SA LS 2HE D02 2ZZHME 2

A oF 24

+

2

HT BE TZAA *ll’é}‘{lﬂf:*o Z2AMY ZEE
F de FATE 2dd e

533 A9l o< ol Basit
mebd, B mFo M golsrdy lwd AP 2AEY o
Hd NzaEe gnte AYaa At el £&

gol7] 9@ PHoE =Yy

& Fatn Qom 1 del shbrt stelszaldelny, Bel X AN o ofel Y wd ZRANE 1Y
QA el Tl F1E9 oA el FUAY BRANEE 2T WE) Z2aly QY

nBZe ANHT T HFE

3l é%% 7o ¢

CEREEEEY PERL PR ED
F3ZY A%

3 7t

x AT
— —

of
2U=5S & ZAA AolZe) Filo A9
sfols} Rlem, sholsa

g gAo] gt

Fo wion R By shols s

LA A

Performance Evaluation of a New Scheduling Algorithm for the
Simultaneous MultiThreading Microprocessor

Jung-Hoon Lee" - Jin Suk Kim"™

ABSTRACT

Recently, many processor manufacturers have implemented simultancous mudti threading technology, which can simultaneously execute
independent threads in one processor cycle, as a way of increasing processor efficiency, and, one particular example is Hyper Threading.
Hyper Threading technology, which enables many logical processors to reside a physical processor, differs from the current multiprocessing
environment, which has many independent processors, and calls {or a particular work assignment method optimized for Hyper Threading
environment. Thus, in this paper, We have proposed a scheduling algorithm compatible with Hyper Threading technology and analyzed its
performance using various methods. As a result, we shall expect its efficient performance hy properly understanding and managing Hyper

Threading system.

7|9l : EAl(simultaneous),

1. Introduction

SMT (Simultaneous MultiThreading) [1] technology,
proposed by Dean Tullsen in 1995 to decrease the waste
of processor rescurces and increase efficiency, has been
actually implemented on a real processor under the name
of Hyper Threading [2]. Hyper Threading technology is
designed to process different threads simultaneously by
enabling one physical processor to have two logical
processors[3]. Hyper Threading technology allows each
logical processor to share resources such as execution

22 N03EE YRS QLR AN ot dFHRe
o =gyt

3] 9 sl A wrEd ALY

2 o AMeAgdEtE HFEAER R4 Corresponding Author
FHS 02004 129 8Y, AAbeh 12005 34 3y

b= AP E (multi threading), AS{performance)

engine, cache, system BUS interface, etc. in a physical
processor [4]). Thus, from the application’s perspective, one
processor may be seen as multiple processors, and Hyper
Threading technology runs many independent threads at
the same fime, thereby maximizing the parallelism of the
processor, and as a result, increases the performance of
the processor entirely. The characteristics of such Hyper
Threading system differ from the current multi-processor
environment, which possesses independent processor re-
sources, and, its scheduling policy should be approached
in a different way for efficient resource utilization and
processor performance increase. Therefore, in this paper,
Wehave proposed a scheduling algorithm and applied it
on the Linux operating system, so that people can expect
efficient performance based on this research by properly

146 BEHISRE2A A H12-AT M2 (20054)

understanding the system supporting Hyper Threading
technology and managing logical processors.

Later in this paper, the following topics are discussed.
In section 2, we will examine the characteristics and
problems of Hyper Threading system, as compared in the
traditional SMP system. In section 3, we will examine
the related researches covering the solutions to the proh-
lems, and i section 4, We will explain the algorithm
proposed in this paper. In section 5, We will compare and
analyze the performance of the proposed algorithm, and
finally, in section 6, We will draw a conclusion and sug-
gest directions for future researches.

2. Characteristics of the Hyper Threading System

Researches on increasing processor performance is div-
ided into two broad categories, one that increases ILP
(Instruction-Level Parallelism), and another that increases
TLP (Thread-Leve] Parallelism). ILP increments the
number of instructions that can be executed within one
processor cycle, and TLP executes many threads on
many processors simultaneously. Recently, however, SMT
technology, which can efficiently utilize the wasted re-
sources of a processor and eventually, increase the per-
formance of a processor as a while, has been proposed.
In SMT technology, one physical processor is made up of
many logical processor, sharing physical processor re-
sources, and SMT aims to increase the performance of a
processor by simultaneous multi-threading within one
processor cycle. Simultanecus multi threading method is a
mixture of wide-issue superscalar and multithreaded
processor, In other words, as shown in Fig. 1, similar to
superscalar, multiple instructions can be run in each cy-
cle, and similar to multithreaded processor, it supports
multiple threading method.

