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Theoretical Performance Bounds and Parallelization
of a Two-Dimensional Packing Algorithm

Injae Hwang'- Dong-Kweon Hong''

ABSTRACT

Two-dimensional packing algorithm can be used for allocating submeshes in mesh multiprocessor systems, Previously, we developed an
efficient packing algorithm called TP heuristic, and showed how the results of the packing could be used for allocating submeshes. In this paper,
we present theoretical performance bounds for TP heuristic. We also present a parallel version of the algorithm that consumes reduced time
when it is executed by multiple processors in mesh multiprocessors.
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1. Introduction

Two-dimensional packing problem has been studied by
many researchers [1-4]. It arises in a variety of situations
such as scheduling of tasks and cutting-stock problems.
Cutting-stock problems may involve cutting objects out of
a sheet or roll of material so as to minimize waste. The sche-
duling of tasks with a shared resource involves two dimen-
sions, the resource and time, and the problem is to schedule
the tasks so as to minimize the total amount of time used.
In general, the problem is stated as follows @ Given a rec-
tangular bin with fixed width and infinite height, pack a
finite set of rectangles of specified dimensions into the bin
in such a way that the rectangles do not overlap and the
total bin height used in the packing is minimized.

We showed that two-dimensional packing could also be
useful for allocating submeshes in mesh multiprocessor sys-
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tems [4]. In the problem we studied previously, there are
m tasks which have rectangular structures such as two-
dimensional grids. These tasks can be executed indepen-
dently on the submeshes allocated to them. Qur problem is
partitioning a given mesh multiprocessors into » subme-
shes in such a way that the workload is balanced and inter-
processor communication is minimized. We adapted two-di-
mensional packing to solve such a processor allocation pro-
blem. We developed an efficient heuristic packing algorithm
called TP(tight-pack) heuristic, and showed how the result
of packing could be used for partitioning a given mesh.

In this paper, we present theoretical performance bounds
for TP heuristic. Even though experimental results showed
that the heuristic packing algorithm performs well for a va-
riety of cases, the bounds presented here guarantee that it
will never produce solution values that exceed a certain limit.
We also present a parallel version of the algorithm that
consumes reduced time when it is executed by multiple pro-
cessors in mesh multiprocessors.

The organization of this paper is as follows. In the next
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section, we survey some of the related works to this paper.
In section 3, we briefly explain TP algorithm and show how
the results of packing can be used to solve the submesh
allocation problem. In section 4, we prove that the heuristic
algorithm is guaranteed to produce solution values that do
not exceed a certain limit. In section 5, we present parallel
version of the algorithm that can be executed efficiently on
mesh multiprocessors. Finally, we give the summary of the
paper in section 6.

2. Related Work

Two-dimensional packing has been used for solving sch-
eduling of tasks and cutting-stock problems. In this section,
we survey some of the recently published works that are
related to this paper.

Azar and Epstein considered packing of rectangles into
an infinite bin [1]. Similar to the Tetris game, the rectangles
arrive from the top and, once placed, cannot be moved again.
The rectangles are moved inside the bin to reach their place.
For the case in which rotations are allowed, they designed
an algorithm whose performance ratio was constant. In con-
trast, if rotations are not allowed, they showed that no al-
gorithm of constant ratio exists. For this case they designed

an algorithm with performance ratio of O(log i— ), where

€ is the minimum width of any rectangle.

Hifi and Ouafi discussed the problem of packing a set of
small rectangles (pieces) in an enclosing final rectangle [3].
They presented first a best-first branch-and-bound exact
algorithm and second a heuristic approach in order to solve
exactly and approximately this problem. The performances
of the proposed approaches were evaluated on several ran-
domly generated problem instances. Computational results
show that the proposed exact algorithm is able to solve small
and medium problem instances within reasonable execution
time.

Pauthus also presented an algorithm that can be used to
pack sets of squares (or rectangles) into rectangles {6]. The
algorithm was applied to three open problems and showed
how the best known results could be improved significantly.

