A2k 240]]_w_‘—‘ Al] 27}]‘3]o]/l:] vl
71”11'0 o} o v EAZ}}\E!AEE" d omwdv
+
=
2y oz
e <
2 MBI AAA explicit W& AHA(time step)olyt ~Z# 1ol F A9 kg Ho]A] o ARR3 = gy wiFol, 2]k <k
Aol ¥ implicit Hgel AMEEo] g XA S A7 st RE& AEAAS w2 F A7) 23Ut ola, F AAEY AZyorE
el ¥v EE 298 & gk
ohE B9 0 2= explicit MR AW Aldbol whEE AL implicit HFE A 2 A0l EA48 7P S semi-implicit MY ES e AEvF A3
gt} ® =& M Kang(Kang and Cho ')()02)01 o“\‘é% H” Ble] 7 9) explicit 3ol A % implicit WH7EA] 2- o} 7hgdk AA 7 27
Al gd ol A WS Atgtt), o] WHE explicit WHAMF sty whEHEA implicit BHAHE AT (time step)olvt ~ZF A Ho| F H o
T M om sl ik 71E9] semi-implicit 0“\1-4 vlutaiM vlwA 2he olF A 4 (artificial damping) 84S 7o

1= - 22 AIBYO|M, Explicit WY, Implicit 2, HAM

A Scalable Semi-Implicit Method for Realtime Cloth Simulation

Myoung-Jun Kim’

ABSTRACT

Since well-known explicit methods for cloth simulation were regarded unstable for large time steps or stiff springs, implicit methods have
been proposed to achieve the stability. Large time step makes the simulation fast, and large stiffness enables a less elastic cloth property.

Also, there have been efforts to devise so-called semi-implicit methods to achieve the stability and the speed together. In this paper we
improve Kang’'s method (Kang and Cho 2002), and thus devise a scalable method for cloth simulation that varies from an almost explicit to
a full implicit method. It is almost as fast as explicit methods and, more importantly, almost as stable as implicit methods allowing large
time steps and stiff springs. Furthermore, it has a less artificial damping than the previously proposed semi-implicit methods.

Key Words : Cloth Simulation, Explicit Method,

1. Introduction

Since Terzopoulos et al.[18] correctly characterized cloth
simulation as deformable surfaces and other research
groups [5, 3, 19, 13, 11, 8 14] dealt with the problem, cloth
simulation has been regarded as one of the most important
problems in computer animation. Cloth dynamics can be
expressed in a set of differential equations (usually
mass-spring model), which are called governing equations.
The physics simulation for a computer animation is some-
what different from the one for other purpose like me-
chanical engineering. The accuracy of the simulation is not
very important for animation purpose; we need an accu-
racy to the extent which pleases people with visually

plausible physics. Especially for a real-time application, we

SHEe|cel sy zud
AAFekE 2006 281 2490

4 8 4 °l§}°44LH i

2
= 20000 99 304,

Implicit Method, Stable Simulation

need a fast simulation method even though it sacrifices
some degree of accuracy. Also, the stability of the method
is a must-have because that allows a broad range of con-
trol parameters, beneficial in controlling animation [1].

Explicit methods in [17] are simple and fast, however
they are known to be unstable for large time steps or stiff
springs(i.e. stiff material). A small time step is required to
make explicit schemes stable, and thus resulting in slow
simulation. Stability can be greatly improved by using im-
plicit methods [1, 6]. Implicit methods require solving a line-
ar system that takes considerable computation time, as the
geometric complexity of the cloth increases. It makes im-
plicit methods much slower than explicit methods. On the
other hand a large time step can be used to speed up the
simulation; however, there is a limit in increasing the time
step for the simulation to describe a natural phenomenon.
Moreover, a larger time step causes higher computation (i.e.
more iterations) in solving the linear system.

