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An Efficient Cache Mechanism for Improving Response Times
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ABSTRACT

This paper proposes an efficient caching mechanism appropriate for the integrated RFID middleware which can integrate wireless
sensor networks (WSNs) and RFID (radio frequency identification) systems. The operating environment of the integrated RFID middleware
is expected to face the situations of a significant amount of data reading from RFID readers, constant stream data input from large
numbers of autonomous sensor nodes, and queries from various applications to history data sensed before and stored in distributed
storages. Consequently, an efficient middleware layer equipping with caching mechanism is inevitably necessary for low latency of
request-response while processing both data stream from sensor networks and history data from distributed database. For this purpose,
the proposed caching mechanism includes two optimization methods to reduce the overhead of data processing in RFID middleware based
on the classical cache implementation polices. One is data stream cache (DSC) and the other is history data cache (HDC), according to the
structure of data request. We conduct a number of simulation experiments under different parameters and the results show that the
proposed caching mechanism contributes considerably to fast request-response times.

Keyword : RFID, WSN, Middleware, Cache, Response Time, Data Stream

Introduction Computing in which computers are so deeply integrated

into our lives and communicate wirelessly with network

the areas of data acquisition through sensors and Internet” or “Internet of things” in which “everything is

communications, have opened the era of Ubiquitous alive” [1, 2]. We, considering the situation that tiny and

battery powered wireless sensors with low prices are

ey i} A feana Pj}%hg?ﬂ$ spread over around us, can easily expect to see large

3 Mt AFE vet) Wbk numbers of autonomous sensor networks and need to
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=R 2007d 109 179, AR 1 20074 129 179 collect a significant amount of interesting data about the

identities. This environment has been expected as “Sensor
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world [1]. In such a sensor abundant environment, one of
would be to
request-response with low latency upon every requests

major  challenges provide  the
form multiple applications.

Until now, most researches in the sensor network
domain have focused on routing, data aggregation, and
energy conservation inside a single sensor network [3].
However, in recent years, WSNs become a significant
technology which begins to attract considerable research
attention. At the same time, they are being developed for
a wide range of applications. Generally, a WSN consists
of large numbers of tiny sensor nodes that communicate
over wireless channels and performs distributed sensing
and collaborative data processing. The major functionality
of it is simple data gathering style applications, and in
most cases, supports one application per network [4].

An RFID system consists of RFID readers, tags, and
middleware. Here, the middleware collects the tag data
identified from the readers; preprocesses and converts
them into meaningful representations. Being compared
with  WSNs, RFID systems are considered to be
large-scale networks such as supply chain management.
However, each system has its strength and weakness for
organizing ubiquitous services. For example, RFID
systems use the tag data identified from the readers
located at static locations with limited numbers. In this
case, applications may not know about the real-time
information on an object and environment when objects
move through certain routes. On the other hand, WSNs
can collect real-time information of objects. Therefore, the
integration of WSNs and RFID systems can amplify the
performance of senor networks by taking advantage of
the merits from both and complementing demerits each
other. In order to do that, a dedicated layer in the
middleware is required to provide (1) transparent interface
for diverse applications to access sensors or sensed data
and (2) common data model and efficient mechanism to
manage sensed data from both RFID systems and WSNs,
Under these circumstances, a cache mechanism in RFID
middleware becomes a stringent performance constraint
because there are a significant amount of data processing
requested from multiple applications and large numbers of
tiny sensor nodes.

This paper focuses on an efficient caching mechanism
appropriate for RFID middleware which can integrate
WSNs  and RFID
mechanism which temporarily stores data for later
retrieval has been an effective method of improving the

systems. Typically, a caching

performance of request-response exchanges and reducing
recurring computation in distributed systems. Based on
this idea, the proposed caching mechanism consists of
two modules, data stream cache (DSC) and history data
cache (HDC) according to the structure of data request
for the purpose of the low latency of request-response.
They are implemented on the middleware, Ubiquitous
Information Middleware (UIM).

The remainder of the paper is organized as follows.
Section 2 includes related works. Section 3 introduces the
environments relevant to the proposed cache systems. In
Section 4, we describe the proposed caching mechanisms.
Experimental results are provided in Section 5. Finally,
Section 6 concludes this paper.