3. A Heuristic Packing Algorithm

In many applications, a task can be represented by a two-
dimensional grid. In the formulation of our processor alloca-
tion problem, we assume that m rectangular grids are given
as independent tasks. The number of processors N in the

given mesh multiprocessors is assumed to be larger than

m, so that m disjoint submeshes can be allocated to the
grids. Each grid point of a grid represents a certain amount
of computation, hence its computational workload is propor-
tional to the number of grid points. The computation on a
grid point (except the ones on boundaries) need data from
its four neighbors. If a grid is assigned to a set of processors
(a submesh), the communication cost between two proces-
sors is proportional to the number of grid points assigned
to a processor whose neighbors are assigned to another
processor, Assume that wx 4 grid is assigned to X x ¥ pro-
cessor submesh. The grid is uniformly divided into XY pi-

eces with dimension —Xw— Xy S0 that one can be assigned

to each processor. Then, the computational cost is propor-
wh
XY

assigned to each processor. Communication cost is propor-

tional to which is the average number of grid points

tional to 2(-‘%— +—;§) which is the number of grid points

on bhoundaries of a piece of grid assigned to a processor.

To perform the computation of the grids on mesh mul-
tiprocessors, it is necessary to find m submeshes and their
locations, one for each grid. In the allocation strategy we

proposed, we first pack the given set of grids using the ratio

P .
of processor mesh R =—(we are given a processor mesh

Q
Px Q) [4]. The grids are packed in such a way that the
ratio of width to height of the space used for packing grids
is as close to R as possible. Then we use the two ratios
width _height
P’ Q@
The basic idea of TP-heuristic is as follows. First the gri-

to allocate a submesh to each grid.

ds are sorted in some selected order. Then we start packing
grids one by one at the south-west corner of the bin. (The
width of the bin is assumed to be infinite) Let’s consider
the space of the bhin as the first quadrant of X— Y plane.
Then the south-west comner of the bin becomes the origin
of the coordinate system, that is (0, 0). Each packed grid has
4 corners NW, NE, SE and SW with respect to its orien-
tation in the packing. A NW or SE corner of a packed grid
is called a free corner (FC) if no other item occupies that
comer. In our algorithm, only free comers are considered
for packing the new grid. When a new grid is placed in a
free comer, it is placed so that it is above and to the right
of the comer. After packing the first grid at the origin, the
next grid is packed at one of the two comers created by

packing the first grid. We also keep the maximum size of



the grid which can be packed at the free corner (we call
it the size of free corner) along with its location. We choose
a free corner for the 7 + 1-st grid, so that the maximum of

Wiy and H ;.. is minimized. Assuming that we are given

a processor mesh Px @ with P> Q@ and —g = R, we choose

the corner for the 7+ 1-st grid, so that the maximum of Wy,
and RH ., is minimized. Since the number of free corners
cannot be larger than m+1 at any time, the time complexity
of the algorithm is O(m?).

4. Theoretical Performance Bounds

To show a bound for the accuracy of the solutions provi-
ded by our packing algorithm, we impose the following res-
trictions on packing the grids. When w, <k, (w,; = k;) grid
is packed at a corner (x,y), it should be placed so that the
side with dimension w; (long side) is parallel to the X-axis
if x< Ry and it should be placed with long side parallel to
the -axis if x > Ry. Suppose there is a free corner that cannot
accommodate the item in the allowed orientation but can
accommodate the item in the other orientation. Then we dis-
regard this corner though it is possible to get a better pac-
king by placing the item in that corner. If x = Ry, then both
orientations of the grid are allowed for that corner. Now we
state a result on the solution accuracy bound when R=1 (i.e.

for square meshes)

Theorem 1 : Consider the two-dimensional packing pro-
blem with R=1 and let w"= max;w, Let
W H . be the width and height of the
optimal packing and let Wy H 7p be the
corresponding values for the packing given
by the TP-heuristic when items are packed
in decreasing order of their maximum side
lengths. Assume without loss of generality
that W,y = H ,n and Wyp 2 H yp. Then Wyp
2V 2 W+ 3w,