178 FEMLSRA=ZK A M13-AT X2 (2006.4)

There is another class of approaches called semi-im-
plicit methods[9, 16, 15, 13], a compromise between explicit
and implicit methods using a very approximated solving.
This possibly results in a stability of an implicit method
and also a speed comparable to that of an explicit method.
While those methods are fast and stable, they introduce
unnecessary artificial damping. The unnecessary damping
causes problems of losing momentum and resisting form-
ing wrinkles, thus making cloth unrealistic. To heal this,
Desbrun et al.[9] proposed a post-correction of angular
momentum as a compensation for the momentum loss.
Choi et all6] noted that an excessive artificial damping
makes the cloth motion unresponsive-slower motion and
lesser wrinkles than expected-and that responsiveness is
also an important factor to the fidelity of the simulation.
On the other hand, there is also an approach of mixing the
efficiency of the explicit method and the stability of the
implicit method in [4]. They used several steps of ex-
plicit/implicit steps but implicit steps are only for integrat-
ing the damping and explicit steps are responsible for in-
tegrating forces, which result in a limited improvement in
the stability over explicit methods.

Other various techniques have been proposed to improve
the speed of cloth simulation. A multi-resolution approach
is applied in [12], where computationally expensive implicit
solving step is performed in coarser mesh. The motion of
tight clothes is statically dependent on the body posture,
thus may not need a full dynamics simulation. Cordier et
al.[7] proposed a real-time simulation technique based on
this. Gershbein et al.[10] also used this idea to create an
artistic effect in cloth motion. There is also a data driven
approach utilizing pre-computed cloth motion[8].

This paper proposes a semi-implicit method for a re-
al-time cloth simulation, which is fast, stable, and has less
artificial damping. It does not need to solve a massive line-
ar system, so it is very fast like an explicit method. The
remainder of the paper is organized as follows. In Section 2,
we first state the mass-spring model that we are using
throughout the paper, and review explicit and implicit
methods. We present our method and describe its property
in Section 3. We also compare with previous semi-implicit
methods in Section 4. Finally, we present experimental re-
sults in Section 5, and discuss our conclusions in Section 6.

2. Mass-spring model for cloth simulation

We choose a simple mass-spring model for cloth
simulation; it is most popular, easy to implement, and
computationally light. Also, it provides a flexihility of mixing

(Fig. 1) Mass-spring interconnections.

(Table 1) Summary of Notations. Boldface with subscripts
indicates a 3-dimensional vector value. Boldface
without subscripts indicates overall states contain-
ing all the subscripted variables.

Notation Description
X;, Vi Position and velocity of mass point ¢
: : Eij; Overall position & velocity state of the system
F; Total force acting on mass point /
F=(F;) Overall force state of the system
Xij Relative position of mass i respect to j,i.e. x; — x;
Ly Rest-length of the spring between mass i and
f;; Spring force acting on mass 7 induced by mass ;
of;;/dx; Jacobian matrix of f;; respect to x;;
JdF;/dx; Jacobian matrix of F; respect to x;
ki Stiffness of spring connecting mass 7/ and j
Ar Time step
m Mass of each mass point

strong and weak springs, which enables us to configure a
cloth bending softly but stretching hardly. We use a quad—
rilateral mesh of mass—spring used in [6). Each mass point
is linked to the adjacent mass points by strong typel
springs, and also to the next adjacent nodes by weak
type2 springs, as shown in (Fig. 1).

For the sake of simplicity, we assume that all the mass
points have the same mass m. A mass point ¢ is linked
to other points j with linear springs of rest-length Z;
(length in resting state) and stiffness k;;. The position and
the velocity of mass point ¢ are denoted by x; and v;,
respectively. And, F; denotes the total spring force acting
on a mass point 4. Superscript ‘#' indicates the time after
At. For example, x;*=x; +v; At. Refer to Table 1 for a

summary of the notations used in this paper.

2.1 Forces and their derivatives
Force vector f;; acting on node ¢, induced by the

spring between mass points ¢ and j, can be expressed as

L..
fij = kij (1 - ﬁ) Xjj -
if

The Jacobian matrix of the force vector is then

o, Ly Li .
s ()t

xyl Y xg]?