2. Related Work

While there have been several researches on caching
mechanisms for Web services [5] such as remote object
caching for distributed systems including COBRA [6] and
Java RMI [7], web page caching (web proxy) [8], and
caching DB query result [9, 10], the cache issues in RFID
middleware for optimal realization of sensor technologies
have not been studied
Furthermore, only few researches have been introduced in

and applications carefully.
the area of integrating WSNs and RFID systems.
However, neither of them tackles the issues of caching
mechanisms in detail. Followings include the introduction
of several researches regarding the integration of WSNs
and RFID systems.

The HiFi approach [11] and Global Sensor Networks
middleware [3] are representatives of efforts to provide
the integration of WSNs. The former, being researched in
UC Berkeley Database Research, is an integrated solution
for managing distributed receptor data. It provides
hierarchical data stream query processing to acquire,
filter, and aggregate data from multiple devices in a
static environment. It aggregates distributed data using
the hierarchical structure of views combined with the
others to form a new one. The latter is similar to the
HiFi approach but it takes tables instead of views. It
uses the peer-to—peer technology to support dynamic
environment. Both approaches use the SQL to aggregate
the data. However, SQL based systems have a problem
that an application always has to know about information
of deployed sensor environments such as database
schema. Somewhat they are useful for pre-configuration
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applications, but require many efforts to make a new
application.

Ubicore (Ubiquitous Core) [12], being researched in
ETRL is an XML based RFID middleware system. It
focuses on large sensor data from many sensor devices.
It uses its own query language called XQueryStream
(XQuery for Stream data) which is originated from
XQuery [13]. Using this language, it processes the data
before query evaluation using the pre—filtering method. It
reuses the intermediate results of previous evaluations to
improve the processing of RFID tag data streams.
Although this system supports only EPC-based sensor
devices, it takes a growing interest in decreasing data for
high throughput. In [14], an adaptive middleware
framework is proposed to explore the resource/quality
tradeoffs during information collection. The main idea is
to reduce the communication frequency at sensor nodes
frequency  without

by lowering the  sampling

compromising the accuracy of the results.

3. Cache Environments

In this section, we first look over the proposed
middleware architecture. This procedure motivates the
necessity of developing an efficient cache mechanism in
RFID middleware. (Fig. 1) shows the overall architecture
of the designed middleware called UIM which consists of
four layers: device connection layer, data translation layer,
data management layer, and data service layer. The major
role of UIM is gathering sensor data and converting
them into various

meaningful  representations  for

applications.

3.1 Device Connection Layer

The device connection layer has the responsibility of
communicating with WSNs and RFID systems. This layer
provides compatibility and extensibility to communicate
between heterogeneous networks. Also this layer equips
with a common interface to communicate with upper
layer. Each WSN has a base station, a representative of
the network which acts as a local sensor agent to
communicate with UIM. Through this abstraction, a WSN
can be recognized as a singe device. Therefore, from the
point of UIM view, it may have a global sensor-agent in
which each WSN or RFID connection could be
implemented with its own protocol.

This layer periodically subscribes data from sensor
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nodes and aggregates them through a base station. And
then it delivers raw data to the upper layer when a base
station receives the data request initiated by applications
The base
implemented by using the Java RMI. Responses of a base

from upper layer. station interface is
station are raw data, called a sensorDataType. This is a
pre-defined raw data type such as EPC, temperature,

humidity, etc.

3.2 Data Translation Layer

The data translation layer aggregates the data from
base stations upon application requests; converts them
into integrated data models. Those tasks are processed by
two components: data aggregator and data model
generator. When the data model generator generates the
integrated data model, it utilizes the meta-data of the
network and provides them to the data management

layer.
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(Fig. 1) Architectural overview of UIM.

3.3 Data Management Layer
The data
components: the data updater and data provider. The data

management layer consists of two
updater, upon requests from applications, receives sensing
data from the lower layer; delivers them to the data
provider as well as ALE support module; if necessary,
stores them to local storages. This kind of request is
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initiated by the data provider and the data provider
receives it from the data service layer. At the same time,
the data provider has the functionality of returning the
requested data to the upper layer. Here, there might be
two different data types: either real-time or history data.
That is, this layer is in charge of delivering the data to a
specific object relevant with low latency. As a result, this
layer is a central station in which all request-response
data branch off; such that the proposed cache mechanism
is devised in this layer to reduce the response times.
More details follow in Section 4.

