PCOIl 2Bt 2HIH AAH HHE 573

IPColl &A% aiz AA WHE

bt &

2

(]

3 M

2 o

IPE AALEE] F8ME H2E dx9] 243t deslols Z2EF WY 32 44 53 28 JEHolx ZREFd FdEd o) @
831 olAE Ao AHEL WS R WA Z2EZ FEWED d&3te UEsol: ZRES ATVEE FEHY, B =8
A A 8 5 e dEsiolx ZREE YIUEE A3l dEsol: H2E dASGE WEES AU UHHol: TRES A
HEE Fo|d ¢desfel~ XEE T84 oF EWAHLS AY3AAY EQRLE AlolE #5208 49AA 20 B4 FHoR A
ol& ZREEE 7|FEE AolE AR, o] UojRFE QHHeA ZREE JFXVEE F7HEE VHDL B2 P48l wHe 49
g 4y 2AE Fa, JdeHolx ZE2EF HIJES o8 ABAolx Y2 A WHo] a¥A G& dA Pl vsted g2 F4 1@
AE 278 ¥&E Bk AN QEH2 AA WX AR} IPY QdElsfols Z2ESE M3 ola)stA holk, EH |~
T2EE FYUEE Y F gong, dRHoa A AMg Fojed #E ¥ 4 g Aotk

A Wrapper Design Methodology Based On IPCs
Chang-Ryul Yun'- Kyoung-Son Jhang'

ABSTRACT

Reusing IPs requires interface protocol related tasks such as writing test benches and designing interface protocol conversion circuits, e.g.
wrappers for IPs. The results of those tasks usually include [PC(interface protocol component)s for the corresponding IPs, similar to bus protocol
components of the bus functional models. This paper proposes a methodology for the interface circuit design using synthesizable IPC that can
be re-used. IPC recognizes or executes transactions over the given interface ports. So we present a transaction-oriented interface protocol
description language, and a method to convert the description into an IPC in synthesizable VHDL code. With experiments, we show that the
interface design using IPC does not cause significant area overhead compared with the interface design without IPC. The proposed IPC-based
approach can be employed to reduce the interface design time since the designers can reuse IPCs without understanding the detailed interface

protocols.

JINE : PIE|HO|A ERER HEVE(interface protocol component), XAtR(reuse), E#MM(transaction)

1. Introduction

Reusing IPs (Intellectual Property) requires designers to
perform interface protocol related tasks such as writing test
benches and designing interface protocol conversion circuits,
e.g. wrappers for IPs. Designers need to understand the
detailed signaling of the corresponding interface protocols
to do such tasks. BFM (bus functional model) is helpful to
reduce times to verify IP if it is available. Results of most
interface related tasks include the IPCs (interface protocol

% Korea Research Foundation under Grant (KRF-2000-003-B00222) supported
this work. Logic synthesis tools and VHDL simulation tools that we used
for experiments were provided by IDEC (Integrated Design Education
Center) in Korea.

%
4 23uga JRFAFER aF
412002 8Y 209, AAgHE 20029 119 49

component) for the corresponding IPs, similar to bus protocol
components [1] of BFMs. Interface protocols of most IPs can
be abstracted in transactions. The function of the master IPC
is to execute transactions over the given interface ports
according to the demands of the core as shown in (Figure
1). On the contrary, the slave IPC recognizes the transactions
being executed over the interface ports, which is then noti-
fied to the core.

There have been proposed several researches about inter-
face synthesis. The approach taken by Narayan and Gajski
{2], interface protocol is described with five types of atomic
operations : (1) waiting for an event on an input control line,
(2) assigning a value to an output control line, (3) reading
a value from input data line, (4) assigning a value to an
output data line, and (5) waiting for a fixed time interval.

574 ZEMelS2=EX A MI-AT H4z=(2002.12)

Then the protocol is represented as an ordered set of relation
whose execution is guarded by a condition or by a time
delay. PFG (Protocol Flow Graph) method proposed by Ma-
dsen and Hald [3] presents interface protocol by progress
of cycles and events of signal. In event graph method taken
by Borriello and Katz [4], nodes means event of signal, edge
means order between nodes. Event graph method presents
interface protocols by these nodes and edges. One of appro-
aches is PIG proposed by Passerone, Rowson and et al. [5].
In PIG, the protocol is described in regular expression that
is equivalent with FSM. Then the PIG computes the cross
product machine of two interface protocols. PIG makes the
wrapper from the cross product machine generated with some
pruning schemes, These methods have limitation in the syn-
thesis of wrappers for IPs having multiple transactions. For
example, PIG has a possibility of state explosion when each
interface protocol has multiple transactions. To overcome
this problem, we propose an interface design methodology
using IPCs, where wrappers consist of IPCs and a core. The
core may be designed easily based on the correspondence
between transactions of IPs. We will show the procedure
in section 3.