The Jacobian of;; 6x;; is equal to the spring stiffness
k;; along the direction of the spring. In the out-of-plane
direction (perpendicular direction to springs), the second
term of of;; ox;; vanishes, ie, the Jacobian becomes
ki (1~ L;;/Ix;; 1), which is small normally when the spring
is maintained to have a small deformation (x| = ;).
This property of af;; ox; has an important role in stabi-
lizing the system in implicit methods: large value of
of,; ox; introduces a damping that smoothly filters the
velocity and makes the system stable. This damping also
causes an inaccurate simulation. However, the damping is
minimized in the out-of-plane direction due to the smaller
value of of;; 0x;;; unnecessary damping is avoided.

The total spring force acting on mass point ¢ is
F, = Zf"f' Throughout this paper, the summation]

J J
denotes the sum for all the mass points § linked to the
mass point ¢ . External forces such as gravity can be add-
ed to F;, though the Jacobian oF; ox; doesn't need to be

changed, assuming the external force is independent of x; .

2.2 Explicit and implicit methods
The following explicit method, called symplectic Euler, can
be used to simulate a mass—spring model of cloth [17, 1]:

% A
v :v+F#)
X' =X+ VA

The symplectic Euler method (Eg. (2})) becomes un-
stable for large time steps or stiff springs.

The stability is inversely proportional to k4t m (k is
the average stiffness of springs), which means we cannot
use large values for At and k. We do not need to force
unnecessarily large time steps even for an animation pur-
pose due to non-linearity of spring forces. However, it is
desirable to have stiff typel springs. Small stiffness keeps
the simulation stable, but it vields a rubber-like cloth
motion. Since clothes resist from stretching, a larger stiff-
ness is required to simulate natural looking cloth. To allow
large stiffness, we should reduce the time step for a stable
simulation with the explicit method. Notice that stability is
improved quadratically as At decreases.

The stability can be improved greatly by the following
implicit Euler method:

Al =HO! 7tsT A R4 AlEH0lY 8% 179

* __ * At
vi=v+F)

nm

X" = x4+ VAf

Since F *(the force in the next time step) is unknown,
the above equations should be solved implicitly. This im-
plicit scheme is stable for a very large kAt* m because

the solver finds a stabilized F *. Since Eq. (3) is non-line-

ar, usually a linearization (F *= iAx = iv *At) is
X ox
used:
. F
v*:v+(F+i—v’At)g. (4)
ax m

Finally, solving for the unknown v * yields the follow-
ing linear system:

(I-—=—)V'=v+F—. &)

The explicit methods (Eq. (2)) and the implicit method
(Eq. (5) have the same form except the system matrix

2
A=1- %%. The inverse matrix A ~! acts like an

smoothing filter on velocities, producing an artificial
viscosity. This artificial viscosity stabilizes the simulation.
However, it also causes an inaccurate simulation resulting
in a damped motion. Fortunately, this fictitious damping
occurs along the direction with a tension, which means no
damping occurs in the direction perpendicular to springs.
Since the mass—spring model is designed to have less
stiffness for bending (see (Fig. 1), the damping for bend-
ing motion will be minimal.

Baraff et al[l] presented a flagship work of using im-
plicit method in the field of cloth animation. Choi et al.[6]
improved responsiveness of the implicit cloth simulation by
using asymmetric force function for the typel springs as
follows:

0. otherwise

L .
f; = {klﬁ/’(l ‘\x—f\) xij iFxy] > Ly ©®)

y L L . :
9y Py (1 828) +hyrxpx]. it x> Ly -
Ix;j 0, otherwise

For the compressing motion, only typeZ spring acts and
the repulsive force becomes small. The stiffness 8F ax
is also small and A = I, thus solving Eq. (5) results in a

reduced artificial viscosity for the compressing motion.

180 HEXNeldg=aFX A A13-AR [2=(2006.4)

This eliminates a resistance to starting wrinkles.