SHEOD ENOC EEE0] ————

s UUOO BECC SEmC] | W e

s HAE00 EECDC EEEE | g rweo |

;OO0 EO00 MRS |

000 mOJO0 EECC

S AEEE EEE] EEEE | B e |

3 0000 BEEC BEEC | mooes |
ERCC B0 EEEC .

l’fﬁ EEO0 EEE0

{Fig. 1) Simultaneous Multiple Threading Method [9]

Superscalar increments ILP because it can execute
multiple instructions within a cycle, and fine-grained
multithread or traditional multithreaded processor in-

creases TLP, for it has many hardware contexts and can
independently processes different threads during multiple
cycles. But, SMT increases both TLP and ILP, for it is
designed to process many hardware contexts simulta-
neously, and decreases vertical issue slot waste and hori-
zontal issue slot waste at the same time. This SMT
technology, under the name Hyper Threading, has ac-
tually been implemented on real microprocessors. Hyper
Threading technology possesses multiple independent ar-
chitectural state registers and is designed to function in-
dependently to other logical processors, so each can be
stopped, interrupted, or process threads [2]. Such differ-
ences in the processor designing stage, traditional SMP
systems, which independently possesses cache, system
BUS, execution engine, etc, differs greatly, and effects
system performance on application stage in various ways.

If that is the case, we need to examine the character-
istics of Hyper Threading technology on application stage,
and why the current operating system needs to adopt
different scheduling policy, compared to the scheduling
policy of existing SMP environment. To do that, in the
paper, we have conducted experiments using dual Intel
Xeon 24GHz processor, which supports Hyper Threading
technology, Linux kerrmel 2.4.17, Intel C++ complier, and
OpenMP version 2.0, and used Intel VTune analyzer to
analyze the results. Each experiment has been conducted
by analyzing the completed result cbtained from a routine
calculating the value of by running parallel code obtained
using OpenMP, and the routine executed by each thread
is experimented in two categories, homogeneous codes
made up of integer operations and heterogeneous codes
made up of integer operation and float operation.

Fig. 3 displays the result of running the thread code of
Fig. 2 according to the changes in the number of thread
in seconds. To compare Hyper Threading / SMT system

int compute_pi_by_Thread{() {

int I

int X, pi, sum=0, step;

int myid;

printf ("Entering compute_pi 1.");

step = I/MAX;

myid = omp_get_thread_num{);

for (=1; 1 < MAX; i++) {

x = (i-1)*step;

sum = sum + 4/(1+xxx); }

Dl = sumkstep;

printf("%d, %d thread finished.”, pi, myid);
return 0;

(Fig. 2) Thread Run Routine

SA OE A DNIZEZFZHAME

@ SMT]
| |msumP

; ! ks
tread=1 (&) hrea.:l 2 (b) thread = 2 Ihread 4

(Fig. 3} Result of Thread Routine Runs

with the existing SMP systems, we have continuously
turned on and off the Hyper Threading function in each
system and extracted the result value. When' the mumber
of threads is one or four, SMT and SMP have displayed
similar performance. The reasons Hyper Threading sys-
tem, which simulates four processors, does not perfom
much better than SMP system, which simulates two pro-
cessors, are extremely efficient branching forecasting,
cache utilization rate, and pipeline stalling, which are rel-
atively small in numbers caused by the characteristics of
thread routine, which is made up of simple for loops. One
peculiar result of this experiment is that when the num-
ber of threads is two, two similar results {a, b} are re-

]
EN

* NOT = Numbo Of Threads

anlandasd 5

50000
40000
300001 IK; Instruction
e Retir ement

i. I:. _ CT; Clock Ticks
Il 1 HCRIE B i
CT IR FIIRrT IR CT IR CT IR CT
T1 T2 T3 T4