Trl\ncdon code M astcr

CORE

Transaction arguments IPC

v

v

v

& & A

Interface ports

(a) Master IPC

Sl ave ‘Transaction pode

« IPC Trnnsacin Ezu?ne%g

(b) Slave IPC
(Figure 1) IPC

Test benches for slave IPs incorporate master IPCs. BFM
also includes a master IPC. IPCs can be reused if it is repre-
sented in a formal description. For example, TBV (transac-
tion-based verification) [6, 7] raises the level of writing test
benches by abstracting the interface operations in transac—

tions using the object-oriented concept. TVM (transaction
verification model) [7] in TBV methodology corresponds to
an IPC. But, they are used only for simulation. SystmeC [8]
that are based on C++ has a transactor concept or class that
is similar to IPC. Transactor seems to be only for simu-
lation. SpecC 9] may not have construct for interface be-
havior or IPC itself. The reuse of IPCs seems to be important
in the sense of IP reuse. IPCs are usually assumed to be
simulated but not necessarily synthesizable. However, those
components can be reused in the design of interface protocol
conversion circuits, e.g. wrappers, if they are synthesizable.
This paper presents a transaction-oriented interface protocol
description language that models the IPC that is generated
as a synthesizable VHDL entity.

The proposed language differs from TVM in several po-
ints. First of all, the major application of the language is for
the generation of the synthesizable IPCs while TVM is
designed for simulation. As mentioned above, we classify
IPCs as master or slave, Additionally, we define a generic
scheme of generating interface ports between core and IPC
based on transactions and their arguments. To reduce the
numnber of generated ports, we add a construct to share ports
among several transaction arguments. We employ C-like
syntax since hardware engineers as well as software engi-
neers are usually familiar with C language. IPCs in a hi-
gher-level form can be easily converted to VHDL or Verilog
code with various external interfaces according to designers’
demands. Synthesizable IPCs generated from the description
can be used in the design of interface protocol conversion
circuits, e.g. wrappers. We believe that the proposed appro-
ach reduces re-works on the interface protocol components.
We show that the interface design using IPCs does not cause
significant area overhead compared with the interface design
without IPCs.

In section 2, we illustrate the proposed language with a
UTOPIA {10] transmit interface protocol described in the
master side, which is followed by the brief explanation on
the generation steps and the general structure of a synthe-
sizable IPC as well as the port sharing with the core port
construct. In section 3, we illustrate how the synthesizable
IPCs can be used in the interface design using a PVCI [11]
compatible DES wrapper. We show the comparison result
of the interface design using IPCs with the interface design
without IPCs, based on the three different-sized wrapper de-
sign examples, Finally, we summarize this paper and descri-
be future works.

2. An IPC Modeling Language

2.1 Syntax

We use a master side interface protocol description for the
UTOPIA transmit interface shown in (Figure 2) to illustrate
the proposed language constructs. UTOPIA transmit inter-
face protocol is employed to transfer a cell (53 bytes) from
ATM layer to physical layer.

There are two types of IPCs, i.e. master and slave. The
keyword ‘master’ (‘slave’) indicates that the interface proto-
col following the keyword is described in master (slave) side.
IPC must communicate with IP side in cycle accurate level
while it corresponds with the core side in transaction level.
IPC has interface. ports with IP side and core ports in core
side. As shown in the portion (1) of (Figure 2), interface
ports are described first. Then, in portions labeled with (2)
and (3), reset and clock signals are listed with some optional
parameters such as ‘low’ (active low reset), ‘async’ (asyn-
chronous reset), ‘single’ (single edge clocking), and etc.
Transaction construct labeled with (4) is used to describe
transaction name, transaction arguments, and its behavior.
Transactions can be defined one by one or in a combined
description. In the latter case, prototype declarations of the
corresponding transactions should precede the combined
transaction definition. Transaction arguments are sent or
received via core ports that are made during the synthe-
sizable IPC generation steps. Port sharing with the core port
construct is described in section 2.2.

