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An Efficient Parallelized Algorithm of SEED Block Cipher on Cell BE
Deokho Kim' - Jaeyoung Yi™ - Won Woo Ro™"

ABSTRACT

In this paper, we discuss and propose an efficiently parallelized block cipher algorithm on the CELL BE processor. With considering the
heterogeneous feature of the CELL BE architecture, we apply different encoding/decoding methods to PPE and SPE and improve the
throughput. Our implementation was fully tested, with execution results showing achievement of high throughput, capable of supporting as
high network speed as 259 Gbps. Compared to various parallel implementations on multi-core svstems, our approach provides speedup of

1.34 in terms of encoding/decoding speed.

Keywords : SEED block cipher, Cell BE, parallelization, multi-core processor

1. Introduction

As the need for information security increases in our
everyday life, the procedure of encoding/decoding data
becomes a critical issue in data network systems. Indeed,
cryptography has been a major application domain of the
diplomatic and military areas. Moreover, the importance of
cryptography is continuously growing in our current
world of informational society, highly used in electronic
commerce, electronic signature, or digital authorization.
Cryptosystems must ensure that private information does
not leak out to unauthorized users.
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To this point, there have been various encryption
algorithms such as DES(Data Encryption Standard)[1],
AES(Advanced Encryption Standard)[2], and FEAL(Fast
data Encipherment ALgorithm)[3] developed. In fact, with
high network transmission rate, the process of

encryption/decryption is one of the major bottlenecks in

contemporary  systems[4]l. As a result, high-speed
encoding is required especially when sending a large
amount of important information with high-speed

transmission or on Virtual Private Networks(VPN).

The performance requirement of the cryptosystem
includes high computational ability, high data throughput,
and adaptability to the protocol changes. To address this
request, the Cell Broadband Engine(Cell BE) architecture
is an attractive match for the cryptosystem imple-
mentation. The Cell BE processor provides a multiple
number of general purpose programmable cores targeting
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a broad set of workloads, intensive multimedia and
scientific processing. Since many cryptographic algorithms
consist of a large amount of homogenous computations,
using the Cell BE can exploit a high level of parallelism
and achieve increased computational performance which
will ensure high data throughput.

Our contribution in this paper is that we develop an
efficient parallel algorithm of the SEED block cipher on
the Cell BE architecture with proper task mapping and
load balancing. The design is fully functional and we
have achieved a 259 Gbps throughput. The results are
superior to the performance achieved by other parallel
implementations on the various multi-core general
purpose processor platforms.

2. Background

2.1 The Cell BE processor

The Cell Broadband Engine(Cell BE) is a multi-core
processor developed by Sony, IBM, and Toshiba in 2000.
The Cell BE processor contains one Power Processor
Element(PPE), eight Synergistic Processor Elements
(SPEs), Direct Memory Access(DMA), and synchronization
mechanisms in order to communicate with each element,
and the Element Interconnection Bus(EIB). It runs on a
clock frequency of 3.2GHz and has features of Single
Instruction Multiple Data(SIMD) execution units, high
power- and area-efficiency, large memory bandwidth, a
large  bandwidth  on-chip
high-bandwidth flexible I/O[5].

(Figure 1) represents the Cell BE architecture schema-
tically, The Cell BE processor has two channels of 256
MB high-bandwidth DRAM memory. The central EIB is
a coherent bus that can transfer up to 96 byte/s. It
consists of four 16 byte rings which can transfer data in

coherent  bus, and

only one direction, and each ring supports up to three
simultaneous data transfers. However, despite of some
limitation the Cell BE supports six SPEs for
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(Fig. 1) The Cell Broadband Engine architecture

programming on PlayStation 3.

The PPE contains a 32 KB instruction memory, 32 KB
data L1 cache, and 512 KB L2 cache. The PPE is a
dual-threaded, dual-issue(In-order issue), 64-bit
Power-architecture  processor with AltiVec  vector
execution unit. The dual-issue design is optimized by
interleaving instructions from two computational to
maintain maximum efficiency. The PPE can use
VMX(Vector Multimedia eXtensions), which was
developed for the IBM power PC processors, with AltiVec
unit.

The SPE is composed of 256 KB Local store, 128 hit
SIMD unit and MFC(Memory Flow Controller). The MFC
supports naturally aligned DMA transfer sizes of 1, 2, 4 or 8
bytes, and multiples of 16 Bytes, with a maximum transfer
size of 16 KB per transfer with DMA command. On a SPE,
it consumes only two cycles for simple fixed point operation,
six cycles for single-precision floating point and load
instructions. Moreover double-precision has maximum issue
rate of one SIMD instruction per seven cycles.

The Cell BE processor uses 256 MB of the Rambus
XDR DRAM memory. This memory delivers 12.8 GB/s
per 32-bit memory channel and the two channels are
supported on the Cell BE processor for a total bandwidth
of 256 GB/s.

The Cell processor provides a SIMD feature in the
vector unit on the PPE and in the SPEs[6]. SIMD units
have been demonstrated to be effective in accelerating
required computation for multimedia applications.

The PPE has VMX SIMD units called AltiVec. The
AltiVec unit supports a floating point and integer SIMD
instruction set designed by the Apple, the IBM and the
Freescale Semiconductor. The trade name is owned solely
by the Freescale Semiconductor and the Apple refers it to
as Velocity Engine. It supports for 16-way parallelism for
8-bit, 8-way parallelism for 16-bit and 4-way parallelism
for 32-bit signed and unsigned integers and IEEE
floating-point numbers with separate 128-bit wide,
32-entry register files.

The SPE has a SIMD unit enhanced than AltiVec
units on the PPE. The SPE does not have separated
register file but it has same register file for vector and
scalar execution units. The register file has 128-entries
and 128 bits wide. The SIMD unit supports including
what the AltiVec supports and 2-way parallelism for
64-bit signed and unsigned integers and IEEE double
precision numbers[7].
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2.2 Overview of SEED algorithm

The SEED block cipher algorithm has been developed
by KISA(Korea Information Security Agency) in 1998, by
the government’'s concern on the importance of cipher
systems. It has become a national standard since year
2000, and has been adapted to most of the security
systems(8].

The SEED design consists of the round-key generator,
F-function, and S-boxes. The SEED
algorithm processes a block size of 128-bit plain-text
128-bit cipher key, producing a 128-bit
cipher-text. It is a private key algorithm, meaning that it

G-function,
using a

uses the same key for encryption and decryption, and has
a Feistel structure[9] with 16 rounds, in order to make it
secure. The 128-bit input text stream is divided into two
64-bit blocks, L0 and R0O. The first output RI is the
result of L0 exclusive-or F(R0). On the other side, R0
bypasses to LI which becomes one of the two inputs to
Round 2. After processing the data through 16 rounds,
they will result in two 64-bit blocks forming the 128-bit
cipher-text output.

The round-keys are created by shift of bits, arithmetic
operations, G functions and constants of golden ratio. The
input user-key has 128-bit length and is separated into
four 32-bit blocks and the input generates couple of
round keys for 16 rounds.

(Figure 2) depicts the algorithm that generates round
keys Kip and Ki; for iy round. KC; means iy golden
ration constant and || means concatenation of two data
blocks. Two 32-bit blocks, lecated on C and D, are not
change during round, In the next round the C and D of
previous rounds inserted to location of A and B. In
addition, direction of shift operation changes opposite at
every round. In first round, if shift operation shifts
concatenation of A and B to right then, shift operator at
next round shifts the concatenated blocks to left. The
round-keys are generated with the algorithm until it
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(Fig. 2) Round-key creation algorihtm

ol

produces keys for 16 rounds

The F-function of SEED has a Feistel structure, and
provides resistance against differential cryptanalysis, linear
analysis, and other known attacks. (Figure 3) represents
the structure of F-function. The F-function divides 64-bit
block input into two 32-bit blocks and processes them
through a mixture of xors, additions(mod 32) and
G-functions, by inputting 64 bit round keys Kip and K.

The F-function is represented as following equations.
Where C and D are upper and lower half of 64 bit inputs
respectively and C’ and D’ are result of F-functions.

C' = GIGIGH(C®K; o) B(DEK; ) H(CEKip) B
G{(CBKip)B(DBK))}] BGIGUCBKin)BDSK;)))
H(CSKp)]

D' = GIGIG{(C®Ko) B (DBK; )} H(CBK;o)]
BG{(CBK0)B(DSBKi)}]

Wherela © b: a bit-wise exclusive-or b, a B bi(a+b)
mod 2%)

The G-function is the main function used in the
F-function and also in the round key generation. A 32-bit
input is divided into four 8-bit blocks which are passed
through S-boxes. The outputs of S-boxes are processed
with bitwise and, then xor operations to produce the
32-bit output of the G-function. The two S-boxes S, and
Sy are represented by two lookup tables[8]. The S-boxes
are derived from nonlinear functions, defined as following.
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(Fig. 3) Structure of F-function
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where n; =247, n.=251, by =169, b =56
However the non-linear transformation has large time
to calculate on programming language code. The G
function is reconstructed as four SS-boxes. The
SS-boxes can be formulated as following equations

883 = So(Xa)&mo || So(X)&rmy | So(Xa)&mg | So(Xa)&m
SS, = SiXo)&m | S$1(Xo)&my | S1(X2)&m | SI(X2)&my
SS] = Sg(Xi)&mu Il S‘J(X[)&fn:} Il Sz(X])&m? I Sg(X1J&J?1|
SSy = S1(Xo)&mg | Si(Xp)&m: | Si(Xo)&my 1| $1(Xo)&my

where || is concatenation and @ & b: @ bit-wise and b

The result of G-function is derived from following
equation.

Z = SS3(X3) BSS:X2) B SS:1(X1) BSSo(Xo)

where @ is a bit-wise exclusive-or.

3. SEED implementation on Cell BE

The Cell BE architecture is very efficient and is
suitable for exploiting parallelism of the SEED algorithm.
In fact, our SEED algorithm is implemented on the Cell
BE as a manner of a multi-threaded program. The
algorithm which s
distributed in 16 rounds occupies a significant percentage
of the total execution time. Consequently, this step is
implemented to run in parallel on the six SPEs available
in the programming level on the Cell BE platform.

Our design uses the Cell BE's heterogeneous structure
appropriately with considering the load balancing between
the PPE and SPEs. Both PPE and SPEs execute the 16
rounds of the algorithm, with computation of F-functions
and G-functions. In addition, the PPE creates the round
keys and manages the SPEs transporting data and
signals to the SPEs with DMA commands.

The detailed operation for data transfer is described in
(Figure 4)-(a). The data is transferred from the main
memory(XDR RAM in the (Figure 4)-(a)) to the SPE's
local memory with main memory address called effective
address. The PPE first sets up environment variables for
each of the SPE threads. Then, it assigns each of the
threads to the dedicated SPE. Each SPE checks the
effective address whether it is null or not, then SPE
starts DMA command to transfer the necessary data with
the 64 bit effective address. After waiting data transfer,
SPE processes 16 round operations of SEED.

encryption component of the
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(Fig. 4) Issues in implementation

Memory alignment is also taken into consideration
when developing the parallelized SEED algorithm as
shown in (Figure 4)-(b). The 128-bit input in the
algorithm is divided into four 32-bit parts, and then
processed with bitwise operations and shift operations. In
order to take advantage of the SIMD structure of the
SPEs, data are aligned in the transfer process from the
main memory to the SPE's local memory. Instead of
receiving the 128-bit input data on one 128-bit register,
the data is broken up into four parts to go into four
registers. Three other 128-bit input data are decomposed
and distributed into the four registers in the same way.
This allows the SIMD units to simultaneously execute
the same instruction on four 32-bit data. Accordingly, the
encoding/decoding throughput is increased by four times

As for the S-box function, all of the possible output
values for input 0 to 255 are pre-calculated, and a lookup
table is constructed for each box. Consequently, the
processing time of the S-box is insignificant; each output
value can be accessed directly from the input address.
Because of this lookup method, we cannot exploit the
SIMD unit for the S-box operations. The SIMD unit can
only process the same single instruction for different data,
so it cannot access different indices of the lookup table at
one time.

In addition to the six SPEs, we also use PPE to
encrypt data in order to fully utilize the computing power
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of Cell BE. Since the PPE controls execution of the SPEs
as well as has different computing power compared to
the SPEs, we need to adjust and balance the portion of
workload assigned to the PPE.

As the PPE has a dual-threaded and dual-issue
architecture, the PPE runs two threads whereas the SPEs
runs one thread on each core. To consider the workload
balancing, we have set workload ratio as the amount on
a PPE thread over the amount on a SPE thread.

To utilize the workload balancing, we fully consider
the architectural design of the PPE. Although the PPE
has a SIMD execution unit, it is physically near to the
main memory and has cache different from the SPEs. As
the existence of the cache, the encoding/decoding with
the scalar execution unit can provide performance gain.

Since the SIMD execution unit needs a memory
alignment overhead and has large granularity, which is 4
% 128 bits for every operation, rather than that of scalar
execution unit which is 128 bits for every operation, the
workload ratio can be controlled more in details with
using scalar execution unit. Therefore, we propose a new
method which uses different execution unit for the PPE
and the SPEs.

We labeled an approach that uses the SIMD units on
both cores as ALL SIMD and the method that does not
use the SIMD unit on PPE as Hybrid The Hybrid
implementation provide efficient workload balancing and it
achieves high-performance for the encoding/decoding speed.

4. Experimental results and performance analysis

To demonstrate correctness of the proposed idea, we
have tested it thoroughly on Cell BE with diverse test
vectors. With -0O3 optimizations applied on the GCC
compiler, we achieved a throughput of 2.59 Gbps for both
SEED encoding and decoding operations. We achieved the
peak performance with the workload ratio of 0.38 and the
ratio is obtained in a heuristic method.

In (Figure 5)-(a), we have parallelized and compared
the performance on the Cell BE to the results
implemented on various other multi-core platforms. The
parallelization on the homogeneous processors equally
divides entire works to the each core on the processor
and we have fully parallelized it by the Pthread library.
As seen in the (Figure 5)-(a), the experiments were
performed on various desktop computing environments,
including an AMD quad-core phenom-X4 9550, an Intel
quad-core core 2 Quad Q3400 and 8-core Xeon E3440 x
2 system. Furthermore, the PPE 2-thread configuration
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has been tested and compared, which only uses the PPE.
for the encoding/decoding operations. Several data were
input and encrypted in parallel to exploit the multi-core
environment, using all the available cores to their fullest.
The Cell BE implementation, which is depicted as Cell
BE Hybrid, shows approximately speed up of 1.34 and
234 in total computation performance compared to the
Intel 8-core and PPE core system, respectively.

(Figure 5)-(b) is a result about adjusting workload
distributed to PPE and adopting encoding/decoding
methods. We achieve higher performance and higher
workload ratio by using selectively applying encoding /
decoding methods in the Hybrid approach.

The encoding/decoding time increases in (Figure 5)-(b)
is caused by the unbalanced workload distribution. If the
workload is unbalanced, the core that has more
computation needs to wait until the other cores finish
Therefore, the unbalanced workload
distribution causes severe performance degradation. As a
result, the ALL SIMD method shows decreased
performance after the optimal workload ratio and the
Hybrid method also shows increase of encoding/decoding
time after its optimal workload ratio.

For the ALL SIMD and the Hybrid methods, we can
achieve the workload ratio up to 038 with the Hybrid
implementation while ALL SIMD achieves 0.23.
Performance without adjusting workload of ALL SIMD

their  works.
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and Hybrid shows 0.74 Gbps and 1.21 Gbps respectively.
With workload balancing, we can achieve more than
twice better performance.

In the general purpose processor system, the cache
contributes a great deal in achieving high performance, as
it reduces the memory accesses which require a long
access time. The six SPEs in Cell BE have no cache
nevertheless show a speed up of 134 in encoding
performance compared to the best 8-core system. In
addition, it shows speed up of 254 compared to the result
of using only the PPE. This indicates that the
architecture of Cell BE is more suitable for such
computational ~ encryption  processes than  general
multi-core systems. Accordingly, using the Cell BE
implementation can fulfill the needs of fast encryption
speed required in high-performance network systems,
where current available desktop can only provide limited
performance.

5. Conclusion

In this paper, we have shown a high-performance
parallelized implementation of the SEED block cipher
algorithm on the Cell BE processor. The proposed design
is fully parallelized and provides 259 Gbps performance.

This is a sufficient performance rate to prevent the
SEED block cipher from being a bottleneck in
high-performance network systems, where the encoding
and decoding speed of network security algorithms is
crucial. As SEED is a widely used algorithm in Korea, a
nation where high-speed network transmission rates are
widely provided, we are confident to claim that our Cell
BE implementation would be of great use.
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