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An Error Bound of Trapezoidal Rule on Subintervals using Zero—mean (Gaussian

Bum Il Hong™ Nahmwoo Hahm'™ - Meehyea Yang"™"

ABSTRACT

In this paper, we study the average case error of the Trapezoidal rule using zero mean-Gaussian. Assume that we have n subintervals
(for simplicity equal length) partitioning [0,1] and that each subinterval has the length h. Then, for r<2, we show that the average error
between simple Trapezoidal rule and the composite Trapezoidal rule on two consecutive subintervals is bounded by H™* through direct
computation of constants ¢
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1. Introduction

Many numerical computations in science and engineer—
ing can only be solved approximately since the available
in formation is partial. For instance, for problems defined
on a space of functions, information about # is typically

provided by a few function values,

N =1F(x),f(x), -~ Ax,)].

Knowing N(f), the solution is approximated by a numer-
ical method.

The error between the true solution and the approx-
imation depends on a problem setting. In the worst case

% This research was supported by the Kyung Hee University Research
Fund in 2005 (KHU -20050358).
t 3 o A a ARyt we

U E R L EE R TS

o ) oAy s Rag

120056 3 28, AlARSEE 120059 69 149

setting, the error of a numerical scheme is defined by
its worst performance with respect to the given class of
functions; see [1, 4] and [6]. In this paper, we concentrate
on another setting, the average case setting. In this
setting, we assume that the class F of input functions is
equipped with a probability measure. Then the average
case error of an algorithm is defined by its expectation,
rather than by its worst case performance. The average
case analysis is important and significant number of re-
sults have already been obtained (see, e.g., [6] and the
references cited therein).

2. Definitions

It is well known that the average case setting requires
the space of functions to be equipped with a probability
measure. In this paper, we choose a probability measure
4 which is a variant of an ,~fold Wiener measure w-

see[3, 5] and [6]. The probability measure w- is a
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Gaussian measure with zero mean and correlation func-
tion given by

M, FRFN= [ FWF) wldh)
_ fl(x—t)i (y=07%
0

7! 7!

dt,

where (z— 87 =[max {0, z— #]" Equivalently, f dis~
tributed according to @ can be viewed as a Gaussian
stochastic process with zero mean and autocorrelation
given above. However, since @ is concentrated on functions
with boundary conditions AQ)=f(0)="--=fF(0)=0,
we choose to study a slightly modified measure g that
preserves basic properties of @, yet does not require any
boundary conditions. More precisely, we assume that a
function f, as a stochastic process, is given by
Ax) = i+ f(1-x), x=[0,1], where fi and f are
independent and distributed according to a-.

In this paper, as the class F of input functions, we
choose the space F= (C'T0,1] that is equipped with a
probability measure g which is a variant of the ,—fold
Wiener measure. In order to define it, if we first recall
basic properties of the classical ,-fold Wiener measure
@, then according to [2-5], the probability measure u
defined on sfield of the space (C’[(,1] is zero mean

Gaussian with the correlation function given by

M, (Ax),Ay))

:fl (=Dt (=0t -x= 8, A=y=9%
0

rli

_f‘ =D =D+ (¢t~ =] dt
—Jy 7l :

We study the problem of approximating an integral
I(ﬁ:folf(x)dx for feF=(C"0,1], assuming that the

class of integrands is equipped with the probability meas—
ure fi.
Assume that we have n subintervals (not necessarily

equal length) partitioning [0,1). Let (= x,<x,(-<

X ,-1<x,=1. But for simplicity, we let x;=1th for

i=0,-,n Where h=—b With this indexing, we get

L= [ Ao and  T()= MAx )+ A )

while T; is the basic Trapezoidal rule using Ax, ,)
and fAx,, ). Let T, be the composite Trapezoidal rule

that uses Ax, ), Ax) and Ax, ). ie, TAH=

_g_{f(xzfl)—'—zf(x z)+f(x i+1)}- AISO let Vz(f):

(T 1.0

3. An eror bound on two consecutive subintervals

In this section, we consider two consecutive subintervals.
In order to find a new error bound for the subintervals,
we need to compute the distributions of V;. In fact, they
are Gaussian with zero-mean and are given in next
theorem. This is the main result of this paper.