(.Fig‘ 4) Analysls of Test Runs on SMP System

NOT=1 NOT=2 NOT=4 *NOT= ¥nrber Of Threads

120000,

T T T T
i i ' i
1 1 ' '
L3] i 1
) i i r
100000 H H 1 H
¥ 1 1 A
ot i ' i ot
) i " i o
80000 1 i 1 " .
' T bl L 1
g i 1 1 '
5 i i i 1 Oprocessord
B0000H ' ' 1 1 1 Oprocess or?
" 1
1 i i mprocessor!
) ¥ L}
| | @mprocess ord
400008 1 ' ' [
1 i 1
i 0 '
¥ i 1
20000/ 0 0 O
L 1 1)
f
” R CT IR IR CTIR IR CT IR CTIR CT IR CT

Tl Tlw T2 Tl T2| T1 T2 T3 T4

{Fig. 5} Analysis of Test Runs on Hyper Threading System

glet ~AHFE 2100

0l

of o

HIt 47

ar

peatedly displayed. To investigate this phenomenon, we
have analyzed it using VTune analyzer. The result is
shown below:

Fig. 4 shows the result of running the experiment
shown in Fig. 3 on SMP, and Fig. 5 displays the result
of running the same routine on a Hyper Threading
system. IR designates the number of Instruction Retired,
CT for the Clock Tick, NOT for the Number Of Thread,
and T1, T2, T3, T4 for each Thread. In Fig. 4, we can
observe that in case of SMP, two processors is perform-
ing proper scheduling, but the Hyper Threading system in
Fig. 5, when NOT=2, operations are exXecuted using im-
proper resource allocation policies within the four [ogical
processor resources. In other words, number 0 and 1 are
the logical processors actually included in the same phys-
ical processor, and processor number 2 and 3, displays
properly displays normal results, as shown in Fig. 3(a),
when 2 threads are allocated as physically independent
processors number 1 and 3 in a Hyper Threading system
consisted of logical processors within the same physical
processor as shown in Fig. 5(a). In contrast, in case of
Fig. 5(b), two threads are each allocated to the two logi-
cal processors number (0 and 1 that belongs to the same
physical processor, and as a result, bad results are ob-
tained as shown in Fig. 3(b). This phenomenon occurs
because in existing operating systems, the special charac-
teristics of Hyper Threading systems are not recognized
and scheduling policy implemented using the same meth-
od used in the existing multiprocessor environment, To
overcome such shortcomings, we need a resource assign-
ment policy appropriate for Hyper Threading technology.

3. Related Work

To recognize Hyper Threading system and properly
manage processor resources, in Linux kernel 2.4, vartous
features, such as 128-byte lock alignment, Spin-wait loop
optimization, Non-execution based delay loops function,
etc. are added. But in reality, we cannot say that these
features have actually solved such shortcomings displayed
in the experiments described above. To solve such
problems, Molnar proposed a method that changes queue
in Linux kernel 2.5.32, as shown in the figure below[5].

Fig. 6 displays the scheduling method proposed by
Molnar. A common process gqueue 18 generated in a
physical processor consisted of two logical processors,
and processor queue for each logical processor are formed
in lower stages. Molnar's proposal precisely recognizes
and manages Hyper Threading system, and effectively

148 JEMo[B R EX A Mi2-AT R2Z(2005.4)

Run queyes of 2

eack_a e

® urr(pd)
corr6 0y Y | g ok /
Fun qurue hesd o 10 / Run queues of p3
PO Pl

S —

Physical processor @ Physical processor b

(Fig. 6) Scheduling Algorithm Method Proposed by Molnar

deals with the particular characteristics of the Hyper
Threading system displayed in the experiment., At the
same time, it is too complex, not extensible, and cannot
be applied in ordinary SMP systems or uni-processor
environment. Also, newly generated common gqueue has
other potential side effects. Therefore, in this paper, We
have developed a scheduling algorithm, which can per-
form resource management more suited for Hyper
Threading system using a relatively simple policy, rather
than a complex design structure and implementation such
as Molnar's.

4, A Scheduling Algorithm for Hyper Threading
System

Considering that each process allocated to a logical
processor in a Hyper Threading system should be
assigned to different independent processors preferably,
HT-scheduling algorithm must detect logical processors
included in different physical processors, and, based on
the information, assign processes to other physical
processors when assigning processes in Linux operating
system. To do that, we must know the relationship
between the physical processor and the logical processor,
For example, in Intel processors, they are classified by
APIC (Advanced Programmable Interrupt Controller)
ID[6], and based on such information, we can define the
number and relationship information of logical processors
included in each physical processor[7]. Based on the
information, HT-scheduling algorithm reads the number
of logical processors included in a physical processor, and
takes an approaching method to assign incoming
processes to physical processors. If we assume that Ti
task is assigned to a system with n physical processors and
m logical processors, a simple equation for this task can
be expressed as shown in Fig. 7.