3. A scalable semi-implicit method

In this section, we present a scalable semi-implicit
method for cloth simulation that varies from an almost
explicit to a full implicit scheme. It is almost as fast as
explicit schemes, as stable as implicit schemes. Also it has
relatively less artificial damping. The implicit equation (Eq.
(14)) is rewritten for individual mass point ¢ as follows:

ofy . AP
Bx,-,-(vl TV >7 ’

‘ At
\A :V[+F,'—’; +2

where Z is the summation for all mass point j linked to i.
7
We solve the above implicit equation for the diagonal

is a 3 X 3 matrix,

2
terms v; *. Since I +%Zafij 0%,
7

it can be easily inverted so that we have an explicit form:

-1
. AP o ofy At oty A’
S) PRy ik} A+ F— i
Vi <l+ m z/‘&xf/ Vit "m +2/‘8x,:,‘{’ m ®)

The above equation casts v; * in a recurrence relation in
terms of {v;*} on the righthand side. We initially set the
unknown v; * to the current v; , and iterate Eq. (8) several

times to get the final v; *. It is very important to update

v; * in place and make the updated value available imme-

diately for other updates; If we update v; * after the whole
iterations completed using temporary variables for v; *, the
simulation becomes unstable. This is a 3 x 3 block Gauss-
Seidel iteration for solving Eq. (5). We iterate it for a
fixed number of times 5. Even for a small n, we found
that it is very stable and generates yet plausible cloth
motion. We make use of this 7 as a design parameter to
balance bhetween simulation speed and correctness. Since
all the terms in Eq. (8) except v; * remain constant during
the iteration, so the iteration can be performed very quick-
ly by building lookup tables for the constant terms. This
procedure is summarized as follows:

Procedure: Scalable-Method(7)

. ar oty \ -1
build tables for (I+T’lz/’ﬁ) B
initialize v/ =v
iterate n-times

update all v;x in place by Eg. (8)

We also use the asymmetric spring model (Eq. (6))

proposed by Choi et al[6] for typel springs. This ensures
2
that I+%Zafﬁ ox; 1s positive definite thus invertible.
1

Surprisingly, the stability is degraded in our method if we
change the spring model from the symmetric one (the
same spring constant for both of stretching and compress-
ing) to the Choi's model (no force for compressing). We
found that this is because of;; #x; of Choi's spring
model has a discontinuity. Interestingly, this discontinuity
did not cause the problem in the implicit methods, because
the mutually connected springs are counterbalanced to re-
duce this discontinuity. We found that our method also
becomes stable as the number of iteration increases. To
make our method stable even for a small number of iter—
ations, e.g. one iteration, we devised a smoothed Jacobian:

Ly L, .
k(/ (1 - m) +ki,-m/‘7x,-,-x{/-. if ‘X,/‘ > L,j/‘
if o0 < |xy|/Ly <1 ©)
otherwise

ity

= L .
Ixy ki/’ﬁ"l‘f"{/. (D).

where f(1x;1) = (%;| L;—«) (1—a) is a smoothing
function and < is a threshold. We set a = 0.8 in this
paper.

We can consider only strong typel springs to compute
the of;; ox; in Eq. (8). This causes no problem since
typeZ spring is usually weak enough. The resulting meth-
od will be almost equally stable with less computation.
This 1s a kind of mixing an explicit scheme for weak
springs and an implicit one for strong springs. Similar ap-
proach of mixing explicit and implicit scheme is presented
in [2]. Our method actually converges to the solution of
the implicit method if we iterate it until converges.

A great advantage of our method is that it gives a use—
ful approximation with a fixed small number of Gauss-
Seidel iterations per each step; we found that several to
ten iterations are enough for wide range of cloth simulation.
It is stable regardless of the number of iteration so that
we can use large time steps and stiff springs. Therefore,
our method is scalable, ranging from one iteration to many
iterations until converge. Even with just one iteration,
which is almost an explicit method, the stability is an or-
der of magnitude better than that of explicit method. The
stability is even further improved as the number of iter—
ation increases.

(Fig. 4)(a), (b), and (c) show snapshots from the simu-
lations by our method with n=1, n=2, and n =4. All of
the simulations are stable. We can see the simulation be-
come similar to that of the implicit method as # increases.
Although first two images in (Fig. 4)(a) and (b) look dif-

ferent from the last two, notice that they are snapshots
from simulation each of which generates a plausible
animation. Though simulated motion is different from that
of implicit method, simulation with few iterations would be
useful in real-time application, since it is very fast like an
explicit method.