Theorem. For »<2,
M#,( V,-Vj): 61’]" c,* h27+3,

for i<j,

where dy is the Kronecker delta and the constants G are

independent of A’'s and equal respectively: 002—1%,
__1 _ _h81

a=Tgz @ &=y -

Proof. Let Vv,=V.(f) and V,=V(f). Then

Vi{H=V,+ V, and due to the independence of f, and
fp We have M, (V,V)=M,(V V)+M (V5 5.

It is easy to see that
Vi(ﬁ=_§LVif=Vz‘f1+Vifz,

where h=(x;;—x,_)/2 and v f=Rfx ;) —2/x)+
f(xi+1)- NOW’

M, (VaV)

=t e Ll e

Il

[La - Lot

where L; is the first term and L; is the second term in

above integral. Since Lj(t)=0 for r<x,, |,

er(vl'l le):ﬁ) : Lzl(t) . L/I(t)dt.



Similarly,
1
M, (VaV)=[ La®-Lyda

Since we can easily show that the operator v, is exact
for polynomials of degree <2, [ ;=0 for ¢t<x,,, and
L ,=0 for x2x;. Therefore for ;¢;, M, (V;V)=0
We now compute the case of ;=; for M, (V,V)=
M,(VaVi)+M ViV

M (V,'IV,]):M ([th]z) (1)

A

We now compute [——gvi(%m—)] on [x,_y,%41)

[x;_1,x ;4] By the definition of ¥,

[ ()] @
T Y 1)

If we apply the equation (1) to (2) by setting 4= t;th‘i ,

then we have

[ () a
-

(=04 (x =0k )]Zdt

7! ¥l

-2

! 1[(210’(0—:4); (2h)’(~2L—u):
= fo -3 " -2 -

(2h) Eflv_u)i )] S hdu

r r 2
- 2%{‘;)—23 [lo=wi -2 —wi+ -0z du

27+3
Cn h ’

where

2r 1
¢n= ooyt JLO- 0L =2(12= Wit (1w ] 'du
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Similarly, we compute M, (V ,, V ) using p=t—Ei=1

M, (VaV)=M, (V19
- LA

= fx‘ﬂ[__él( (b= )% _9 (t—x D%

7! 7!

=z,

- 1]

. +M*i(2h)ri§‘_1)r )] Qhdu

(42@— 220" (u— )

32(#1)?

fol[(u—O)i—Z(u—‘zL)l-I—(u—l)ﬁr 2a’u

+
— Cythr 3

’

where

2" M o Ly v 1P
Cpn= 32(7!)2 ‘f(\)[(u 0)+ 2(u 2)++(u 1)+] du.
Since

1 2

Llo-wt -2t —wi+a-w1] a

1 2
— [a-0n -2 1)+ =17 ] du,
we have ¢, =c,. Therefore, ¢,=¢ 4+ ¢ ,=2¢,

For »=9,

Cy= 2C01

= fol[<0~ w0 —2(4 =+ (1= u)&]Zdu

I

4 b
= & [ [0t —2 - w0t + (1 0]
L o=t —20f - 0t (- 0% au
2

-1
N 2 1t
= <5 J, -2t 1t g f%du
_ 1
16 °
For »=1,
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Cc1= 2¢ 11

2
=:2-ggj:ko—mh—zk§—uﬂﬁ«1—ma]mt
_1

16 Jo

1! 1 2
+35 %ﬁo—m+—2<2—m++ufuh]mt

. 2[_2(%—u)++(1—u)+]2du

_1
- j%j;q—QC%—uH%I—uﬂ%w+{%f;ﬂ-uydu

1
192 -

Finally, for =2,

= 9¢.
“ Czil_l 2 1 2 2 1?
= 2. 8.L[(O_ZD*_2(2 710++(1—20+]du

1
2 . 2
= 74Lf0 [(Olfu)i—Z(—é‘—u)a+(l—u)2+] du 2
+%J%U0—ma—ﬂ%‘wﬂ+ﬂ—uﬂ]m

a
= _111_ . Z[—Z(‘%‘Hu)2+(1*u)2]zdu

+—1]g fl [(1—w?]%du

o=

_ 881
61440

This completes the proof.

3. Conclusion

For Simplicity, we have chosen n y equal length sub-
intervals partitioning [0, 1. However it is not necessary
because if we take h as the largest length of sub-
intervals, then it is straightforward to have the same
result. Moreover, if we can compute an error bound for r
>3 which is more complicated of course, then it will lead
us to compute covariance of average error. We will ex-

plore this in the later paper.
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