Another data flow that we may think of is as
following. To build a global network, a number of
middleware should be deployed. For exchanging the local
sensor data, one middleware has to communicate with
other middleware. It is the role of the extended module.
To communicate with the other middleware, the local
device information should be stored into database and
updated periodically. The middleware uses the device
information to request sensor data to other middleware.
The middleware, which received the request, processes
the request as an application’s request. After then, the
middleware provides the data to the remote middleware
using the common data model. The ALE support module
connects with EPC Global network [15, 16, 17]. If only
EPC based data is requested by the RFID application, the
data updater provides the data to the EPC-IS [17]
through the ALE support module. It acts as an
Application Level Event of the EPC Global architecture
[16] - Input data format is ECSpec and output data
format is ECReport.

34 Data Service Layer

The data service layer returns data or high-level event
messages to the application. The high-level event is a
semantic message that contains business logic based on
Event-Condition-Action based query [16, 17, 18]. The
application can use events to improve the performance
without complicated data processing phase done by the
middleware. This layer is optional; that is, if an
application does not require the high-level event, the data
may be delivered directly to application not via this layer.
In this paper, we only introduce basic concept. The
details remain open for the future work.

3.5 Common Data Model
The raw data
heterogeneous devices which have their own data

may be aggregated from the

formats. Therefore, a common data model is required to
process those different data in UIM and communicate
with remote middleware. For this extensibility, the
designed common data model is composed of three parts:
device schema, value schema, and option schema. The
first two schemas are commonly used for all of data; the
last one is added for multiple types.

4 fields:
networkID, sensorID, and deviceType. They contain the

The device schema has deviceName,
information about network and device identification. The
value schema has 4 fields: format, value, type, and
timestamp. It represents the characteristics and value of a
raw data. The option schema includes the optional
information such as the storage flag, extension mode
parameter, and the device meta-data; it enables to
process a variety of message types. This data integration
is made by the data model generator in the data
translation layer. Finally, all of these data are delivered to
the application layer with the form of XML document in

our research.

4. Proposed Caching Mechanism

Given the architecture and the execution model of UIM,
related  with
request-response is made by the data provider in the

most of core data  processing
data management layer. Therefore, the proposed caches,
DSC and HDC, are devised into this layer to manage the
data efficiently and improve the middleware performance
of data processing. The proposed caching algorithms have
similar structures with conventional caching mechanisms,
which can be summarized as follows: (1) maintaining
data access history information, (2) establishing data
priorities from past statistics, and (3) replacement
decisions based on this priority scheme when the cache
does not have enough space to accommodate new data.

4.1 Data Stream Cache

(Fig. 2) depicts the model of data stream accesses with
and without caching mechanism. According to the
execution flow, the data management layer ought to
subscribe to the local sensor-agents whenever there is a
request from applications. Suppose many applications
make requests data simultaneously through UIM, the
response time of each request will be delayed. To solve
this problem, we propose a caching mechanism, called
data stream cache (DSC) which is placed in the data
management layer. (Fig. 3) shows the structure of DSC.
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(Fig. 3) Data stream cache architecture

The design policy of DSC is to store data frequently
requested from UIM. At this time, we take advantage of
the value of valid_time which comes from an application
according to the characteristics of the network. This
value assigns the time interval of subscribing to sensor
data. For example, there is a temperature monitoring
system which issues the sensor data periodically about 10

seconds. In this case, the sensor data has 10 seconds of
valid_time. If the application requests to the data
repeatedly from the same device within a wvalid_time
interval, the data provider fetches the data from the cache
rather than local sensor agents because the result of the
subscribing works is same as with the value in
valid_time. Therefore, the job of subscribing to local
sensor agents is not necessarily required. These data
should be managed in DSC in such a way that when the
data is requested by the application, it stores to the
cache; DSC is updated periodically at valid_time interval.
If the application requests the data which is managed in
DSC, the data provider does not need to subscribe a
sensor-agent. The data provider can find those data in
DSC. As a result, the application can reduce the data
response time. In addition, the middleware can reduce the
workload by reducing the number of subscribing works
because it does not have to issue subscribing to local
sensor agents on every request.
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(Fig. 4) Model of history data accesses
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l Request from upper layer
[ Data Provider ]
Reduce response time ]
External
(i EPC] [ Reader]
EPC2 [ EpC3 | EPC4
’ SQL Reduce query count
DB
Object Total Average Reference
name interval interval Volume count
EPC1 Tx Ty Ta Tb 10 1
Readerl Tx Ty Ta Tb 20 1

As web caching and conventional memory caching,
DSC has to establish a replacement policy for the
situation that it does not have enough space to
accommodate a new entry. For this purpose, DSC
calculates data statistics  and
maintains the priorities order among data entries. The
data priority, Pg is calculated using the bellowing
equation:

priorities from past

Py = # of references ¢ valid_time / remain_time 1)

Here, remain_time is the time when an entry stays in
DSC. Because the data in the cache is updated at
valid_time interval, if P, is less than 1, it means that
this entry is no longer worthwhile being managed in
DSC; such that DSC checks those kinds of data
periodically and removes them.