Proof : Let us denote the regions below and above the line
OP (that has unit slope) by R, and R, First we ob-
serve that there is always a corner in R, as well
as in R, that can accommodate a subsequent item
in the allowed orientation (i.e. long side parallel to
Y-axis in R, and parallel to X-axis in R, ). This
follows from the fact that we can always pack a
subsequent item q abutting to Y-axis (or X-axis).

Olxty Wz «4nelEe 018X o MI WS 45

air
AT

Since the item ¢ below (or to the left of) ¢ was
packed prior to ¢, the maximum side of ¢° is longer
than the maximum side of ¢. Hence, there is always
enough space to pack item ¢ above (or to the right
of) item ¢’

R:

Hip-2 w'

(Figure 1) Regions A, and A, in the packing (Theorem 1)

Now, we show that Wep — H 7p < w* as follows. Let Wip,
H ip be the width and height of the packing after the 7-th
item is packed. Suppose that Wy~ H yp < w*. Then there
must be an item i of dimensions (w,, ;) such that Wip! —
—H' < w’and Wip—H > w". It also must be true that
the i-th item was packed at a corner in R,, hence Wip!<
Wipand Hip' < His Let (x, 3 be the location of a comner
in R, which can accommodate the 7-th item. Then x< y <
Hipl Since x+w; < Hip'+w' < Wipand y+h, < Hip! +
w" { Wip, the maximum of the width and height of the pac~
king would be smaller if the item i were packed at the cor-
ner at (x,y). Hence the item 7 should not have been packed
at a corner in R,. Since we always pack items so that the
maximum of the width and height of the packing is mini~
mized, we can conclude that Wpp— H p < ',

We only have to prove our result when Wpp > 3w” in whi-
chcase H 7> 2w’. Consider the two isosceles right triangles
A and A,(see Figure 1) in regions R, and R, with areas

(Wep —2w)? (Hgp—2w)?

2 ’ 2
items in the region A, (A ;) have been packed with their

respectively. Note that all

long sides parallel to Y (X) axis. Thus the items are packed
in these regions as in bottom-up left-justified (BL for short)
strategy of [2]. We can make the similar argument on the
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occupancy of A, and A, as in [2]. Note that any vertical
(or horizontal) cut through A, (or A,) can be partitioned
into alternating segments corresponding to cuts through un-
occupied and occupied areas. Using the fact that there are
items to the right of A, and above A, and considering the
order in which the items are packed, we can show that the
sum of the occupied segments is at least the sum of the un-
occupied segments. By integrating the lines over Wyp— 20"
(or H /p—2w"), we can verify that A, (or 4,) is at least
half full. This means that W2, = 1/4((H 7p — 20" ) *+ (Wyp
—2w")%) =2 Jﬁz—;-gg}-w); and the result follows from the
fact that Wop—H 7p < w".

Hrp - w’

.

0] . .
WY'I'P "W w

(Figure 2) Regions S, and S, in the packing (Theorem 2)

The bound can be improved when the items to be packed

are square shaped.

Theorem 2 : Consider the same 2D packing problem as in
Theorem 1 except that the items are square
shaped. If the items are packed in decreasing
order of their sizes in the TP-heuristic, then
Wop < V2 W+ 20",

Proof : The proof of this theorem is similar to the proof of

the previous theorem. It can be easily shown that
Wee — H 7p < w". Since all the items are square sha-
ped, they are packed as in BL strategy in the two
isosceles right triangles S, and S, (see (Figure 2))

(Wrp— ") (Hp—w")?