interface master TxMaster {
out bit TxSOC; /* (1) interface ports */
out bit TxEnbn ;
out byte TxData ,;
out bit TxClk
in bit TxFulln ;
in bit TxClav ;
reset rst_n low async ; /* (2) reset */
clock clock (TxClk) single; /* (3) clock */
transaction Transmit (out FIFO byte Data [53]) {
inti,j; /* (4) transaction definition */
while (TxClav != 1)
wait_edge (clock, POS); /* (5) cycle boundary */
TxEnbn = 0; TxSOC =1;
Datadelete = ‘1’ ;
wait_edge (clock, POS) ;
TxSOC = 0;
for (i=1;i<=582;1++){
if (TxFulln == 0) {
for (3 =i;)<i+4;j++){
Datadelete = ‘1’; /* (6) FIFO operation */
assert (TxFulln = 0); /% (7) assertion */
wait_edge (clock, POS) ;
}
TxEnbn = 1;
i=j-1;

/* (6) FIFO operation */

IPCOIl 2743t cHIH MH| WHE 575

wait_edge (clock, POS) ;
}
TxEnbn = 0,
Data.delete = ‘1" ;
wait_edge (clock, POS) ;

/* (6) FIFO operation */

}
netlists {
TxData <= Data ;

/* (8) netlist construction */

}
}
}

(Figure 2) A UTOPIA transmit interface protocol description

We assume that each transaction argument is associated
with the same type of a register or a FIFO that may reside
in the core side. The direction ‘in’(‘out’) of the transaction
argument means the core is to receive (send) the argument.
The transaction “Transmit’ has single FIFO argument ‘Data’
that may contain 53 bytes. Local variables such as 1, and
‘i’ may be defined within the transaction definition.

We employ C-language like syntax to describe the be-
havior of transactions, since hardware engineers are usually
familiar with C-language. The transaction description is in
the cycle-accurate level. The cycle boundary is indicated by
‘wait_edge’ statement. The statement wait_edge (clock, POS)
corresponds to the rising clock edge and wait_edge (clock,
NEG) to the falling clock edge. Basically, a transaction de-
scription may be considered as a single VHDL behavioral
process statement with multiple ‘wait’s and control const-
ructs. Therefore, one transaction definition corresponds to
an ASM (Algorithmic State Machine) chart description [12),
ie. one FSM (Finite State Machine). For example, state-
ments starting from an wait_edge (clock, POS) just before
the next wait_edge (clock, POS) constitute a transition ac-
tion for the state corresponding to the former wait_edge
(clock, POS). Interface protocols requiring two concurrent
FSMs may be described with two separate protocol descrip-
tions.

The transaction starts when TxClav (cell available signal)
is asserted. Each byte from the FIFO Data is transferred
to TxData port in the statements labeled with (6).

In order to describe interface protocol behaviors dependent
on the status of the core, we allow the status checking ex-
pressions such as Data.full, Data.empty, and Data.valid. Da-
ta.full (Data.empty) means that the corresponding FIFO is
full (empty). Data.valid means the corresponding register
has a valid value.

IPC can be used in simulations to verify the correctness
of IP interface protocols. The assert() statement labeled with

576 YEM2ISD=RX A HFAR H4F(2002.12)

(7) is useful to detect the protocol violations during simu-
lation,

The ‘netlist’ construct labeled with (8) is added to reduce
the area of the generated IPC. The assignments in netlist
construct are converted to concurrent signal assignments in
VHDL. The effectiveness of the netlist construct is shown
in <Table 1> of section 3.2.

2.2 Synthesizable IPC
The synthesizable IPC generation steps from interface
protocol description are organized as follows

1) Parsing and constructing control flow graph

2) Processing variables (when the description contains
variables)

3) Processing to avoid the inferred latches or unexpected
storages

4) Generating VHDL code

First, we parse the description and construct a control flow
graph. Then, if the description contains variables, the gene-
rator executes a special procedure to deal with variables. In
step 3, the generator executes a step to avoid inferred latches
or unexpected storages in generated IPC, Finally IPC is ge-
nerated in synthesizable VHDL.