4.2 History Data Cache

(Fig. 6) depicts another model of data accesses with
and without caching mechanism, which may happen in
UIM. This is the case of accessing to database for the
history data of a specific device or an object. In this
case, the response time may require much longer latency
than the case of data stream reference. Sometime - it
becomes worse when the history data does not exist in
local middleware because UIM has to access to other
middleware. (Fig. 5) shows the proposed cache structure
for the history data, called history data cache (HDC).

History data may have different sizes according to
each request; such that HDC maintains an additional
table, called a history data table (HDT), which includes
total interval, average interval, volume, and reference
count. Here, the total interval represents range of the
data in HDC; the average interval does the average value

of request which is referenced the entry; the volume field

does count of the data. The order of entries in HDT is
derived from the timestamp range of an object. If a
specific device or an object is referenced by the history
request, the result of the request is stored into HDC.

At this moment, the UIM executes the history request
preparing algorithm. In case of the history request, when
a requested pattern is found in HDT, the result is
prepared from HDC. When a new data is stored into
HDC, the entries of HDT have to be updated using the
range. The updating is conducted with four different
modes according the range.

If the range of the new data does not overlap with the
range of the existing entries correspondent to the same

To Tn
.
Tx S Ty
object name | total interval | average interval | volume ref. count
EPC1 Txl | Tyl | Tal Thl 10 1
EPC1 Tx2 |Ty2 |Ta2 Tb2 20 1
(a) Add mode
To Tn
x| SRS
Tx L )
object name | total interval | average interval | volume ref. count
EPCI Txl |Tyl |Ta l Tb 10 1
!
object name | total interval | average interval | volume ref. count
EPC1 Tx2 |Ty2 |Ta ‘ Tb 10 1

(b) Expanded mode

To Tn
x| ERERaaaEe y
Tx2 BRI Ty2

Tx3 e Ty3
object name | total interval | average interval | volume ref. count
EPC1 Tx1 | Tyl |Tal Tbl 10 1
EPC1 Tx2 Ty2 Ta2 Tb2 20 1
v

object name | total interval | average interval | volume ref. count

EPC1 Tx3 |[Ty2 |Ta Tb 35 1

(c) Merged mode
To Tn
g e
Tal ERESEsE o1

object name | total interval | average interval | volume ref. count

EPC1 Txl | Tyl [ Tal Tbl 10 1
V] y]

i < g

(d) Reduced mode

(Fig. 6) Four different update modes.
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device, the new data is added as a new entry, called an
add_mode. (Fig. 6(a)) shows the example of it. The HDT
has the entry which has the range from Ty to Ty If a
request has the range from Ty to Tys, it does not
overlap. As a result, a new entry is added into HDT.

If the range of the new data overlaps with that of
current entry and includes it, the range of current entry
is replaced with that of the new data, -called
expanded_mode. (Fig. 6(b)) shows the example of it. If a
new request has the range from Ty to Ty, and that is
longer than the current range from 7Ty; to Ty; the range
of a new request is replaced with that of current entry.

In expanded_mode, we have to consider another
situation that a new range is overlapped with more than
one entry. In this case, all of the entries should be
updated, called merged_mode. The new entry after
merging operation updates the range using the minimum
value of T, and maximum value of 7). (Fig. 6(c)) shows
the example of it. If a new request has the range from
T to Ty all entries are merged into the one with the
new range from Ty to Tys. In this way, it is always
possible to trace temporal history of the object.

The final mode is applying a replacement policy when
HDC does not have enough space to accommodate new
entries. In this case, HDC should execute the swapping
job. Before swapping out a certain data, HDC increases
the space by reducing the range of the entries. The new
range value is updated with the current average value
stored in HDT. This average value is also updated at
every referencing. This process is called reduced _mode,
as shown in (Fig. 6(d)). A certain data to be abandoned
is selected when data has a low degree of utilization
statistics calculated by the product of volume and
reference count from HDT. That is, the data which has
the lowest value of product result is taken out.