2 ’ 2

[2]. Using the fact that there are items to the right
of S, and above S, and considering the order in

with areas respectively

which the items are packed, we can show that S,

and S, are at least half-occupied.. This means that

(Hpp—wh)?
2
and the result follows from the fact that Wy — H 7

W 2 VA(H p— ") 2+ (Wep — ™) %) =

< w'

5. Parallelization of the Packing Algorithm

The packing algorithm described in the previous section
is sequential. One processor has to collect all the information
about the grids from the other processors and execute the
packing algorithm in order to find the processor allocation.
The result of allocation should be communicated to all the
processors. In this section, we present a parallel algorithm
in which m processors cooperatively execute the packing
algorithm for m grids in order to speed up the algorithm.
The same packing method that was used in the sequential
algorithm will he used in the parallel algorithm described
here. Assume that we are given the mesh ratio R and m
grids, w,xh |, woxXhy, -, w,,<h,. After the following al-

gorithm terminates, global variables, XLoc, and YLoc, con—

tain the location of the corner where grid 7 was packed.
Orient ; 1s set to 1 if grid / was rotated and it is set to 0
otherwise. The algorithms for common operations, such as
broadcasting finding minimum value, can be found in, and
will not be repeated in this paper [5].
Initially, each grid ; is located at processor S ;. (If all the
grids are at one processor, S, = S;forall ¢ and j.) Processor
S ;produces a packet <(w;, #;),S;> for grid j, where (w;,
h ;) is the dimension of grid j and S; is its own processor
index. These packets contain the necessary information that
forms the input data to our packing algorithms. The detailed
description of the algorithm is given below. The topology

of multiprocessors on which the algorithm runs, is mesh.

Algorithm Parallel Packing
(a) Let PS be a set of m processors forming a submesh or a sub-
cube, that is PS = p, 10 <i< m—1. The processors which

produced packets send them to the processors in PS (one pac-
ket per processor) using procedure TokenPacking. The pro-
cessors in PS will do the remaining steps of our parallel packing
algorithm.

Sort packets according to the packing order using a parallel sor-
ting algorithm, After sorting, assume that processor P, is hol-
ding packet {{w, h;),S;>.

Store the initial free corner [(0,0), (oo, o)] at processor P, Ea-
ch processor P, set both width and height to 0. Now, pack the

(b

=z

(¢

grids one hy one by performing m iterations where in the {-th
iteration (0 < 7 < m—1) call procedure GridPacking (7).




(d) After step (c), each processor P, has (XLoc;, YLoc ), thatis,
the free comer where grid (w,, k ;) was packed and the width
and height of the packing. Each processor P,, include the above
information in its packet <{(w, #,), S,)> and send it to S;using

procedure SendPacketToSource.
end Parallel Packing ;

Procedure TokenPacking ;

// Here a subset of processors Py, Py, Pywith jo<fy (e < f,
has one packet each and it is desired to store the packet of P
in P,for t<k< ({+!) mod m for some 0 < t< N—-1. //
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w=w,h;=h;
f(yp<y,<yr+h";) and
(x;sx,<x;+p;) then p;=x,—x;
if (xp<x;<x,+w";)and
(v;<yeCy;+g;) then g;=y,~y,
if p;==0o0r ¢,=0 then
remove [(x,,v;),(p,q,)]
end
If P, has two corners then update the second one in the same way.

end UpdateCorners ;

Procedure GridPacking (1) ;

1. Call procedure Broadcast (5,,<{(w; 4,),S.>).

2. Call parallel procedure FindBestCorner ((w,, 4;), & to nd the
corner (x¢,v,) where the grid (w,, ;) is to be packed, and its
orientation.

3. Processor P, set XLoc; and YLoc; to x, and y, respectively,
and set Orient; t0 Orient, Also P, determines the width and
height of the packing after (w, &;) is packed.

Call procedure Broadcast (&, ({x s,y .). (width, height), Orient ;)).

4. Call parallel procedure UpdateCorners ((w,, &;), k) to update
the sizes of comers after the grid (w;, k;) is packed at (x4, ¥ ).