The generated IPC consists of three processes and con-
current signal assignment statements. The first process is
a sequential VHDL process executed when it meets the ri-
sing or the falling clock edge. This process causes flip- flops
and internal registers to be inferred. In addition, the process
resets the values of corresponding signals when the reset
signal is activated. The second process is a combinational
process that determines next state and outputs based on cur—
rent state and inputs. The third process is also a combi-
national process where combinational signals are generated
to deal with variables. A single variable in C language usua-
Ily corresponds to a register and a number of combinational

signals in VHDL code. The concurrent signal assignments -

are generated from the ‘netlist’ construct that directly bypas-
ses an interface port value to a core port or transaction argu-
ment port, or vice versa. It can help reduce the area of syn-
thesizable IPCs as shown in section 3.2.

The generated IPC has two sets of interface ports. One
set of interface ports includes ports that are employed to
execute or to recognize transactions. The other set of inter-
face ports is generated to communicate with the core based
upon transactions. The latter ports includes TRCODE (tran-

saction code), TREND (indicating the end of the current
transaction), and ports necessary to send or to receive tran-
saction arguments.

Besides the signals corresponding to arguments, we need
additional signals to let the core know the timing when ar-
guments are sent to the core, or arguments are requested
from the core. For the example in (Figure 2), Data_request
signal is generated to let the core decrement the counter or
front pointer of FIFO. Data_load signal will be generated
when IPC writes Data to the core. Both signals are asserted
at the same cycle when the corresponding data is read from
or written to the core. In addition, we generate the signals
such as Data.full, Data.empty, and Data.valid only when such
expressions are used in the transaction description. Those
expressions are necessary to check the status of the register
or the FIFO corresponding to an argument Data.

Too many similar ports may be generated in cases where
many similar transactions are defined. To avoid the proli-
feration of ports, we add a construct starting with keywords
‘core port’ to share ports among transaction arguments.
(Figure 3) shows an example usage of ‘core port’ constructs.
DES IP has two transactions ENCR and DECR. The ‘core
port’ construct at the end of (Figure 3) defines two new ports
‘odata_p’ and ‘idata_p'. The port ‘odata_p' is shared by four
transaction arguments and the port ‘idata_p’ by two tran-
saction arguments. The timing signals ‘request’ and ‘load’
should be redefined considering the port sharing. For exam-
ple, ‘odata_p_request’ signal will be two bits wide to repre-
sent the order number of the corresponding transaction ar-
gument. A possible encoding of ‘odata_p_request’ would be
as follows : “00” represents no request, “01” (“10”) means
the first (the second) argument, and “11” is not used. We
do not need to incorporate the transaction code into the en—
coding since the code comes from the core (in case of master
IPC), or the code has already been notified to the core (in
case of slave IPC).

interface master DES {
out bit[63 : 0] pkey, ptext ;

transaction ENCR (out bit [63 : 0] key, out bit {63 : 0] data,
in bit[63:0] cdata) {

pkey = key ;

ptext = data ;

transaction DECR (out bit {63 : 0] key, out bit[63 : 0] cdata,
in bit[63:0] data) {

ptext = cdata ;

}

core port (out bit[63:071 odata_p =

{ ENCR key, ENCR.data, DECR.key, DECR.cdata },

in bit[63: 0] idata_p = { ENCR.cdata, DECR.data}) ;
}

(Figure 3) A UTOPIA transmit interface protocol description

In the core side, the signal ‘odata_p_request’ may be used
to select one of four registers corresponding to four transac-
tion arguments to generate the signal ‘odata_p’.

3. Wrapper design using IPCs

3.1 A PVCI Compatible DES Wrapper Design

The following (Figure 4) shows how IPCs are used in the
design of the interface circuit between two different interface
protocols, e.g. wrappers. Any interface circuit between two
different interface protocols may take the similar structure
consisting of a slave or target IPC, a master or initiator IPC,
and a controller with buffers or registers.

Master Slave Master (-{p! Slave
P1 P1 P2 P2
IS IPC PC
{Controller with buffer)

(Figure 4) A general interface circuit structure between two
different interface protocols P1 and P2

A DES wrapper compatible with PVCID may take the
same structure, where P1 (P2) becomes PVCI (DES). Slave
PVCI IPC recognizes PVCI transactions such as ‘READ’ and
‘WRITE’ while master DES IPC executes transactions such
as ‘encryption’ and ‘decryption’ according to the request of
the controller. PVCI is different from DES in several points.
For example, PVCI employs address-mapped transfer while
DES has no address-map. So, there should be some kind
of descriptions that translate PVCI addresses to DES
functions, for the design of the interface circuit. The follow-
ing (Figure 5) shows a specific PVCI protocol description

1) PVCI is a simplest version of VCI [5] protocol to be used between IP
and bus agent module.