3.1 Artificial inertia and viscosity
We will explain here why our method is stable even
with only one iteration, and how we use 7 as a design

parameter. One iteration of our method can he rewritten as

of; A Ar
-1) 1y
vV = M (V, {E‘axﬁl:/V/W { M l‘,; .
J f
2
where M =1 +%€'—Zafﬁ ox; . The first term is the veloc—
Y

At?

m -

ity with viscosity: M™1{(M-1)v, + Zg—i?'—(vj—vi)
/ ,

ij
And, the second term is the acceleration by the forces,
which has been diminished by M ~'. Compared to the im-
plicit method, the first term contains no more artificial
viscosity.

From the second term, the acceleration is scaled by
M . This is an inertial damping (mass increases) as op—
posed to the viscous damping in the full-implicit method.
We call this damping artificial inertia. As we iterate more
in our method, this artificial inertia decreases and the arti-
ficial viscosity increases. Also, the window size for the
viscosity filtering gets larger, eventually the method be—
comes the implicit method. This artificial inertia properly
damps the motion so that we are able to keep the stability
without solving a large hinear system. More importantly,
notice that this artificial inertia as well as the artificial
viscosity are limited in the in-plane direction, and do not
make a fictitious damping in the out-of-plane direction
that resists bending and wrinkling motions. Therefore, our
method gives plausible simulation even with a few iter-

ation: This is one of the main contributions of our method.

t=150 1= 180

Kang's 2nd

(Fig. 2) Kang's second method with two Jacobi iterations per
step. We set the same condition for the simulation
as (Fig. 4). Due to the error of force Jacobian for
stretching spring, the simulation becomes unstable
beginning from the anchored corner points.

AMEF ZFO| 7Bt AAIZE RZ AIZ2I01M 2 18]
4. Comparisons to other semi-implicit simulation methods

In this section, we briefly study previous methods for
cloth simulation that is claimed to be fast and stable. We
compare those with our method.

4.1 Desbrun’s method

Desbrun et all9] approximated the Jacobian of the
spring force as of;; ox; =~ k; by taking only the con-
stant term in Eq. (1). As explained in Section 2, the

Jacobian of ; 8x;; of the spring force is k;; in the direc-

ij
tion of the spring. Thus, this approximation 1s exact for
the direction of stretching and compression, but wrong for
the direction perpendicular to spring directions. Using this

approximation, the Jacobian 8F #x in Eq. (3) is replaced

by a constant matrix H = (#,;), where H; =— Z k.,
J

H,; = k;;, which results in an approximated implicit method:

2
(lfAiH)v”’:vﬁLFg. (10)
m m

The inverse of the system matrix is pre-computed in
order to reduce the computation time. However, multi-
plving the inverted matrix and the system vector still re-
quires a considerable time. This 1s because the inverse

matrix is dense, though the system matrix IA—%H is

sparse; In our test with Desbrun’s method we used con-
jugate gradient to solve the sparse matrix, and obtained
better results.

A downside of Desbrun’s approximation is that a big
artificial viscosity arises in the out-of-plane direction,
which does not exist in the original implicit method. This
will make a damping force that resists bending, wrinkling,
overall rotating motion, and even translational motion in
the direction of plane normal. (Fig. 4)(i) shows this ef-
fect-the velocity of falling cloth is damped a lot compared
to the implicit method (in (Fig. 4){d). They added a
post—correction step for compensation by correcting the
overall linear and angular momentum. However, the local
angular momentum will not be preserved so that fine

bending/wrinkling motions can not be formed.

4.2 Kang's first method

Kang et al[l5] introduced an approach similar to our
method. They used Desbrun’s approximation of force
Jacobian and iterate Eq. (8) twice. The resulting approx-
imation derived as follows:

182 H=ZMelstgl=&2Al A M13-AT 2= (2006.4)

L FA LY o5 Ar WU W . Vel
vi* — vi + K m +211§1Uzv/ " where V= vi+F i +ij;£V] [(11)
P2k 5 U Xk

Notice that the above method does not update v;* in

place, but uses temporary variable v; . This is an im-

portant difference from our methods. We already men-

*

tioned that in—place updating of v; * is crucial for achiev-

ing the stability. Fortunately, the above method is stable
due to the scalar-valued approximation k; of the force
Jacobian. We think that the in—place updating will enhance
the quality of simulation also in this case.

