Simulated Annealing 22|18 0|&8t %4 Dominating Set M2 S84 =710 CHE A7 69

DOI: 10.3745/KIPSTA.2011.18A.2.069

Simulated Annealing €18 && o| &3 4
A

Dominating Set 4|2 &&

7kl tHE AT

H el oof

2

gr

Y G2] HA: dominating set FAE GO dominating set® % 7H} 22 =7]¢] dominating set& ZE F4|o|v], NP-complete class
o % polynomial timegtel] 2% = ¢l FA2 2 deiA slvk 28\, heuristicd W &2 approximation WY& o] 43 A o}
of Hgo] 7hdleh & =EME M Ao M2 thE simulated annealing 2e]EE A s, o] dne]EE DIMACSHA AN @ 12
Zgo| 4T A Z&AY T ol FojAE AL APHoE Holmal Fr},

F|1¥E : H2 dominating set 2|, simulated annealing ¥12|&

Improving Efficiency of Minimum Dominating Set Problem using
Simulated Annealing Algorithms

Tae Eui Jeong'

ABSTRACT

The minimum dominating set problem of a graph G is to find a smallest possible dominating set. The minimum dominating set
problem is a well-known NP-complete problem such that it cannot be solved in polynomial time. Heuristic or approximation algorithm,
however, will perform well in certain area of application. In this paper, we suggest three different simulated annealing algorithms and
experimentally show better efficiency improvement by applying these algorithms to the graph instances developed by DIMACS.

Keywords : Minimum Dominating Set Problem, Simulated Annealing Algorithm

1. Introduction

Let G = (V, E) be a simple undirected graph with
vertex set V = {1, .., n} and edge set E € V x V. Let n
and m denote the number of vertices and edges,
respectively. A dominating set of G = (V, E) is a subset
D of V such that every vertex not in D is adjacent to at
least one vertex of D. A dominating set with minimum
cardinality is called the Minimum Dominating Set (MDS),
Minimum Dominating Set Problem (MDSP) of a graph G
is the problem to find the minimum dominating set of G.

T EASS MR H e 8k 0g
=24 2010 39 239
F 4 d:12 20119 29 8¢
HAbghs 02011 249 8Y

The size of the MDS of G is called the domination
number of G.

MDSP is a well-known NP-complete problem [2, 7.
The problem apparently cannot be solved in polynomial
time. Because of such impracticality of developing an
efficient algorithm for MDSP, it is much focused on the
development of approximation [5, 6] or heuristic
algorithms [3, 4] rather than the correct or optimal
answer for some or all instances of the problem. In
practice, it is possible that an approximation or heuristic
algorithm will perform well experimentally, even if only
for certain types of instances. MDSP, as an optimization
problem, has numerous areas of application in the field of
networks and communications. Abhay [3] suggested a
greedy heuristic algorithm for MDSP, and Sanchis [4]

70 HEMEIE2=2XA M18-AT H2Z(2011. 4)

recently suggested a randomized greedy algorithm for
MDSP.

Since Kirkpatrick [8] first introduced the Simulated
Annealing algorithms (SA) in 1983, the simulated
techniques have been widely used for solving many
combinatorial optimization problems. SA is very similar to
the conventional iterative search algorithm with one major
difference: SA allows permutations to escape from the
local optimum in a controlled manner.

In this paper, we suggest three different simulated
annealing algorithms called SA-random, SA-order, and
SA-degree for MDSP. These algorithms differ in the
sense that, while the first two algorithms are based on
the randomness only, the third algorithm imposes suitable
heuristic knowledge of MDSP. We also compare the
performance of the algorithms by applying them to the
graph instances developed by DIMACS.,

The rest of the paper is organized as follows. In
section 2, we first briefly introduce general structure of
simulated annealing algorithm and explain the detail
schemes of our three algorithms. Section 3 contains the
experimental results. Finally, chapter 4 contains some
conclusions,

2. Simulated annealing algorithms for the mini-
mum dominating set

In this paper, we consider simple undirected graphs
only. For notions and notations on simulated annealing
algorithms and graph theory not explained here, please
refer to [9] and [1], respectively. For a graph G = (V,
E), an ordering of V is a bijection B:{1, 2, .., n} — V,

where n = |V]. We denote N(v) be the vertices adjacent
tovin G.

For a graph G = (V, E), a solution is a 0-1 vector X
= (x1, X5 ... Xa) of length n, where each x, is either 0 or
1. Let the subsecript { of x; represents the corresponding
vertex of x in X and denote Dx = { i | x, = 1 }. Note
that Dy is a subset of V. For example, if n = 6 and X =
(1, 0, 1, 0, 1, 1) then Dx = {1, 3, 5, 6}. Therefore, in
this paper, we use the two notations X and Dx
interchangeably.