5. Experimental Result

We implemented the prototype of UIM by using JDK
50. To store the trace data for tracking request, we use
the MySQL. The data for HDC is managed in memory
by using in-memory database. For the simulations, we
selected three parameters such as the number of devices,
cache size, and the wvalid time of each devicee We
collected 1,000 of real-time data from random devices for
each parameter. In order to estimate the performance
improvement, we counted the frequencies of subscribing
and calculate the average response time.

2t FoAQI I A= HA 23
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(Figs. 7(a)-7(d)) show the variation of the average
response time by changing the three parameters. In
general, it is expected as follows: 1) the response time
will take more as the increase of the number of devices;
2) the response time will diminish as the increase of the
valid_ time of each device; 3) the response time will
diminish as the increase of the cache size. (Fig. 7(e))
summarizes the simulation result as that the cache size is
the most important factor to affect the response time
because the difference according to cache size variation
are the biggest.

(Fig. 8) shows the change of subscribing count by
changing the three parameters. In this figure, the names
of x-axis appear at the top of right corner. Each bar is
divided into two sections; the upper section signifies the
overhead caused by the cache management and the lower
does the subscribing caused by cache miss. (Fig. 8(a)) is
plotted by changing the valid_time; (Fig. 8(b) by cache
size; (Fig. 8(c)) by the number of devices. (Fig. 8(a))
shows that the decrease of valid_time leads to the
increase of the upper section because it brings more
frequent swapping and updating. (Fig. 8(b)) shows that
the number of subscribing decreases as the increase of

Average Average
response time response time
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(Fig. 8) The number of subscribing

cache size. Also, we can recognize that the variation of
valid_time does not affect the cache hit ratio, but the
increase of cache size enlarges the upper section; this
means that bigger caches require more handling
overheads. (Fig. 8(c)) shows that the increase of devices
leads to the increase of cache overhead. This result may

change as the number of devices increase rapidly. Under

these limited simulation parameter ranges, it is hard to
attain correct overhead ratio.

(Fig. 9) shows the performance result of history
request processing. To estimate the caching algorithm, we
stored 101,000 history data. That is configured with 100
box packages; each package contains 1,000 objects; the
event period is assumed as 10 days of supply chain
scenario. We measured the average response time of
24892ms, as shown in left side graph without caching.
With the caching algorithm, we measured 198.88ms of the
average response time. As a result, we get the requests
of 67.1% have the less response time than accessing the
database. We found that there is more room to be
optimized with enhanced caching mechanism.

Through the experiments, the effectiveness of the
caching algorithm is examined on the collected data from
heterogeneous system, accounting for respective validity
of data. The caching mechanism aims to reduce the
response time on processing realtime queries in integrated
RFID middleware. The superiority of the proposed scheme
can be verified the following equation:

Average Response Time = (Hit Ratio * Cache Search)
+ (1 - Hit Ratio)*(Cache Search+DB Search). (2)

Here, the response time has gains in proportion as the
increase of hit ratio and degradations; on the contrary, it
degrades as increasing of miss ratio. Therefore, the result
that gain becomes larger than degradation when taking
the caching scheme shows its superiority.

Response

Request
count
400 600 800 1000

(a) Non-caching algorithm

(Fig. 9) Response times for history request

(b) Caching algorithm

6. Conclusions

In this paper, we introduced an efficient caching
mechanism appropriate for RFID middleware which can
integrate  WSNs and RFID systems. Although RFID
middleware sitting between applications and low-level
sensor nodes have been a hot research area, only few
shows the interest of coupling two important components
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of sensor networks. Even worse is that no research has
tackled the issues of caching mechanism in RFID
middleware. In future sensor networks, we can easily
expect that a significant amount of data processing is
required in RFID middleware because of large numbers of
sensors and complex and multiple applications.
Consequently, an efficient middleware layer equipping
with caching mechanism is inevitably necessary for low
latency of request-response while processing data from
sensors and database. For this purpose, the proposed
caching mechanism includes two optimization methods to
reduce the overhead of data processing in RFID
middleware based on the classical cache implementation
polices. We conduct a number of simulation experiments
under different parameters. The simulation results show
that the proposed caching mechanism contributes

considerably to fast request-response times.
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