Even with this simple formulation the method is uncon-
ditionally stable for any value of time step and stiffness.
Regrettably, we found the stability is not for free: The
method incurs a severe damping as spring stiffness (k;;)

grows.

4.3 Kang's second method

Kang et el.[13] noticed that the scalar approximation of
force Jacobian causes a severe damping. They also used a
vector-valued force Jacobian in their second method so
that the unnecessary damping in the out-of-plane direction
could be reduced. Our method is an improvement to
Kang’s second method by using Gauss-Seidel iteration
and a smoothed force Jacobian. Here, we would like to
state the differences between two methods.

We employed 3x3 block Gauss-Seidel iteration for
handling Eq. (8), while 3 x 3 block Jacobi iteration is used
in [13]. Both of Guass-Seidel and Jacobi iterations even-
tually converges to the same solution and make the cloth
simulation stable when we do have a enough number of
iterations. However, here we have room for limiting the
number of iterations from one to ten for a real-time simu-
lation, and this makes a difference between Gauss—Seidel
and Jacobhi iterations.

We found that the cloth simulation with Gauss—Seidel is
more stahle than with Jacobi iteration when the number of
iteration is limited. Especially, with an odd number of
Jacohi iterations, the stability of Kang’s second method is
quite poor. (Fig. 4)(e) and (f) show this effects. Kang’s
second method (with odd n) becomes unstable for stiff
springs or large At. However, our method is stable for
any 1 and even with only one iterations. We recommend
to use an even number of Jacobi iteration for Kang's sec-
ond method. Also with an even number of (Gauss-Seidel
or Jacobi) iterations, our method is slightly more stable
and converges little faster than Kang's second method
(Compare (Fig. 4)(c) and (g).

Devising a smoothed Jacobian (Eq. (9) is another im-
provement of our method over Kang's second method.
Both of ours and Kang's are unstable with Choi’s asym-
metric spring force function (Eq. (6) and its Jacobian (Eq.
(7), which is necessary for improving the stability and the
plausibility of cloth animation [6]. We were able to employ
the asymmetric force function (Eq. (6) successfully by de-
vising a smoothed force Jacobian (Eq. (9).

The following approximate force Jfacobian is used in
Kang's second method for simpler computation by assum-
ing small elongation/compression of springs.

of;; Xz"x,‘r'
g, Y (12)

ax; gl

We also tested the idea of combining the asymmetric
spring (Eq. (6) and the above approximate Jacobian. We
found this combination also gives a good cloth simulation
but with significant drawbacks. It makes unnecessary
damping for compression of springs, which may result in
removing of fine wrinkles. On the contrary, it makes less
damping for the elongation compared to that of the origi-
nal force Jacobian. This damping is crucial for stabilizing
the cloth simulation. Kang's method with the approximate
Jacobian (Eq. (12) can be unstable when the spring is
very stretched. (Fig. 2) is an example of showing this ef-
fect, where only two corner points of a cloth are anchored.
The simulation begins to break around the stretched re-

gion of the anchored comers.

(Fig. 3) Draping test with Choi’'s implicit (top) and our method
(bottom). Only two corner points are anchored.
Large stiffness of 1000 is used for typel springs to
prevent elongations around the anchor point. Our
near-explicit method is iterated six times for every
simulation step. The computing times of the implicit
and our methods are 200msec/step and 45msec/
step in Pentium 4 2.4GHz, respectively.

5. Experimental results

(Fig. 4) shows cloth simulation results of our
near-explicit method and other various methods from [6, 9,
15, 13]. The cloth model consists of 80 < 80 points of unit
mass. We set the fypel spring stiffness k;; = 50, the fype2
spring stiffness k; = 0.1, the time step At =0.25, the
gravity g = 0.03, and the damping factor d = 0.05. Though
Kang's first method has the fastest computing time per
step, actually the simulation 1s very slow due to the big
artificial inertia. We claim that our method 1s practically
fastest semi—implicit method. Also the simulation quality is
comparable to that of the implicit method; Our method has
slightly more artificial damping than the implicit method.