IPCOIt 243t 2HIY MAH 2HHE 577

and a DES protocol description that are used to build a
wrapper design example between PVCI and DES protocol.

Interface slave PVCI {
out bit ACK; out bit[31:0] RData ;
in bit VAL ; in bit RNW ;
in bit[7:0) ADDRESS; in bit EOP;
in bit[31:0] WData ;
transaction READ (in bit[31:0] ADDR,
out bit{31:0] Data) ;
transaction WRITE (in bit{31 : 0] ADDR,
in bit[31:0] Data) ;
core port (out bit[7:0] addr p = { READ.ADDR,
WRITE.ADDR }) ;
}
interface master DES {
out hit start ;
out bit[63 : 0] pkey ;
out bit[63: 0] ptext ;
in bit done ; in bit busy ;
in bit[63:0] ctext ;
transaction ENCR (in bit[63: 0] key, in bit[63: 0] data,
out bit [63 : 0] cdata) ;
transaction DECR (in bit[63 : 0] key, in bit[63 : 0] cdata,
out bit[63: 0] data) ;
core port (out bit[63:0] key_p = { ENCR.key, DECRkey },
out bit[63:0] odata p = { ENCR.data,
DECR.cdata },
in bit[63: 01 idata_p = { ENCR.cdata,
DECRdata });

out bit enc_dec ;

(Figure 5) A part of interface protocol descriptions of DES
master and PVC| slave

PVCI has a different data width from DES. PVCI compa-
tible DES wrapper has to do several conversion tasks. WRI~
TE transactions in PVCI side may result in storing ‘Data’
argument in some registers in the wrapper. ENCR (DECR)
transaction can be started only when ‘key’ and ‘data’ (‘cdata’)
arguments are ready to send. Encrypted ‘cdata’ or decrypted
‘data’ argument may be stored in a register, which is then
read out by READ transaction. We can formally describe
these kind of wrapper behaviors as in (Figure 6), where regi-
sters are declared and used in pairing the transactions of
both sides. PVCI transactions deal with 32-bit registers
while transaction arguments of DES have 64-bit data width.
Therefore, two 32-bit registers, e.g. key[0] and key[1], are
combined to form an argument ‘key’ to DES transaction.
Uppercase strings such as KOADDR, K1ADDR, and etc are
address constants of PVCL The second statement describes
that a series of transactions of the slave PVCI side corres-
ponds to a transaction ENCR() of the master DES side.
WRITE (KOADDR, key[0]) means that ‘Data’ is written to
a register key[0] when WRITE transaction to the address

578 EX2SI=FX A HMI-AH M4z(2002.12)

KOADDR is recognized at the slave PVCI side. Data avai-
lability drives the execution of transactions in master DES
side, i.e. ENCR or DECR starts only when the registers key
and text have valid data.

bit {31 : 0] keyl2], text[2], ctext[2] ;

WRITE (KOADDR, key(0]), WRITE (KIADDR, key(1]),
WRITE (TOADDR, text[0}), WRITE (TIADDR, text[1]),
READ (COADDR, ctext{0]), READ (C1ADDR, ctext{1])

: ENCR (key, text, ctext) ;
WRITE (KOADDR, key[0]), WRITE (KIADDR, key(1]),
WRITE (COADDR, text[0]), WRITE (C1IADDR, text[1]),
READ (TOADDR, ctext[0]), READ (TIADDR, ctext[1})
: DECR (key, text, ctext) ;

(Figure 6) A wrapper behavior description

The input or output ports of the wrapper can be generated
as in (Figure 7), based on the wrapper behavior description.
The port ‘p_load’ (‘p_request’) is generated if the transaction
argument ‘p’ is an input (output) to the wrapper.