5. Call Parallel procedure FindNewCornerSize ({(w;, %,). %) to
determine the sizes of two new corners.

Procedure FindBestCorner ((w,, %), %) ;
1. Each Processor P,, does the following
begin
Let [(x;,¥;). (p;.q,)] the comer P, is holding
if (p,—w,;)=0and (g;~h;)=0 then
mx] = max (width, x ;+ h ;)
myl =max (height,y i+ h ;)
else if ((p;—h;)=0and (¢g;,~w;) =20 then
mx 2 = max (width, x ;+ h ;)
my2 = max(height, v ;+ k)
else set m to oo and goto the next step
m] = max (mxl, R ¥ myl)
m2 = max(mx2, R* my2)
m;= min(ml, m2)
if (ml < m2) then Orient; =0
else Orient;=1
end
If P, has two corners then choose the one which gives smaller m .
If P, does not have any corners then set m; to oo,
2. Call parallel procedure FindMin (m, _ .., mb;)
end FindBestCorner ;

Procedure FindNewCornerSize ((w;, k;). k) ;
1. Each Processor P, (j < i) does the following
begin
if Orient; =1 then
w =k b= wy
else
w=w,h = h;
if (YLoc;<y,< YLoc;+h;) and
(x,+w ;< XLoc;) then p; = XLoc;
else p,= o
if (XLoc;<x,+ w' ;< XLoc;+ w;) and
(ve < YLoc;) then ¢; = YLoc;
else g; =
2. Call parallel procedure FindMin (p,,_,...2,6,)
3. Call parallel procedure FindMin (q;,_,..,q,6;)
4. Find p" and ¢ in the same way for the other comer.
5. Store the two new corners, [ (XLoc;+w" ;, YLoc,;),(p,q)] and
[(XLoc;, YLoc; +k ;),{p’,4")], at Processor P,,
end FindNewCornerSize ;

Procedure Broadcast (;, V) ;
// Processor P, broadcasts value V to all the processor in PS. //

Procedure FindMin (a,,_...6.7);
// Given the a, values with one value per processor, find the
minimum (4) of these values and store it in the processor P;. //

Procedure SendPacketToSource

1. Each processor P, in clude XLoc,, YLoc ,, Orient;, width and
height in the packet <{w, k). S

2. Send each packet< (w,, k), S, (XLoc;YLoc ), Orient ;, (width,
height)> to processor S ;. For this, one-to~one routing can be used [5].

Procedure UpdateCorners ({(w,, k). k) ;
1. Processor P,, remove [(x4, ), (24 a4))
2. Each Processor P, does the following
begin
Let [{(x;,%;).(p, ;)] the comer P, is holding
if Orient; =1 then
w= w, ko= w,

else

end SendPacketToSource

After executing the above algorithm, processor S; can find a sub-
mesh for grid (w;, k;) using the information included in the packet.
The time complexity of the whole algorithm is analyzed as follows,
Step (a) takes 0(0\7 ) time, where N is the number of processors,
and step (&) takes O(mV m ) time. Both procedure
FindBestCorner and FindNewCornerSize take O(Y¥ m) time. pro-
cedure UpdateComers takes a constant time, Hence step (c¢) takes
O(mY m) time. Step (d) takes OV N) time. The total time com-
plexity of the algorithm is O(J_IV +mdm ). Since we used only m
processors, the actual time complexity is O(mV m).
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6. Conclusions

Two-dimensional packing algorithm can be used for allo-
cating submeshes in mesh multiprocessor systems. Previo—
usly, we developed an efficient packing algorithm called TP
heuristic, and showed how the results of the packing could
be used for allocating submeshes. In this paper, we presented
theoretical performance bounds for TP heuristic. The bounds
presented here guarantee that it will never produce solutions
values that exceed a certain limit. We also presented a paral-
lel version of the algorithm, and analyzed its time compl-
exity. The parallel packing algorithm will consume reduced
time when it is executed by multiple processors in mesh
multiprocessors.
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