ErE] t=16__ [=225
|

ia) Our methodi 11 15.6ms/step

b1 Our method(2 18.Fms/step

1¢) Our method{d) 2.

(d) Choi's implicit_54.7ms/step

(¢} Kang's 2nd(1) 17.Imsistep

crashed afterward crashed afterward crashed afterward

(0 Kang's 20d(3) 21 9msisicp

(e} Kang's 2nd(4) 25my/step

(b) Kangs Isif4) |2 Smaisiep

(1) Desbrun's senii-implicit 35.9ms'stcp

(Fig. 4) Cloth simulations results of various methods. The size of
mass—spring model is 80 x 80 and each node has a unit
mass. We set the same conditions for each method:
el spring stifiness &, =50, fpe2 spring stifiness
k;=01, At=0.25, gravity = 0.03, damping = 0.05. The
computation time per step is measured in Pentum 4
24GHz. (a)-{c) Our methods, (d) Choi's implicit method,
(e)-{g) Kang's second methods, () Kang's first method,
and (i) Desbrun's semi-implicit method. The parenthe-
sized number after the method name indicates the num-—
ber of Gauss—Seidel or Jacobi iteration per each simu-
lation step. Our method is stable like an implicit method,
and also faster than other method while resulting a plau-
sible animation.

Alstgl 20| Tttt A 24 AIZd0E ¥ 183

However, it has much less damping than other semi-im-
plicit methods.

A draping test is provided in (Fig. 3). Only two comer
points are anchored, and we set spring stiffness very high
(1000) to prevent elongation around the anchored points.
Since our method is stable for very large stiffness, we do
not need any post-step of limiting spring elongation,
which was the case in [17]. We compared our method and
Choi's[6] implicit method. Our method worked similar to
the implicit method except the velocity is slightly slow in
our method due to artificial inertia. However, our method
1s equally stable and four times as fast as the implicit
method in this example.

6. Conclusion

We presented a scalable semi-implicit method for re-
al-time cloth simulation, which is an improvement of
Kang’s method[13]. The proposed method is explicitly rep-
resented in simple closed form, and thus very fast and de-
feats any implicit methods in terms of speed. Our method
is stable and thus able to use large time steps and stiff
springs despite its simplicity. This stability is achieved by
a proper amount of artificial viscosity and inertia, which
acts only in the in-plane direction where tension is high.
Thus the method minimally resists bending and wrinkling
motions of cloth, and produces a less damped motion.

We compared our method with the previous semi-im-
plicit methods; they have an extra damping, unnecessary
for stabilization, not found in the implicit method.
Although our method has more damping (due to the artifi-
cial inertia) than the implicit method, it is somehow mini-
mal and far less than that of the previous semi-implicit
methods. Also, we found our method is more stable than
the previous semi-implicit methods.

References

[1] David Baraff and Andrew Witkin. Large steps in cloth
simulation. In Proceedings of SIGGRAPH ‘98, Computer
Graphics Proceedings, Annual Conference Series, pp.43-54.
ACM, ACM Press/ACM SIGGRAPH, 1993.

(2] E. Boxerman and U. Ascher. Decomposing cloth. In Procedings
of Euwrographics/SIGGRAPH Symposium on Computer
Animation '04, 2004.

[3] D.E. Breen, D.H. House, and M.]. Wozny. Predicting drape
of woven cloth using interating particle. In Proceedings of
SIGGRAPH '94, Computer Graphics Proceedings, Annual
Conference Series, pages 360-372. ACM, ACM Press / ACM

184 HEHolEg

I

EXA M13-AT X222 (2006.4)

SIGGRAPH, 1994.

[4] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing
with folds and wrinkles. In Procedings of Eurographics/
SIGGRAPH Symposium on Computer Animation ‘03, 2003.