—| addr p key p [
—p) addr p_load key_p_request |g—
— 3| WRITE Data odatap [—p
— | WRITE Data load °8-P-Fe0uest (—
€—{READ Data idata,_p (4—
—»|READ Data request idata_p_load |@g—
—| PVCI_TRCODE DES_TRCODE —4»
— | svar rEND DES_TREND [¢—
| Controller with buffers]

(Figure 7) The 1/0 ports of the wrapper

[+]
< key_p

VRITE D | bt] |-
:
<o odata_p
:
READ _Dsata
tex{0] ,
idats p

(Figure 8) The data path of the wrapper

(Figure 8) shows the data path of the wrapper. Other
signals that do not appear in (Figure 8) are used to generate
control signals to the data path. The signal ‘p_load’ will be
used to generate the load signal to the register where the

argument ‘p’ is to be stored. The address signal ‘addr_p’ is
used to select one of the registers where the signal
‘WRITE Data’ is to be stored. The signal ‘p_request’ will
be used in the similar way. The signal ‘READ_Data_request’
together with the signal ‘addr_p’ is used to generate the
select signal to the MUX.

Different address-to-register mapping in the wrapper be-
havior description may lead to different data path. The map-
ping also affects the generation of load signals to the corres-
ponding registers.

Besides registers, we need to add flip-flops indicating the
data validities of the registers in the data path.

32 Experiments and Discussions

<Table 1> lists the interface protocol descriptions trans-
lated into the corresponding IPCs in synthesizable VHDL
with our IPC generator. The generator was implemented in
about 6000 lines of C language code on Solaris 2.7 operating
system. <Table 1> summarizes experimental results. The
column ‘master/slave means’ the corresponding description
is in master/slave side. The column ‘# lines’ means the num-
ber of lines of the interface protocol descriptions. The colum-
ns % FFs’ and Area indicate the number of flip-flops and
the area respectively when the generated IPC is synthe-
sized with the design compiler of Synopsys Inc. with HYNIX
0.35um stand cell (Area-A) and ALTERA FLEX10k (Area-B)
as the target library. The columns Area-A and Area-B are
the total area of the generated IPCs from the descriptions
employing ‘netlist’ constructs while the column Area-B’ is
the area from the descriptions without ‘netlist’ constructs.
By comparing the columns Area-B and Area-B’, we notice
that the ‘netlist’ construct is effective in reducing the area
of the generated IPCs.

We observed that no latches are inferred. Our algorithm
generates VHDL codes so that latches or unnecessary stora-
ge elements are not inferred. For example, UTOPIA transmit
master interface description shown in (Figure 2) results in
17 bits of flip-flops. The list of variables or ports inferred
as FFs are ‘' (6 bits), ' (6 bits), “TxEnbn’ (1 bit), “TxSoC'
(1 hit), and FSM state (3 bits).

DES interface has three 64-bit ports with the core and
another three 64-bit ports as interface ports as shown in
(Figure 5). Therefore, the synthesized IPCs take relatively
large area.

We also verified the functionality of the PVCI-to-DES
wrapper shown in the section 3.1. Our proposed language

assumes that registers or FIFOs exist in the core side for
the transaction arguments. This naturally leads to the wra-
pper architecture with registers or FIFOs between two IPCs
such as in PVCI-to-DES or 60x-to-PVCI of <Table 2>.

{Table 1> The list of interface protocol descriptions

Protocol | master |, 1. | 4 BFs | Area-A | Area-B | Area-B
name /slave
Master | 4 8 115 62 253
DES
Slave 55 9 131 64 259
Master | 52 3 47 24 123
PVCI
Slave 57 5 49 31 134
Master 46 17 292 157 178
UTOPIA Tx
Slave 38 16 204 m 137
Master | 52 11 195 104 112
UTOPIA Rx
Slave 48 11 169 100 108
Master 51 3 45 33 220
Wishbone
Slave 56 6 46 37 268

In some cases, we need to directly connect two IPCs wi-
thout registers or FIFOs in between. It means that a tran-
saction in the slave side has been recognized and run con-
currently with a transaction in the master side. Both tran-
sactions have an ability to insert wait states according to
the status of registers or FIFOs in the controller. For exam-
ple, we can connect an input port ‘a’ in the slave side directly
to an output port ‘b’ in the master side if the load signal
‘a_load’ is connected to the valid signal ‘b_valid. The ex-
ample PVCI-to-SRAM shown in <Table 2> is one of such
examples.