Also, if we restart a process which has already been
executed in a particular logical processor, we can max-

Algorithm HT — schediley

npet T, 120

Outpret © PACy, 0=<j<p—1 and 0<k<mm—1
1. find j = £ mod n
2, Ffnd £ = (Z } ») mod m
3. rveturn PLC,)

(Fig. 7) HT-scheduling Algorithm

imize the efficiency of shared resources by applyving the
same accumulated value to all other logical processors in-
cluded in the same physical processor. Such method, rec-
ognizing the relationship between logical processors and
physical processors in a Hyper Threading system and en—
abling the scheduling that considers the characteristics
displayed in the previous experiments, maximizes the ef-
ficlency of the Hyper Threading system. Also, due to the
relatively simple design, it has high extensibility and
portability, and, can be easily applied in the current mul-
tiprocessor environment.

5. Performance Analysis

To analyze the performance of HT-scheduling algo—
rithm preposed in this paper, We have used dual Intel
Xeon 24GHz processor, which supports Hyper Threading,
Linux kernel 253, and various benchmarking toolkits
such as dbench benchmarking toolkit. This environment is
slightly different from previous one at section 2 because
of the linux kernel version limit which can work properly
on the Hyper-Threading systems.

Firstly, the dbench [8] benchmarking toolkit is primar—
ily used for the measurement of the performance of file
servet, which allows multiple file access on a network. It
generates a great amount of loads, runs processor oper—
ations, and has a high number of accessed or generated
files, Thus, it is known to be an appropriate tool for
Hyper Threading system performance measurement.

Fig. 9 displays the performance comparison and analy-—
sis of a systemn not considering Hyper Threading, sched-

@ noht
B Monlar scheduler|
O HT-2cheduler

20

(Fig. 9) Result of Dbench Performance Analysis

SAl Oz A& OOIZEEZMNME 9

© Monar
® HT-Scheduye

(Fig. 10) Result of Dbench Speed Up Analysis

uler proposed by Molnar, and the scheduler proposed in
this paper. The X axis is the parameter value of dbench,
and as the parameter value increases, the number of cli-
ent access, in other word, workload, increases. The Y
axis displays throughput in MB/sec, and higher value
means better performance.

Fig. 10 displays the Hyper Threading effect on the
dbench throughput in Fig. 8, and based on the noht in
Fig. 8, speed of Molar's scheduler and the HT-scheduler
proposed in this paper is displayed in percentage. The X
axis, same as Fig. 9, is the value of debench parameter,
and the v axis is the percentage of speedup as compared
to noht, higher value being better performance. In most
cases, the HT-scheduler performs better.

| Monla scheduler
0 HT-scheduer

o L — S W 3
20 30 40

(Fig. 11) Result of Chat Benchmarking Performance Analysis

Tig. 11 shows the result of using a benchmarking tool-
kit [10] to measure the effect of Hyper Threading on a
application stage, where real MultiThreading is used. The
x-axis means the number of chat rooms, and the y-client
i1s the number of messages transmitted from the chat cli-
ent, bigger number meaning better performance. The chat
benchmarking toolkit measures the performance of a
MultiThreading application when the chat client program
creates a connection to the chat server via TCP/IP, and
sends and receives messages. This benchmarking opens
the number of chat rooms designated when the toolkit
starts, and each chat room receives 20 users, ie,
connections. Each connection generates two threads, one

o
A

AAlEE EdOClEY o

7t 149

i
or

that sends messages and another that receives messages,
and each client thread sends a specific number of mes-
sages to the server. The following table displays chat
rooms and the related number of connections, threads,
and messages.

{Table 1> Relationship between the Number of Chat Rooms
and Messages

chat : N No. of No. of
o | L s | Teoeats| Trnsnitted| Received |10 20 o
number i " | Messages | Messages o
20 400 1,600 40000 760,000 800,000
30 600 2400 60,000 1,140,000 1,200,000
40 800 3,200 80,000 1,520,000 1,600,000
@ Moinar
B HT-Schedue

(Fig. 12) Result of Chat Benchmarking Speed Up Analysis

260 R ——
200 I
150 e (3ot
l B Montiar scheduler
100 O HT-scheduler
- 1N
Q

20 30 60 a0 120

(Fig. 13) Result of Thench Benchmarking Performance Analysis

Fig. 12 is the analysis of the improved speed up with
noht as a standard in the chat benchmarking shown in
Fig. 11, the x-axis is the number of chat rooms, and the
y-axis is the improved speed up in percentage, compared
to the noht.