[5] M. Carignan, P. Volino, and N. Magnenat-Thalmann. Dressing
animated synthethic actors with complex deformable cloth.
In Proceedings of SIGGRAPH 92, Computer Graphics
Proceedings, Annual Conference Series, pp.99-104. ACM,
ACM Press/ACM SIGGRAPH, 1992.

[6] Kwang-Jin Choi and Hyeong-Seok Ko. Stable but
responsive cloth. In Proceedings of SIGGRAPH '02,
Computer Graphics Proceedings, Annual Conference Series,
pp.604-611. ACM, ACM Press/ACM SIGGRAPH, 2002.

[7] F. Cordier and N. Magnenat-Thalmann. Real-time animation
of dressed virtual humans. Computer Graphics Forum
(Eurographics 2002), Vol.21, No.3, pp.327-336, September, 2002.

[8] F. Cordier and N. Magnenat-Thalmann. A data-driven
approach for real-time clothes simulation. In Proceedings of
12th Pacific Conference on Computer Graphics and
Applications (PG 2004), October, 2004.

[9] Mathieu Desbrun, Peter Schr'oder, and Alan Barr. Interac—
trive animation of structured deformable objects. In
Proceedings of Graphics Interface '99, pp.1-8, 1999.

[10] R. Gershbein, L. Cutler, X.C. Wang, C. Curtis, E. Maigret,
L. Prasso, and P. Farson. An art-directed wrinkle system
for CG character clothing. In Proceedings of ACM
SIGGRAPH/Eurographics
Animation (SCA 2005). ACM Press, 2005.

[11] M. Hauth, O. EtzmuB, and W. Strafler. Analysis of numerical
methods for the simulation of deformable models. The Visual
Computer, Vol.19, No.7-8, pp.o81-600, December, 2003.

[12] Y-M. Kang and H.-G. Cho. Bilayered approximate

integration for rapid and plausible animation of virtual cloth

Symposium on Computer

with realistic wrinkles. In Proceedings of Computer
Animation, pages 203-214. IEEE Computer Society, 2002.

[13] Young-Min Kang and Hwan-Gue Cho. Complex deformable
objects in virtual reality. In Proceedings of VRST 2002,
pp.49-56, 2002.

[14] Young-Min Kang and Hwan-Gue Cho. Real-time animation
of complex virtual cloth with physical plausibility and
numerical stability. Presence, Vol.13, No.6, pp.663-680, 2004.

[15] Young-Min Kang, Jeong-Hyeon Choi, Hwan-Gue Cho, and
Chan-Jong Park. Fast and stable animation of cloth with
an approximated implicit method. In Proceedings of
Computer Graphics International 2000, pp.247-255, 2000.

[16] M. Desbrun M. Meyer, G. Debunne and A. Barr. Interactive
animation of cloth-like objects in virtual reality. Journal of
Visualization and Computer Animation, Vol12, No.l,
pp.1-12, 2001.

{17] Xavier Provot. Deformation constrraints in a mass-spring
model to describe rigid cloth behavior. In Proceedings of
Graphics Interface '95, pp.147-154, 1995.

[18] D. Terzopoulos and K. Fleischer. Modeling inelastic deformation:
Viscoelasticity, plasticity, fracture. In Proceedings of
SIGGRAPH 88, Computer Graphics Proceedings, Annual
Conference Series, pp.269-278. ACM, ACM Press / ACM
SIGGRAPH, 1988.

[19] P. Volino and N. Thalmann. Comparing efficiency of

Integration methods for cloth simulation. In Proceedings of
Computer Graphics International 2001 (CGI 2001), pp.265-274,
2001.

o=
| e-mail : mjkim@ewha.ac.kr

1989 23 8h7) 2 0j8 A Abshal(stal)

19919 @278 a9 AASIHAIAD
1906 @) 49 Aabska (e

1996 ~ 19973 University of Washington

1997 ~ 19984 A 295841
1998t ~2000 &= A AHEA]
2000 ~20016] &) &= AT A
2001d ~ & A o]zt A srm t] X urjo] gt 2w
ok e B CER DIE R

8]
£
i
1 N
o
E‘ ¥
~
=
[o3

