THAIE 7ts8t HEUE 71819 YHICIE ALY S8 Z2EE0/E 718

199

DOI: 10.3745/KIPSTA.2009.16-A.3.199

AAHE 7Hed HEQE 7)4te
dutle A28 53 Z2EElo|F 7

AM

Ol-o

[

M

Husni Teja Sukmana' - 0] & uf".¢ 7| =".& o ~". 24 o ™.

L] of

HIo Ptz A2d AEAEE A% Z2EE|F A2 771 AlAe] Bo] FAHT Yok YBFE et AAF AN A
g7 aFAE EAsn AHEA He] QdEdo]AE w=td gloM Z2EES FAW stk Z2EEY =& & o
Physical Prototyping (PP), Virtual Prototyping (VP), Modeling Prototyping (MP) 37}A2 W& + it oai@ T2 Eele|d 7|48 S§s
| de] AREE B WA Algte] AgHDRA AFAYA| o] A1 AF FgYo] T, A o|HP TR EElo| YL Fita}
e golA dEjzkx FAol EAR £ =RME o Z2EE|Y =78 Fiehed 3ol Javabean, ActiveXEF 2ol fddn
A o] §oF YXIEE o|83e] FAHE dAst: 258 BAE)h olHF 7182 o Y= A2HE e AT 4
e 53 BAE M £ ok

FIME : 7t Z2EE0Y, RUE T2EE0F, AR TREE0W, Bt TREE0/E, YHCIS AlAY

Embedded System Integrated Prototyping Mechanism
Based on Reusable Component

- Jeong-Bae Lee™ - Kee-Wook Rim™ - Young-Sup Hwang"

Husni Teja Sukmana' n
Young-Jin Kim™ - Sung-Soon Ahn

ABSTRACT

Recently, there are many embedded system prototyping tools for helping embedded system designers to trial their product before it
releases to the market. A prototype is very important for early embedded system design to grasp the desire functions, to get a good
performance, to create delightful user interface, and to increase the valuable of the product. Prototyping tools can be classified by three
categories: Physical, Virtual and Modeling prototyping. The integration of these prototyping tools becomes valuable for speed up
time-to-market and for decrease design cost when design embedded system. The problem comes up because these tools sometime do not
provide an instrument for communicating each other. In this paper, we propose a flexible and reusable mechanism for integrate these tools
base on JavaBeans and ActiveX technology. We show how this mechanism can be employed in various prototyping tools.

Keywords : Virtual Prototyping, Modeling Prototyping, Physical Prototyping, Integrated Prototyping, Embedded System

1. Introduction

Nowadays, embedded system products have been used
in every sectors of our life, for example in daily activities
we use mobile phone, MP3, electronic dictionary, etc. They

B ATE A4AAY 4 AuFAATAENS 2 [TATAE A4}
Y d7dRz £495%0L. (ITA-2009-C1080-0902-0020)
t & 3 4:Sun Moon Umetyomunﬁ‘summdmmwmg
T FAg MBS FRHIGE =
oA 3 A dEdge PRy *l°=}‘%'~}
Ht F 2 Q: dRdista dabAabeta Aalata
EFHT 20093 49 74
4 A 4:14 20009 59 189
AArghE : 2000 549 229

become more advanced, complicated and sophisticated
hardware, software and middleware combination. To satisfy
this situation, designers must concern about some metrics
such as time-to-market, production cost, and etc [1]. However,
just dealing with those metrics still not guarantees that
end-users like their products. Thus, designers also must
concern about trend and users requirements.

To deal with these problems, it is necessary to develop
prototypes before making real products. A prototype may
play a significant role not only for hardware and software
designers but also for end users and marketing people.

200 BEM2IESI=EX A HI16-AT M35(20096)

Furthermore, it can detect prone error in design step, and
become easy to debug mistakes. Basically, there are three
prototyping tools: Physical Prototyping (PP), Virtual
Prototyping (VP), and Modeling Prototyping (MP) [2].

Embedded system design tools have been developed to
handle VP, MP, and PP. VP, as its name implies,
demonstrates a real picture of embedded system products
in computers before their being coded in low-level
hardware language. Furthermore, by using VP tools,
front-end designers may create good-looking 2D or 3D
interfaces to showing their functions to end-users.

On the other hand, a PP tool delivers the “looks-like”
prototyping that offers an embedded system closer to the
actual product. A typical example of a PP tool is the
Embedded System Prototyping Suite (ESPS) [4], which
has been tested in our laboratory previously, and which
will be used in this study. Moreover, while PP only
builds a miniature version of the product, we suggest
that it is necessary to describe the hardware at an
abstract level, the software algorithms, and the hardware
architecture, by using MP tools. A popular modeling
language, with an object-oriented base, is SystemC [5].
SystemC has the ability to build a natural programming
language such as C or C++ into a hardware design
language by adding some libraries. It can be used to
describe system level designs, software algorithms, and
hardware architectures.

There are many VP tools such as RapidPlus [6],
Eclipse [7], and NetBeans [8]. Each VP tool has its own
advantages and disadvantages. For example, RapidPlus
can model end user prototyping easily, because it is
bundled with particular objects for designing user interfaces.
One of Eclipse plug-ins has a system-on-chip front end
interface for SystemC simulations. The plug-ins can
generate waveforms such as a clock. This paper will focus
on making a supplement for VP tools to enable integration
with PP and MP. To achieve this goal, we assume that it
is necessary to develop flexible and reusable supplements,
which can be included in several VP tools.

Here, we propose a mechanism to integrate PP, MP and
VP which later we are called it Integrated Prototyping
(IP), focusing in flexibility and reusability. IP offers
interfaces based on JavaBeans and ActiveX to integrated
PP, VP and MP. In this way, user-level interface designers
can choose freely which tool they may want to utilize
when they undertake integrated prototyping.

The paper is organized as follows: Section 2 will
mention related work, and Section 3 and 4, we describe
our motivation and contributions of the paper. In Section

/,_./"" Prototyping
Fe O
v : ae
/ wwnf %?6;__
/;f& . /N
/x / J = . v \
/ s g o o = \
< .
eyt § § Virtual | § % L
| , '\ Prototyping E : e |
%, & L8
.\\./_,- _ #@p.a,
\\-. %’3‘ 06\\ /J.
\\‘“*n_-__ el
Physical
_ Prototyping

(Fig. 1) Overview of IP's Components

5, we present the system design and implementation in
detail. In Section 6 we will show how IP can be used as
flexible and reusable in various embedded system design
tools. Finally, we will conclude with summary and future
work this paper in Section 7.

2. Related Works

PP, as already mentioned above, has the task of
delivering a miniature version of embedded system
products, such as real visualizations of factory automation,
e-car systems, and vending machine systems. A research
contribution that implements VP with Java Swing,
together with PP, can be found in [12]. In [3], design,
test, and analysis information for VP is integrated via a
“d.tool”. The d.tool includes hardware components such as
sensors and actuators, and software to track a video
user's interaction. A similar tool has been used by [15],
but this focuses on the automatic discovery of distributed
physical interfaces.

Some of this research involves similar ideas to our
study, in terms of utilizing VP for controlling or modeling
PP. However, we found that the research did not tell us
whether it is possible to employ PP in several VP tools.
We have an advantage over previous research by making
components that can be plugged into different VP tools.
On the other hand, we suggest that it is also necessary
to bond the PP and VP to MP, and we did find some
research that tried to integrate PP and VP with MP. We
have discovered that MP is an important aspect of

HALE Jts8 HEHE 7/8t0] YHICIS AlaH E8 ZZEE0IE 718 201

speeding up time-to-market and can be used for user-level
prototyping. Therefore, we bundle MP into VP to make
an integrated prototyping system.

Because we want to integrate PP, VP, and MP, we
investigated studies that deal with MP, especially for
integrating and making VP in SystemC. An example is
the use of QT, multiplatform GUI toolkit, which is based
on OpenGL [9]. The limitations of output presentation in
MF can be covered in QT by displaying a clock signal, a
list of modules, and a list of signals. The implementation
of this research enables designers to add menus to
control simulation, display the simulation time, choose the
signals they want to display, and link them in a new
signal window. This work requires modification to the
SystemC kernel. Because SystemC still needs some
improvement, we think it is better not to modify the
SystemC kernel as an alternative to making independent
graphical modules. An IDE for MP has been developed in
(10, which supports an abstraction level, beyond RTL, to
implement complex system on chip design in MP. This
raises the issue of new techniques to support debugging,
system exploration, and verification.

Our proposed system tries to integrate VP, PP, and
MP. This can be considered as an extended version of
our previous work [16] that includes many improvements.
Integrated prototyping comprises a client side and a
server side. The client side is VP because we assume
that VP deals with the GUI used by the end user to

Sensors &
Actuators

Miniature

input data or view the desired results. Many GUI tools
have been created for supporting embedded system
development, including RapidPlus, Virtio [17], and
standard GUI tools such as NetBeans and Eclipse. Each
of these has advantages and disadvantages. The
JavaBeans and ActiveX component that we have created
is inserted in the client side because we want to offer
GUI designers flexibility when choosing GUI tools.

3. Motivation

In general, PP and MP have been delivered to the
market without VP. Thus, it is difficult to demonstrate
them from a user level perspective. For example, the
SystemC in our MP only supports textual output via
printf and cout to show results. It is inefficient to trace
the output in this way when a simulation runs. Although
this problem can be mitigated by using the trace
commands provided by SystemC, it still needs VP to run
them. Several researchers have tried to improve MP's
capability [9-12].

OpenGL has been used to enhance visualization of MP
by generate timing diagrams [9]. The SystemC IDE has
been constructed to support debugging, system exploration,
and verification [10]. A user-level VP based on MP [11]
has been presented, together with a case study. This
involves a library, called the SystemC Java Library
(SCJLib), which manages the communication between two

PP Environment

RapidPius Objects I"r'.
>
g e
N =
ol - { N
"N |)\
— ﬂ’u -

end-users
UDO Objects and
Componen Objects

M|

JavaBeans Object

VP Environment

MP Environment

(Fig. 2) Overall Architecture of IP

202 BEXMEDI=EX A HI16-AT H3=(20096)

independent programs, a VP program based on the Java
Swing toolkit and an MP program based on SystemC.
Because VP tools will continue to evolve, it is difficult to
integrate MP into VP without flexible and reusable tools.
Therefore, this issue is our first motivation for
implementing IP.

The second motivation runs parallel to the first, in that
it involves communication between VP and PP. The
ESPS tools, which are our PP tools, do not provide a
front-end interface. Instead, the ESPS toolkit includes
some API library functions, I/O boards, sensors, actuators,
and Lego. It runs on real-time Linux, which is
text-based. Unlike SystemC, the ESPS tools are used to
create a miniature version of the hardware that employs
some actuators and sensors, In [12], PP was simulated
with VP based on Java Swing. However, reusable
mechanisms were not used for the intercommunication,
preventing application with other VP tools such as
RapidPlus or even Eclipse.

Finally, these motivations can be used to address the
problem comprehensively. We can use IP between VP and
PP, or to connect VP and MP. Furthermore, we can
integrate all three prototyping categories. Suppose that
someone wants to make a controller in MP, and wants to
show that the controller can control the actuators or
sensors in PP. In this case, [P will have a role as the
linker for integrated prototyping,

4. Contributions

To realize integrated embedded system prototyping, we
have implemented IP, a flexible and reusable implementation
for integrated prototyping. We intend IP to run in various
VP tools, particularly for user-level prototyping. By using
IP, VP designers can choose freely the VP tools that they
need. When designers choose their own VP tools, the
most important factor is that the tools should fit their
requirements in the aspect of speedy prototyping time.
Hence, the solution should be simple, but flexible and
reusable so that the tool can run in many VP tools. To
this end, we built two components which are tied
harmonically within IP. Those components are based on
JavaBeans and ActiveX technologies.

In IP, a JavaBeans component is realized to communi-
catebetween VP and MP. On the other hand, an ActiveX
component is implemented in IP to link VP and PP. Both
components utilize the same procedure for which type of
data will be delivered and use also similar TCP/IP socket
mechanisms for the communication process. Using these

dmction_______ |
| oochemwel ¢ .m
e O e G |
I i | Controtien :‘&H ! Extmal
il Uil :]
H sensor slue . . j
= =0
l

(Fig. 3) MP Architecture

components IP cooperates organically with the built-in
objects which are provided by VP tools user define
objects (UDOs).

In addition, IP provides a template module for actuators
and motors in MP to minimize the effort of their
implementing. The template module can be used in a way
similar to creating an object in object oriented programming
since MP is based on C++ programming. For demonstrative
simulations, we also implement a UDO in a specific VP
tool (i.e, RapidPlus) for maintaining sensor and motor
modules in VP,

Finally, to show how effectively IP can operate
combining PP, MP and VP, we have added to various VP
tools and run various programs. For such simulations, we
realized MP programs which run on different VP tools: a
traffic light module for RapidPlus and a waveform
simulation for traffic light for Netbean.

5. IP System Design

In this section, the architecture and the components of
IP will be presented. (Fig. 1) depicts the overview of IP
tools which contains PP, VP and MP components and
objects. On (Fig. 2) show the general architecture of IP
implementation. Detail of PP, VP and MP will be explained
in the following subsections.

5.1 IP Architecture

5.1.1 Physical Prototyping

We used ESPS tools for PP, which involves hardware
components such as actuators and sensors, I/O boards,
and APl functions (See Fig. 4.a). There are many
actuators and sensors available in ESPS, such as motors,
lights, touch sensors, temperature sensors, light sensors, and
rotor sensors. Each element to be used in an experiment
must be connected to an /O board as a plug-ins for /O
board channels. In addition, there is an API included in
ESPS tools. The API provides functions to control motor

THALE 7t

High Lavel Application For

Controling Sersors | Motors
~er
®=
r T s
NIt ol 1 g
T_FIFD | A Eg

RT-Tank 1
] Linus
_1 e (Deviea %i
J MM Ej Exstomal Otyects

Linua
5 Leval |Kw | | Lioux
=R AL e
| Harwame
= e
| Molors} |
(@)

(Fig. 4) (a) PP Architecture (b) VP Object Components

and sensor values, such as controlling the speed of motor
rotation, changing the motor direction, and setting the
sensor sensitivity. Some functions have a parameter to
identify the particular motor or sensor used. This parameter
must be set to the slot or port used by the sensor or
motor to connect to the I/O board. As shown in (Fig.
4.a), the PP environment points up the relation between
the various sensors and motors, the I/O board, and the
control board.

To communicate with IP in VP, we apply a socket
mechanism to receive data from, and send data to, IP.
There are three parameters required, the first data item
being the channel, the second being the value and the
third being the direction. The channel identifies which
sensor or actuator is being used. Because each I/O board
restricted only for 16 channels (8 channels for actuators
and 8 channels for sensors), it is necessary to check the
channel hardware plugged into the /O board and then set
the channel numbers referring to that hardware
configuration. The second data item is the value for the
speed of the actuator or the sensitivity of the sensor. The
third data item specifies a direction, such as right or left
rotation, for the actuator or sensor.

£.1.2 Modeling Prototyping

IMP exchanges information with IP by employing the
SCI/Lib used in [11]. This library contains an input
module and an output module. The input module
implements the function of receiving data from IP to send
to the simulation module. If the simulation wants to give
data to IP, it must be sent to the output module. The
modules communicate with each other by using the
sc_charmel. The sc_channel will link signals such as
sc_in, sc_out. and sc_inout, from one module to other
modules.

In addition, we provide template modules for sensors
and actuators. Each module has input and output ports
for receiving signals from, and sending signals to, other
modules. (Fig. 3) shows the details of the MP architecture,

St HEUE 7|80 YHICIE AlAH E8 Z2EE0E 71" 203

{Table 1> The Beans Component Classes and Definition

Name Definition
SCJBroker Deal with Input, Output, and Tunnel
SCJInput Send Data to Server
SCJOutput Receive Data From Server
SCJInputListener Implemented by Broker
SCJOutputListener Implemented by Output
SCJInputEvent Used by Input to Broker
SCJOutputEvent Used by Broker to Output
SCJBrokerBeanlnfo Specific properties/method/icon for Broker
SCJInputBeanInfo Specific properties/method/icon for Input
SCJOutputBeanInfo Specific properties/method/icon for Output
Application
F
Events
Objects ;:-:;:1"; UDOs
—
/
_‘___‘-'
Events
Objectn| Funcions | Object 2
Properties

(Fig. 5) Relation among Objects, UDOs and Parent Application

The aim of these modules is to simulate the actuators
and sensors. MP designers can implement these modules
in particular cases by using appropriate mathematical
equations to model the speed, motor power, and sensitivity
of sensors, for example.

To match the sensor and actuator models in PP, these
modules should have input ports for changing the speed,
reversing the direction, setting the channel, and varying
the sensitivity, and output ports for informing controller
about the results of those functions. The ports and
functions of these modules are based on the API
functions provided by ESPS. Finally, to get as close as
possible to a true simulation, additional modules, namely
the independent modules, should be implemented to give
values to the sensor modules.

5.1.3 Virtual Prototyping

In VP, IP provides a flexible and reusable interface for
communicating with MP or PP. Despite (Fig. 2) only
depicting IP in one VP element, it is the aim of IP to be
able to add additional VP (if necessary) for handling MP

204 ZEXEIEZ=FX A HI16-AZ M3=(2009.6)

and PP to achieve integrated prototyping. IP will act as
the interface not only to the VP itself but also between
many objects within VP modules (see Fig. 4b).
Retrieving an object’s value could be triggered by the end
user activating a button object, switch toggle, or rotary
sensor. There are three scenarios for using IP according
to this architecture. These scenarios arise from the
viewpoint of integrated prototyping definition. First, IP
simply maintains the communication between PP and VP.
In this case, we just need IP based on ActiveX to be
utilized. The second scenario employs IP with the
JavaBeans component to join VP and MP. The third
scenario occurs when we consider combining all tools in
integrated prototyping.

In addition, because we have used RapidPlus for the
testing environment, we can define a new UDO. We also
employ it to control hardware (sensors and motors) and
to control MP (sensor and motor modules). In the
Component View section below, IP components and other
objects will be described in detail.

5.2 IP Component View

In this section, we will describe how IP can extend the
function of two independent programs, namely ESPS for
PP and SystemC for MP, by linking with VP. The flexi-
bility and portability of IP can be achieved by implementing
with JavaBeans and ActiveX. In addition, some components
in VP, particularly in RapidPlus, are also performed by
creating a UDO for sensor and actuator components,
called a Sensor Actuator Object (SAQ).

5.2.1 JavaBeans

The JavaBeans components implemented in IP tools
come from three main classes in the SCJLib (SCJBroker,
SCJInput, and SCJOutput) [11]. To make IP flexible and
reusable in many VP tools, we extend its ability by using
the JavaBeans mechanism, <Table 1> shows the classes
and their descriptions. As shown in <Table 1>, in addition
to the three main classes, the JavaBeans components also
need two Listener Classes (SCJInputListener and SCJOutput-
Listener) and two Event Classes (SCJInputEvent and SCJ-
OutputEvent), The last three classes are used as BeanInfo
class (SCJInputBeaninfo, SCJOutputBeanlnfo, and SCJBroker-
Beanlnfo),

In the realization of our idea, these classes must follow
JavaBeans mechanism by implementing java.io.Serializable.
The Serializable class allows applications and frameworks
to save, store, and restore the bean state in a virtual
machine, reliably and platform-independently. To register

these classes in the VP tools, JavaBeans facilitates a
process called introspection, which describes the properties,
events, and methods that a bean contains. A property
that wishes to appear in the VP has to employ both the
get andset methods by using the naming conventions.

Furthermore, a JavaBean that wants to be an event
source has to add an addXXXIistener and removeXXXListener,
where XXX stands for the name of the event. Two
classes, SCJInput and SCJBroker, will instance the object
that called the event source, because they will generate
event-to-event listeners. Therefore, SCJInput class has to
insert addSCJInputListener and removeSCJInputListener to
add and remove interested listeners. In this case,
SCJBroker is the class that desires to register the event
that is generated by the SCJInput class. On the other
hand, following the same method, the SC)Broker class
becomes the event source for the instance of the
SCJOutput class. Finally, the event source has to add a
method to ourbean that will notify all listeners by using
the notifyinput() function.

To complete the JavaBeans components, two elements
remain to be implemented. The first element is the
BeanInfo class that will be used by VP to describe
exactly the properties, events, names to display, property
editors, icons, etc. All classes that want to produce BeanInfo
have to extend SimpleBeanInfo class. We created three
BeanInfo classes, for SCJBroker, SCJInput, and
SCJOutput. Using the naming convention, the name of the
class should precede BeanInfo, giving the class names
SCJBrokerBeanInfo, SCJInputBeaninfo, and SCJOutputBeanInfo.
The second element is a Manifest file. The VP can
identify the JavaBeans components by reading the Manifest
file. Among the classes, only three classes (SC]Broker,
SCJInput, and SCJOutput) became JavaBeans. The classes
that want to register as JavaBeans simply need to set a
single code JavaBean: True below their class name.

5.2.2 ActiveX Component

ActiveX, a Microsoft technology used for developing
reusable object-oriented software components [13], is used
in IP as the socket mechanism for VP to transfer data to
PP. It uses an asynchronous mechanism to transport data
to PP, because PP has to run anytime, even without
additional data from VP. For example, when a driver
moves the car key to the start position, the engine will
run automatically; without additional activities by the driver,
the engine will still run and wait further instructions.

We composed various classes that can be packaged in the
ActiveX component. The CRClientOCXApp is a subclass

TMALE 7t

from COleCOntrolModule. The CWinApp is the main class,
which has the function of broker for input and output
data. Before the main class can apply its function, socket
communication must be established by CConSocket class.
Because ActiveX is a type of Windows component that is
usually included in many interfaces, we need CSocketMgmt
and CAnycSocket classes for linking interface modules.
Finally, tCRClientOCXCtr will be placed to receive data
frorn other objects in VP.

5.2.3 UDO and SAO Components

UDO is a group of objects that tie together for specific
purpose. RapidPlus supports external objects that, once
registered into RapidPlus, cannot be distinguished from
other RapidPlus objects. All RapidPlus objects have
properties, events, actions, and activities, so do UDO.
(Fig. 5) illustrates the relation among objects, UDOs and
parent application. Basically parent application consists of
many objects such as default objects that are provided by
RapidPlus, UDOs and other external object such as
JavaBean, ActiveX, etc. These objects collaborate each
other by exchange their properties, events and functions.

We follow UDO components from [14] where they
create UDO to control sensors and actuators from PP to
VP. In this case, we use the same structurefor control
the sensor and actuator from MP and VP. This UDO has
properties with specific tasks for handling channel,
direction, and speed of sensors and actuators. UDQ,
however, cannot transfer data to PP and MP directly,
without a contribution from ActiveX and JavaBeans
communication components. These components have the
main function of maintaining a socket tunnel between VP
and either PP or MP.

The UDO was designed as an SAQ. This object
denves from three classes; namely, SensorMotor, Motor,
and Sensor. Once the sensor or motor module is defined
in PP or MP, VP must also identify the module via an
instance of the Motor or Sensor class. The Motor class
holds the properties related to actuators; namely, channel
number, direction, and speed. The Sensor class keeps
channel number and direction. These classes are an
aggregation from the SensorMotor class. There are several
steps to implementing these classes in the real simulation.
First, some objects from the classes should be added to
the RapidPlus object layout. Other objects can also be
dragged to the object layout, depending on the application
to be constructed. After defining the entire object, a mode
tree should be composed for changing the state of the
objects. Finally, for transforming a state in the mode tree,

ot ZEHE 7(8t0] gHICIE Al2Y S8 ZZEEOIE 718 205

NetBean RapidPLUS
e
+ Swing Fle Edt Layout Gro
[oawr | = .
- beans Llel@l X<

) CounterButton

[CourterButton?

[} Countersuttonfiecord

W Juogler

S) S,

(Fig. 6) Usages of IP in different VP Tools

RapidPlus provides the triggers, actions, and activities. A
trigger acts as an action for changing the state condition
from one state to another state. The activities are
applications performed on objects when a specific mode is
activated, and the actions are similar to the activities,
except for taking place only during transitions.

6. Flexibility and Reusability of IP

In this section, we demonstrate how flexibly IP can be
reused for different embedded design tools. As shown in
(Fig. 6), IP can be plugged into various VP tools such as
RapidPlus, Netbean, and BeanBox. When IP is plugged
into the VP, it requires three components namely, the
Broker, Input, and Output. The components should be
dragged to object layout in order communicate to other
GUI components that are provided by each tools. When
they have dragged to object layout, these components are
categorized as non graphic objects.

To test IP, we implemented a user-level prototype for
a traffic light controller in MP and showed the VP by
using RapidPlus (see Fig. 7.a). In MP, we define a
controller module which has some input signals such as
timer, reset and power. Timer module will send signal
based on clock cycle which it could be ON (signal value
is 1) and OFF (signal value is 0). Reset module is used
for controller to reset all output signals which used by
led. Module on/off has function as switch from electrical
power. By using the SCJ library in MP, the value of
signals out can be sent to GUL

In GUI (in this case we implement in RapidPlus),
insteadof IP module (input, output and broker module),

206 BEMIIST=FX A H16-AT HM3I=(2009.6)

]
it ——1 .
Resst % Tmc " Lwllr g EE
R
Gige——
m-——-ﬂ EEE
1 Hair Adcler
| |
T (O o |
R A 5 e |
51 IS s [et A S

(b)

(Fig. 7) (a) User-level Traffic Light Simulation, (b) Waveform Traces

some objects from default object should be added for
showing how signal from MP can be visualized by end
users. In this case, some lamp objects have been utilized
in object layout. Those objects will receive value from MP
by using IP module.For demonstrate as a real situation in
traffic light, some car objects have been drawn.

Another example (Fig. 7.b)demonstrates how the
Netbean can utilize IP to create waveforms. We compared
the waveform when it runs in MP (text mode) with the
graphical mode. The signals come from data A and data
B, which have been generated by the driver module. In
this case we will implement half adder combination logic,
thus the output signals should sum (A ~ B) and carry (A
& B).

7. Conclusions and Future Work

This work attempts to add an advantage for embedded
system design tools by developing a flexible and reusable
interface which can be embed to these tools. Thus, stand
alone tools can communicate each other for creating a
satisfying integration prototyping. By integrating these

tools, embedded system designers can deal with some
embedded system design metrics such as time-to-market,
low production cost, and can meet with user's functional
requirement and trend. In this paper, the flexible and
reusable interface will be added to VP, MP and PP by
utilizing JavaBeansand ActiveX technologies. In addition,
we have demonstrated that IP can be ported to various
VP tools easily and flexibly. We think that IP can give a
satisfaction support for VP designers when they choose
their own VP tools.

Modeling the whole hardware components required in
MP is very complex, thus as future work we plan to
distribute them across PP and VP efficiently to mitigate
such complexity. Then, we expect that hardware model
designers will have more chances to focus on designing,
developing, and maintaining a controller in MP rather
than other hardware components.

References

[1] Vahid F, Givargis T. “Embedded System Design: A Unified
Hardware/Software Introduction”. Wiley, 2002.

THALE 7HSB HEUIE 7|¥iol YHICIE Aoy B8 Z2EE0E 718 207

[2] Sukmana TS, Lee JB, Rim KW, Nam Y]. Extending
Capability of SCJLib with JavaBeans for Integrating between
SystemC and GUI Tools. In Proc of 7th APIS, 2008; 465-468.

[3] Hartmann B, Klemmer SR, Bernsten M. Reflective Physical
Prototyping through Integrated Design, Test, and Analysis.
In Proc. DIS, PA, 2007.

[4] ESPS Tools Page. www.artsystem.co.kr/product.php

[5] System C Community Website. http://www.systemc.org

[6] RapidPlus Development Tools Page. http://www.sky-mobile
-media.com/main.php?func =devtools

[7] SystemC Plug-in for Eclipse. http://www.fzi.de/sim/sc-
visualisation—plugin.html

[8] NetBeans Tools Page. http://www.netbeans.org/

[9] ReidM, Charest L, TsiknovichA, Aboulhamid E, Bois G.
Implementing a Graphical User Interface for SystemC. In
Proc. HDLCon, USA, 2002; 224-231.

[10] Rogin F, Genz C, Drechsler R, Rulke. SyCE: An Integrated
Environment for System Design in SystemC. In The 16th
IEEE International Workshop, 2005; 258-260.

[11] Satria H, Kwon JB. Adding a Java GUI to SystemC
Simulation for Virtual Prototyping of Embedded SystemC.
In WSEAS Transactions on Computer Research, 2006; 1(1)
264.

[12] Jong-1l Kim. A Design and Implementation of Real Time
Monitoring and Control System for Shoes Production
Process Automation. Master's Thesis, SMU, 2003.

[13] ActiveX in http://www.en.wikipedia.org/wiki/activex.

[14] Jung Y], Lee JB, Kwon JB, Rim KW, Cho SY. An Embedded
Integration Prototyping System based on Component
Technique. LNCS, 2007, SpringerIn Berlin / Heidelberg;
4761:171-180.

[15] Marquardt N, Greenberg S. Shared Phidgets: A Toolkit for
Rapidly Prototyping Distributed Physical User Interfaces. In
Proc. TEI, Louisiana ACM-Press, 2007.

[16] Sukmana HT, Lee JB, Yang JS, Han HW, Jung YJ. The
Components for Integrated Embedded System Prototyping.
In IEEE International Symposium (ISCE), 2008.

[17] Virtual Platforms Embedded Systems Emulators for
Software Development Tools Page. http://www.virtio.com/
home.aspx

Husni Teja Sukmana
e-mail : husniteja@yahoo.com
1996'd ~2001'd University of Indonesia,
Chemical Engineering (bachelor)
2003'd ~2005*2 Sun Moon University, com-
puter science departement (Master
of Science)

20063~ A Sun Moon University, computer science and
engineering
P4 #-oF : Embedded System, Integrated Prototyping

of & i

e-mail : jblee@sunmoon.ac.kr

19813 29 AEdigta Ao} ANAT
(F88pAh

1983 249 AEdigta AAAF(FTEHAD

19%4 249 ddn AAFIHF Y

19828 ~1991d @ dAFAATE 44
a4

19918 ~2002'd F-Are]Fojdista ZHFE T} wF

19963 ~1997'd UClIrvine AU

20024~d A AEdign AFHITEY A

ARk QUi A2d, AAE Al2d, AADEN Z2ES

27 =
e-mail : rim@sunmoon.ac.kr
19773 Astdqistn Az-FgaHF e
19873 g HFET T AN
19943 Qlstohgta 7 FE T (F A
20008 ~4 A dEUgn HFHFEHE
£y

BHEoF: HlojghHo] £, YultE AJ2g

g3y

e-mail : young@sunmoon.ac, kr

1989 AM-&oidt 75FE 3 & (F el

1919 ¥3-Faostn HFe Fatap(Fs}
A4}

1979 ¥3-3aosty HFeFER(TY
HHAL)

19973 ~2002'd #SHAFANATY dgAT4

0033~ A AEdga FFHIYY 2F

B Lok AFEFE, vpoleFE

208 ZEMeIS2=FX A HI16-AT H3=(20096)

448
e-mail : youngkim@sunmoon.ac.kr
19974 M gdigtan A7) 3 (A}
199994 Mg A7 3 (I HHAD
199914 ~2003'3 ¥FHATUETY 274
20039 ~2008'd METE A7)-AFEHT
(T EEAh
20083~ A dEdeta HAFHTEY AIBA
BARof: YT A2g, AHY AxES 0] 7)Y, 2uld AR
B2 A2" R 7Y, A R AY #4 =T

ﬁr
i‘j PA Rk Qut)s A\ A€ 3XA7u T2

ot -y

~ e-mail : ssAhn83@gmail.com

2008 98 ~3 A AEdEm AxARE
83t YAt

Egto] 3

