replications) ;
see (Figure 1).



The usual measurement of effectiveness of parallel com-
putations is the speedup. The speedups obtained when esti-
mating the confidence interval of coverage of the SA/HW
method using the interval estimator based on the F-distri-
bution and using P = 1, 2, and 4 processors under the MRIP
scenario are presented in (Figure 2). These speedups are
calculated from the data set of <Table 1> by

the number of replication collected using a single processor

Speedup = the number of replications collected using P processor / P

where P is the number of processors used. This result shows
that the time for collecting many replications in sequential
coverage analysis under the MRIP scenario is clearly re-
duced. The average speedup was increased about 2.5 times
as the engaged processor increased 1 to 4. Using multiple
processors under the MRIP scenario especially in sequen-
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(Figure 2) Speedup obtained when estimating the confidence
interval of coverage of the SA/HW method using the
interval estimator based on the F-distribution (Sim-
ufation using P =1, 2, and 4 processors under the
MRIP scenario)
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tial coverage analysis, one can easily collect more repli-
cations which can help to produce the better final confidence
intervals.

4. Conclusions

While some interesting results have been achieved in
theoretical studies of coverage analysis of sequential interval
estimators used in simulation output data analysis, experi-
mental analysis of coverage is still required for assessing
the quality of the practical implementations of methods used
for determining confidence intervals in sequential stochastic
simulation. In this paper we study the interval estimator of
proportions, in the context of their applications in sequential
coverage analysis under a scenario of parallel and distributed
stochastic simulation known as MRIP (Multiple Replications
In Parallel). The estimator based on the F-distribution was
applied to sequential coverage analysis of the SA/HW meth-
od to estimate steady-state means in simulations of the M/
M/1/%0, M/D/1/%, and M/Hz/1/%° queueing systems on a
single processor (P = 1) and multiple processors (P =2 and
P=4),

For those three different simulated models, as increasing
the number of processors the half-width of confidence inter-
vals at heavier traffic intensities is clearly decreasing (more
than 50%). This is caused by the fact that conducting sto-
chastic simulation in parallel on multiple processors under
the MRIP scenario leads to increase the sample size. In the
case of sequential coverage analysis, we easily collected mo-
re replications as using multiple processors under the MRIP
scenario. The average speedup was increased about 2.5 tim-
es as the engaged processor increased 1 to 4. Therefore, the
time for collecting many replications needed in sequential
coverage analysis is clearly reduced.
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