{Table 2> The comparison of IPC-based interface design with
non-IPC versions

Wrapper | Non-IPC Using IPC (Total Area)
Name | (Total area) | 1pC] (SJave) [IPC2 (Master)| Core
_ 2498
PVCE0 | oo
-DES PVCI:49 | DES:115 | Core:23%4
60x-to 463
. I 398
PVvC 60x:204 | PVCI:47 | Core:212
PVCI-to 5 28
~SRAM PVCI:49 | SRAM 157 | Core:0

The designers may reduce the interface design times by
employing the interface design methodology using IPCs,
since they do not need to understand the detailed signaling
of the interface protocols of the corresponding IPs. IPCs can
be considered as cells of a library. However, the proposed

IPCOIl 2748t e & &HE 579

method may be considered as to cause severe area overhead.
In order to see how much area overhead the proposed method
can cause, we performed two wrapper design experiments,
one with IPCs and the other without IPCs. In the former
design experiments, we employ IPCs and design only the
core portion. In the latter experiments, we design the whole
wrappers without employing IPCs. In <Table 2>, the column
‘Non-IPC' indicates the total area obtained with the latter
approach while the column ‘Using IPC’ is the total area by
the former approach. The HYNIX 0.35um standard cell
library is used to run the Synopsys design compiler as the
target library. Though the former approach shows relatively
large area overhead in the small wrapper designs, it seems
to show the similar area as the wrapper size or its behavior
becomes complicated. This means that the area overhead
caused by employing the interface design using IPCs is not
so significant compared with the interface design without
employing IPCs, especially when the wrapper becomes large.

4. Summary And Future Works

This paper proposes a methodology for the interface cir-
cuit design using synthesizable IPC that can be re-used. We
present a transaction-oriented interface protocol description
language and a method to convert the description into an
IPC in synthesizable VHDL code. With experiments, we show
that the interface design using IPC does not cause significant
area overhead compared with the interface design without
IPC. The proposed IPC-based approach can be employed to
reduce the interface design time since the designers can
reuse IPCs without understanding the detailed interface pro-
tocols.

One of our future works is to realize the proposed wrapper
design methodology based on the synthesizable IPCs. IPCs
can also be used to construct bus functional models and pro-
tocol compliance checking modules.

References

[1] Ben Cohen, “VHDL Answers to Frequently Asked Ques-
tions,” Kluwer Academic Publishers, 1997.

[2] Sanjiv Narayan and D. D. Gajski, “Interfacing incompatible
protocols using interface process generation,” Proc. of DAC,
pp.468-473, 1995,

[3] Jan Madsen and Bjame Hald, “An Approach to Interface
Synthesis,” in Proc. of I1SSS, 1995.

[4] Gaetano Borriello, and Randy H. Katz, “Synthesis and Op-

560 SEXMCIZD=FEXIA HI-AT H4Z(2002.12)

timization of Interface Transducer Logic,” Proc. ICCAD '87,
pp.274-277, 1987.

[5] Roberto Passerone, James A. Rowson, Alberto Sangiova-
nni-Vincentelli, “ Automatic synthesis of interfaces between
incompatible protocols,” in Proc. Of DAC 98, 1998,

[6] D. S. Brahme, et. al, “Transaction-Based Verification Metho-
dology,” Cadence Berkeley Labs, Technical Report # CDNL-
TR-2000-0825, Aug., 2000.

[7] Cadence Design Systems, Inc., Transaction-Based Verifi-
cation : TestBuilder Reference Manual, Sep., 2001.

[8] User guide SystemC 2.0.

[9] Rainer Domer, Andreas Gerstlauer, Daniel Gajski, SpecC
Language Reference Manual Version 1.0, March, 2001.
[10] TranSwitch Corporation, UTOPIA Interface for the SARA
Chipset, Application Note, Document Number TXC-05501-

0002-AN, 1.0, April, 1995.

[11] R. Lysecky, F. Vahid, T. Givargis, “Experiments with the
Peripheral Virtual Component Interface,” International Sym-
posium on System Synthesis, 2000.

[12] M. Moris Mano, “Digital Design,” 2nd Edition, Prentice-
Hall International, Inc., 1991.

® & ¢

e-mail : yun@ce.cnu.ackr

20009 gt HAFEH T &4
(81

2002'd gdoigta o FAFE T
(FEA AL

2002d~8A it Eryd wAgA

ARk VLSI AAREE, AFEH TR

23 AN
e-mail : ksjhang@computer.org
1986\ Mgietm ARAMNY Fote 2Y

(8HA})
19884 M-goisti tjetel HFE I
- (844}

7 H 19959 Mgt harl AFE o)
(Z8hukA})

199614 ~20013 S oig s FFEFe A
20019 ~EA it PRBUFAR 21
B4Rl : VLSI AARE S, AFHTZ

4

n
2
n

	a:
	km:

