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A Massively Parallel Algorithm for Fuzzy Vector Quantization

Luong Van Huynh" - Cheol Hong Kim' - Jong-Myon Kim'™

ABSTRACT

Vector quantization algorithm based on fuzzy clustering has been widely used in the field of data compression since the use of fuzzy
clustering analysis in the early stages of a vector quantization process can make this process less sensitive to its initialization. However,
the process of fuzzy clustering is computationally verv intensive because of its complex framework for the quantitative formulation of the
uncertainty involved in the training vector space. To overcome the computational burden of the process, this paper introduces an array
architecture for the implementation of fuzzy vector quantization (FVQ). The arravarchitecture, which consists of 4096 processing elements
(PEs), provides a computationally efficient solution by emploving an effective vector assignment strategy during the clustering process.
Experimental results indicatethat the proposed parallel implementation providessignificantly greater performance and  efficiency  than
appropriately scaled alternative amray systems. In addition, the proposed parallel implementation provides 1000x greater performance and

100x higher energy efficiency than other implementations using today's ARMand TT DSP processors in the same 130nm technology.

These

results demonstrate that the proposed parallel implementation shows the potential for improved performance and energy efficiency.

Keywords : Fuzzy Vector Quantization, Fuzzy Clustering, Image Compression, Parallel Processing Architecture, Embedded

Processors

1. Introduction

Vector quantization (VQ) is a classical quantization

technique that allows the modeling of probability density
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functions by the distribution of prototype vectors. VQ
identifies an input vector with a member of a codebook
which is a collection of codeword vectors. The encoding
process replaces each constituent input block with its
corresponding VQ codeword index. However, the tradi-
tional VQ method makes this process more sensitive to
initialization for achieving the quality of vector quantizers.
Fuzzy clustering provides a solution for designing a high
quality of codebook by allowing the assignment of each
training vector to multiple clusters in the early stages of
the iterative codebook design process [1-2], resulting in
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the reduction of dependence for the resulting codebook on
the random initial codebook selection.

Fuzzy clustering based vector quantization algorithms
[1-6] have been introduced to achieve the quality of vec-
tor quantizers by allowing the assignment of each train-
ing vector to multiple clusters in the early stages of the
iterative codebook design process. The goal of fuzzy
clustering is to allow each feature vector to belong to
more than one cluster with different membership degrees
(between 0 and 1). During the process, the fuzzy assign-
ment is allocated at the earlier training stage. This guar-
antees that all input vectors are included in the formation
of a new codebook represented by all the cordword-
coupled with weights. The well-known fuzzy clustering is
Fuzzy C-Means (FCM) [3] which allows overlapping
clusters with partial membership ofindividuals in the clus-
ters where ¢ is a priori chosen number of clusters.
However, the process of fuzzy clustering is computation-
ally very intensive because of its sophisticated framework
for the quantitative formulation of the uncertainty in-
volved in a training vector space.

To overcome the computational burden of the complex
process, this paper introduces a parallel implementation of
the fuzzy vector quantization (FVQ) algorithm using a
representative data parallel architecture which consists of
4,096 processing elements (PEs). Thus, the proposed par-
allel approach provides a computationally efficient solution
by employing an effective vector assignment strategy for
the transition from soft to crisp decisions during the
clustering process. This paper evaluates the impact of the
parallel FVQ implementation on both the processing per-
formance and energy efficiency. In addition, this paper
compares the proposed parallel implementation to other
implementations using commercial processors. Experimental
results show that the parallel implementation provides
about 1000x greater performance and 100x higher energy
efficiency than other implementations using commercial
ARM [7] and TI DSP [9].

The rest of this paper is organized as follows. Section
II presents fuzzy clustering based vector quantization for
data compression, a brief introduction of the baseline data
parallel architecture, and methodology infrastructure for
the parallel FVQ implementation. Section III introduces
our proposed parallel FVQ implementation using the
specified data parallel architecture. Section IV analyzes
and compares the performance and energy efficiency for
the parallel implementation and the implementations using
ARM families. Section V concludes this paper.

2. Background Information

2.1 Fuzzy Vector Quantization

This section briefly reviews key features of vector
quantization (VQ) and fuzzy clustering [8]. VQ is defined
as a mapping of k-dimensional vectors in vector space
Ri on to a finite set of vectors V={v; i=1,---,NJ}, where N
is the size of the codebook. Each vector yi=(vu,...yx 1)is
called a code vector or codeword. Only index i of the re-
sulting code vector is sent to the decoder. At the de-
coder, an identical copy of the codebook is retrieved as
the encoder by a simple table-lookup operation. The com-
pression ratio depends on the cardinality of the codebook,
usually much smaller than that of the input domain.

In this paper, we study fuzzy clustering based vector
quantization to design a high quality of codebook by al-
lowing the assignment of each training vector to multiple
clusters in the early stages of the iterative codebook de-
sign process. Fuzzy c-means (FCM) [3] is one of the
most well-known methodologies in clustering analysis.
The FCM clustering is an iterative algorithm of cluster-
ing technique which produces optimal ¢ partitions and
centers V={v;, vy, v Suppose the unlabelled data set
X={x;, x»,", x,} be the pixel intensity where n is the
number of image pixels to determine their memberships.
The FCM clustering performs to partition the data set X
into ¢ clusters, and the objective function of the standard
FCM is defined as follows:

J,UV) =SS urd (x,,v,) (M)
i=l k=l

where d(xy,vi) represents the distance between the pix-

[

el x; and centroid v;, along with constraint ;“*’* = and
the degree of fuzzification m=1.

The data point x; belongs to a specific cluster v;which
is given by the membership value uy of the data point to
that cluster. Local minimization of the objective function
Jnl U, V) is accomplished by repeatedly adjusting the val-

ues of uy and v; according to the following equations:
1

Ya I
| dix.y)
u, = Z[—d= oy J )

2ux,
=4

v , 15isSe (3



As Jpis iteratively minimized, vi becomes more stable.
Iteration of pixel clustering is terminated when the termi-

max {‘vllri _vrlr :Illl}4 &

nation measurement i is satisfied,

where v;"" is new centers, v/’ is previous centers, and
€ is the predefined termination threshold.

In the codebook design using FVQ, the input model
consists of a set of training vectors X which are weight-
ed with uy. In addition, the training vectors are mapped
into clusters which are represented by codewords V.
After several iteration processes, a high quality of code-
book is generated. However, this demands tremendous
computational requirements. To overcome this problem,
we prefer to implement a parallel FVQ using a repre-
sentative data parallel architecture which consists of 4,096
processing elements (PEs).

2.2 Data Parallel Architecture

Among many computational models available for imag-
ing applications, single instruction multiple data (SIMD)
processor arrays are promising candidates for 2-dimen-
sional image processing algorithms since they often em-
ploy thousands of processing elements (PEs) while possi-
bly distributing and co-locating PEs with the data I/O to
minimize storage and data communication requirements.
(Figure 1) shows the baseline data parallel architecture
along with its interconnection network. When data are
distributed, the processing elements (PEs) execute a set
of instructions in a lockstep fashion. With 4x4 pixel sen-
sor sub-arrays, each PE is associated with a specific
portion (4x4 pixels) of an image frame, allowing stream-
ing pixel data to be retrieved and processed locallv. Each
PE has a reduced instruction set computer (RISC) data-
path with the following minimum characteristics:

» ALU-computes basic arithmetic and logic operations,
* MACC-multiplies 32-bit values and accumulates into

Neighboring PEs
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(Figure 1) Baseline data parallel architecture
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a 64-bit accumulator,

* Pixel unit-samples pixel data from the local image
SeNnsor array,

« ADC unit-converts light intensities into digital values,

» Three-ported general-purpose registers (16 32-bit
words),

» Small amount of local storage (256 32-bit words),

Nearest neighbor communications through a NEWS
(north-east-west-south) network and serial /O unit.

Using the baseline data parallel architecture, we imple-
ment a parallel FVQ algorithm to meet the computational
requirements. The next section presents a simulation
methodology to evaluate the performance of the parallel
FVQ implementation.

2.3 Methodology Infrastructure

(Figure 2) shows our methodology infrastructure which
is divided into three levels: application, architecture, and
technology. At the application level, we use an in-
struction-level simulator to profile execution statistics,
such as issued instruction frequency, PE utilization, and
PE memory usage. At the architecture level, we use the
heterogeneous architectural modeling (HAM) of functional
units for processor arrays, proposed by Chai et al. [10].
The design parameters are then passed to the technology
level. At the technology level, we use the Generic System
Simulator (GENESYS) [11] to calculate technology pa-
rameters (e.g., latency, area, power, and clock frequency)
for each configuration. Finally, we combine the database
(e.g., cycle times, instruction latencies, instruction counts,
area, and power of the functional units), obtained from
the application, architecture, and technology levels, to de-
termine execution times, area efficiency, and energy effi-
ciency for each case.

Application Level ! Technology Level | Architecture Level

| I

1 Technology I : Architecture
i : Models I : Models
: ! : |

' GENESYS HAM

Instruction-level
Simulator 1

| | ] |

o .
Execution I I De??;w?:“ I
Database i

S S T P

Area Efficiency .
Output  Ienergy Consumption| |
Execution Time

(Figure 2) Simulation methodology
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3. Parallel Implementation of Fuzzy Vector
Quantization

This section presents a parallel FVQ algorithm im-
plemented on the specified data parallel architecture,
which consists of fuzzy c-means (FCM) clustering for a
codebook design and vector quantization (VQ) for image
compression.

3.1 Parallel Fuzzy C-Means Clustering Algorithm

The pseudocode of the parallel FCM algorithm is given
in (Figure 3), along with a pictorial description of the
FCMmechanism and of the communication patterns for
ahypothetical 16 node SIMD array system. Each system
node is directly interfaced to a 4 x 4 pixel matrix. In
step 1, each node computes distance between input pixels
and the current center to determine their member-
shipvalues, new centers, and the termination measurement
value, If the termination measurement value of distortion
is less than the threshold value, current codeword will be
replaced with the new center value. In step 2, the 16
components of the membership values are passed to the
next neighbor in the same row; the new termination
measurement value is computed; and then it is compared
against the threshold value toreplace with the new center
value in case the termination value is less than the
threshold. This process is iterated until every node in the
same row has been visited by the membership values.
When the row completes, the membership values are
transferred vertically to the next row in step3, and the
same process is iterated along the row in step 4. A key

enabling role is played by the toroidal structure of the
interconnection network, which enables the communica-
tions among the nodes in the opposite of the mesh.

3.2 Parallel Vector Quantization Algorithm

Using the codebook generated by the FCM algorithm
in Section 3.1, the parallel encoding operation of a vector
quantizer is implemented. The pseudocode of the parallel
encoding algorithm is given in (Figure 4) As a first step,
each node computes the distortion between the input
blockand the codeword. In a second step, the 16 compo-
nents of the input block, the distortion value, and the in-
dex of the codeword are passed to the neighbor in the
same row of the PE array. Then, the new distortion val-
ue is computed, and compared against the received dis-
tortion value. If a new minimum value is found, then the
computed distortion and index values are will replace the

REPEAT for all rows
REPEAT for all colunns
Transfer mput block. current distortion. and current index to the eastern node;
Calculate local distortion between input block and codeword;
IF local distortion < current distortion THEN
cument mdex = local index;
current distortion =local distortion;
ENDif
END repeat
Transfer mput block. current distortion. and current index to the southem node;

END repeat

Outpur current indexes:

(Figure 4) Parallel VQ encoding algorithm

REPEAT for all rows

REPEAT for all colunms

values. and the termination measure of distortion:

current codeword = new center value;

END if

END repeat

END repeat

Output current codewords;

Transfer current membership values to the eastern node:

Calculate distances, new centers, and new membership

IF termination measure of distortion < threshold THEN

Transfer current membership values to the southemn node:

/— 4x4 pixels per PE

ep Slep <

(Figure 3) Parallel fuzzy C-means clustering algorithm



received ones, and transferredto the next node of PEs.
This process is iterated until every node in the same row
has been visited by the input block. When the row com-
pletes, the data are transferred vertically to the next row,
and the same process is iterated along the row.

4. Simulation Results

In this section, the performance evaluation of the par-
allel FVQ implementation is presented. We evaluated the
parallel implementation with the following parameters: (1)
the degree of fuzzification m=2, (2) the termination
threshold E=0.0001, and (3)the number of codewords C=2
4 8 16; 32 64; 128, 256 (codeword size 4x4 pixels). In
addition, a cycle-accurate simulator was used to simulate
and evaluate the performance of the parallel FVQ with
eight different codewords, where the parallel FVQ algo-
rithms were developed in their respective assembly lan-
guages for the PE array system. In this study, the image
size of 256x256 pixels was used. For a fixed 256x256
pixel system, the number of 4,096 PEs is used because
each PE contains 4x4 pixels. <Table 1> summarizes the
parameters of the PE array system configuration.

The metrics of execution time, sustained throughput,
and energy efficiency of each case form the basis of the
study comparison, defined in <Table 2>,

where C is the cycle count, f is the clock frequency,
Oevec is the number of executed operations, U is the PE
utilization, and Npg is the number of processing elements.

(Table 1) PE array system parameters

Parameter Value
Number of PEs 4,096
Pixels/PE 16 (4x4)

Memory/PE [word] 256 [32-bit word]

VLSI Technology 130 nm
Clock Frequency 133 MH:z
Interconnection Network Torus

intALU/intMUL/Barrel

Shifter/intMACC/Comm AL AL RO

(Table 2> Summary of performance evaluation metrics

Execution i i : =
Time Sustained Throughput Energy Efficiency
{ = £ = O ' U-Npg | Gops | _0, U-N, Gops
exee Ne = L 1 .= l_]
£ Torii sec Energy  “Joule

n

F
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{Table 3) Performance of the FCM algorithm for the codebook
design plus VQ encoding

Normber off 00 e e froughot PSR s et
codewords [9] |lmillions]| [sec] |[Gops/sec] [dB] [bppl
C=2 0.76 2221 017 368 187 | 00625
C= 0.78 39.59 045 374 2191 0l
C=8 0.76 90.64 0.68 367 221 0185
C=16 0.64 24468 1.84 307 248 025
C=32 062 286.39 215 298 261 | 03125
C=64 0.30 410.39 309 239 203 035
C=128 0.46 82332 6.19 222 286 | 04375
C=256 045 16209 122 219 27 05

<Table 3> summarizes the performance of the FCM
algorithm for generating differentnumber of codewords
and the VQ encoding processin terms of execution time,
system utilization, sustained throughput, PSNR, and com-
pressed rate parameters where the system utilization is
calculated as the average number of active processing
elements.

4.1 Performance Comparison with other Array Systems

<Table 4> compares three parallel VQ implementations
of different hardware platforms [12-14]). The performance
is computed for 4x4 blocks. The MasParl performance is
compensated for its larger codebook. Although the
MasPar and Inmos systems are several years old, the
performance offered by the proposed parallel im-
plementation provides significantly greater performance
and efficiency than appropriately scaled alternative
systems.

(Table 4> Performance comparison of selected parallel VQ

implementations
Parameter MasParl Inmos MasPar2 SIMD130
No. of Processing| 55 B 16384 4,006
Elements
Clock Rate [MHz] 12 20 125 130
Image Size 128 x 128 | 512 x 512 | 512 x 512 | 256 x 256
Execution Time 179 4800 55 08
[msec]
Performance ;
(Kblocks/sec) 114 341 28 5,120
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4.2 Performance Comparison with Today's Commercial
Processars

This section compares the performance of our parallel
FVQ implementation to that of current commercial ARM
and TI DSP processors including ARM7TDMI, ARMY926E]
=S, and TMS320C6416 implemented with the same 130nm
technology in terms of instruction count, execution time,
and energy efficiency. A comparison between the parallel
implementation and the implementations using the com-
mercial products carries unavoidable errors. The objective
of this section is to show the potential for improved per-
formance and energy efficiency, rather than a precise per-
formance comparison, since ARM chips are commercially
designed and manufactured products and our baseline ar-
chitecture is an architectural exploration.

(Figure 5) shows the performance of the VQ encoding
implementations using fourdifferent architectures (SIMD
130, ARM926E]-S, ARM7TDMI, TMS320C6416 DSP). Our
SIMD130 outperforms ARM and TI DSP processors in
execution time.

(Figure 6) shows additional data presenting instruction
distribution of the VQ encoding implementations using
four processors. Each bar divides the instructions into the
arithmetic-logic-unit (ALU), memory (MEM), Control
flow, and communication (COMM). The ALU and MEM
instructions are computation cycles while COMM in-
structions are necessary for data distribution among pro-
cessor elements. Control flow consists of conditional (or
branch) instructions. An interesting observation is that
the parallel encoding implementation using SIMDI130 is
dominated by ALU and MEM operations (51% ALU and
32% MEM instruction types) due to the inherent charac-
teristic of VQ encoding. These performance results are
combined with power parameters for each function unit to

10000.000 6,171.94

.85
006000 793

100.000 .91 32

10.000

Execution time [ms]

1.000 .80

0104 . -
SIND130  ARMO926E.J-S ARMT7TDMI
Architecture

TIC6416

(Figure 5) Execution time of VQ encoding using three architectures

ALU = AEM  Control Flow = COMM
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10 R— —
SIND130 ARM926EJ-S  ARMTTDMI-S TI6416

Architecture

(Figure 6) Instruction distribution of VQ encoding using four
different processors

calculate energy efficiency.

<Table 5> showsan overall performance for each case.
SIMDI130 outperforms both ARM and TI DSP processors-
with the same 130nm technology in terms of execution
time and energy efficiency which is defined as the task
throughput achieved per unit of Joule. SIMD130 achieves
about 100x higher energy efficiency than the ARM
processors. This is because SIMDI130 achieves higher
sustained throughputs with a small increase in the sys-
tem power. Increasing energy efficiency improves sustain-
able battery life for given system capabilities. Moreover,
our parallel implementation provides 1000x better per-
formance than the ARM processors.

(Figure 7) graphically shows the throughput-energy ef-
ficiency for each case.

{Table 5> Performance comparison of the VQ encoding
implementation using four different processors

Parameter | Units. | SIMDI30| ARMI2SE]-S | ARMTTDMI | 11
Technology [nm] 130 130 130 130
Clos MHZ] | 133 250 133 720
frequency
Average power| [mW] | 2,083 120 24 950
Average : ;g5 g 2 i
throughput [MIPS]| 402821 275 120 5,760
Encoding time | [ms] 0.8 6,172 980 914
Consumed time
(10W [hr] 5997 135 4263 115.1
hatterv)
Enerey  ujoutel] 1667 | 740632 N | 86854
consumption
Energy  |[Gops/l} 15 23 5 6.
efficiency oule] o - )
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(Figure 7) Performance comparison of each processor in energy
efficiency and throughput plane

5. Conclusion

In this paper, we have presented and evaluated the
impact of our proposed parallel FVQ implementation using
a specified data parallel architecture in terms of the per-
formance and energy efficiency. Experimental results
show that the proposed parallel implementation provides
greater performance and efficiency than appropriately
scaled alternative parallel systems. In addition, the pro-
posed parallel implementation provides 1000x greater per-
formance and 100x higher energy efficiency than other
implementations using today's ARM and TI DSP process-
orswith the same 130nm technology. These results sug-
gest that he proposed parallel implementation has the po-
tential for the
efficiency.

improved performance and energy
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