Fig. 13 shows the performance measurement of tbench
[8], which is primarily used to measure file server work-
load, thench performs socket calls through TCPAP, but
does not call file system, and is distributed with dbench
benchmarking toolkit. In Fig. 13, the x-parameter is the
value of thench parameter, and the x-axis is the through-
put in MB/sec, higher value meaning better performance,
as in dbench benchmarking.

150 FEMesl=2R A H12-AT MP2E2005.4)

|E Mo inar
|8 HT-Schedule

(Fig. 14) Result of Thench Benchmarking Speed Up Analysis

Fig. 14 is the analysis of the improved speed up as
compared to noht in tbench benchmarking. The x-axis is
the parameter value of thench benchmarking, same as
Fig. 13, and the y-axis is the percentage of the improved
speed up, as compared to noht. Taken as a whole, the
HT-scheduler is always hetter when compared to noht,
and, it is equal or slightly better when compared to
Molar's scheduler. HT~scheduler is improved performance
maximum 14% better than noht.

6. Conclusion and Directions for Future
Researches

In this paper, We have propesed HT-scheduling algo-
rithm to overcome the difference between Hyper
Threading system and the current multiprocessor envi-
ronment and through various experiments, demonstrated
that the HT-scheduler algorithm performs excellently so
we can expect efficient performance by understanding and
managing systems that support Hyper Threading
technology. HT-scheduler is improved more than max-
imum 14% performance than noht and 374% performance
than Molnar's scheduler. In the future, we shall analyze
the efficiency of Hyper Threading system related to the
thread heterogeneousness, and continue to work on re-
searches regarding more efficient scheduling algorithm
and plans that satisfies many scheduling needs on the re-
al applying stage based on the analysis.

References

[1] D. Tulisen. S. Eggers,]J. Emer, H. Levy, J. Lo, and R.
Starnm, “Simultaneous MultiThreading: Maximizing On-
Chip Parallelism,” Proc. of the 22nd Annual International
Symposium on Computer Architecture, June, 1995.

[2] Tntel Corporation, “Introduction To Hyper-Threading Tech-
nology,” Document number 250008-002, 2001.

[31 Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton,
David A. Koufaty, J. Alan Miller, and Michael Upton,
“Hyper-Threading Technology Architecture and Micro-
architecture,” Intel Technology Journal, Q1, 2002.

(4] Intel corporation, “White Paper: Hyper-Threading Tech-
nology on the Intel Xeon Processor Family for Servers,” 2002.

[5] http://lwn.net/Articles/8553/

[6] Intel corporation, “TA-32 Intel Architecture Software
Developer's Manual, Volume [Basic Architecture,” 201.

[7] Intel corporation, “Detecting Support for Hyper-Threading
Technology Enabled Processors,” Dec, 2001

[8] http://samba.org/ftp/unpacked/dbench/README

[9] D. Tullsen et. al.,, “Simultaneous MultiThreading : a Platform
for Next-Generation Processors,” IEEE Micro, pp. 12-19,
Oct, 1997.

[10] Linux Benchmark Suite Homepage, http://Ibs.sourceforge.net/

o & &
e-mail : jhlee94@sidae.ucs.ackr
2001 AEAE e AT ASY
AL
20049 MEAHoEe FREEASH
£94(44h
2004~ A stejda T AL
BHER: EY2HY MY, HEHT, TALZEY

71 X M
E— = — —

AT

e-mail : jskim@venus.uos.ac.kr

| 1990 s &uEr Aaksha Z9(shAD

19929 KAIST #4tgha &4(44h

1997'd KAIST #d4b8hd Z(3hAh

199711 ~1999d KAIST I3Asd+ Al
E| Postdoc 914

1997 ~1998d o}= MLT. Laboratory for Computer Science
Postdoc Fellow

199841 ~1999:d AAEAATAETRD wHAFe e 20 o
+4

19999 -2 MgAyoige R AT yas

2000~ A MEAEt Tty 1450 FE AEHPCRC) AEZ

wAEok: s AFYR, ST, 2838 Aa9, dEuy

of, U HE g