If Dy is a dominating set of G, tl'lennwe say that X is

a feasible solution. Also let fiX) = &' be the fitness

function of a solution X. Then, MDSP is to find the
solution X with minimum ffX) among all possible feasible
solutions.

SA is an iterative procedure that continuously updates
one candidate solution to a new solution until a
termination condition is met. Updating a solution is
usually called move. Figure 2.1 shows the general
structure of the proposed simulated annealing algorithms.
It first generates an initial solution, which is a
dominating set of a given graph, and continuously
updates the current solution according to the move
function. Let X be the current solution and Y be the
solution generated by move function. Then, in line 10 of
the following algorithm, if fX) > f{Y), then the function

Accept_Solution() returns true. If flX) < ffY), then

-AGain
Accept_Solution() returns true if R < e 7 , where R is

a real random number in (0, 1). In all other cases, it
returns false,

1 Begin

2 T=Ty

3 Ty = T

4 Current_Solution = Generation of a initial solution;

5 While Tuy > 0 do

6 accept = False;

7 Fori=1to M do

8 New_Solution = Move(Current_Solution);
9 AGain = flCurrent_Solution) - fiNew_Solution);
10 If Accept_Solution(AGain, 77 then

11 Current_Solution = New_Solution;
12 accept = True:

13 If accept then

14 Taw = T

15 Else

16 Tsmu = Tam = 1

17 T=T=*u

18 End

(Figure 1) General structure of the proposed SAs

Simulated Annealing 2 D2|E& 0|28 Z2& Dominating Set 2M2 SEA =710 CHSt 17 71

Based on the algorithm shown in Fig. 1, our proposed
three SAs differ only in line 4 and 8, ie, the generation
of initial solutions and move operations. The following
three subsections contain the details of the three proposed
SAs for MDSP.

2.1 SA-random

The mechanism of SA-random is based on the
randomness. The initial solution X is generated randomly
and forced to be a feasible solution by adding some
vertices to X. The move operation is also performed in
random fashion. We simply toggle the values of three
randomly chosen bits. The following steps show the
details of generating initial solution X = (x;, xo, ..., xu):
(Step 1) Randomly select some x's and set them to 1

and set all others to 0.

(Step 1) If X is not feasible then we randomly select xi
which has value 0 and set x; = 1. Repeat Step 1
until X becomes feasible.

For a current solution X = (x, x, ..., x,) the following
two steps show the details of the move operation for
SA-random:

(Step 1) Randomly choose three x;'s.

(Step 2) For each selected x; apply x + 1 (mod 2).

2.2 SA-order

Let S be a vector of length n whose elements are the
permutation of integers in the range of [1.n]. Then S can
be treated as a random ordering of the vertices of G. We
visit the vertices of G according to S and build a
dominating set in greedy manner. For the move operation
we choose some subsequence of S and reverse the order
of that subsequence. The following two algorithms
greedy-order and reverse are used as initialization and
move operation, respectively.

Algorithm: greedv-order((G, S)

begin
Dy=9
fori=1tondo
v = Sl
if v € G and (N(v) N Dx = @) then
Dx = Dx U {vh
delete v and N(v);
end

(Figure 2) Algorithm greedy-order

Algorithm: reverse((, S, X)

begin
Let py and p» be the two unique integer values
chosen randomly in the range of [1.nl;
Assume that py < p» and Let §' = S

fori=0top: - p do
S'fpl + il = S[p2 - il;
S=84
end
(Figure 3) Algorithm reverse

2.3 SA-degree

Unlike the SA-order, which chooses the vertices in
random manner, we impose some criteria when choose
the next vertex to be included in the minimum
dominating set. If a vertex has larger degree then it
covers more vertices than the vertice with small degree.
Therefore it is quite reasonable to consider the vertice
with larger degree first before considering the vertice
with small degree when constructing a minimum
dominating set. SA-degree uses this idea for constructing
initial feasible solution and its detail is shown in Figure
24. Note that the algorithm greedy-maximal is also used
for move operation for SA-degree for maximum
perturbation of the solutions.

Algorithm: greedy-maximal(G)

begin
1 Dy = @,
2 while ¢ # @ do
3 let W be the set of vertices with
maximum degree in
4 Randomly choose a vertex v from W
5 Dx = Dy U {v}
6 delete v and N(v) from G
end
(Figure 4) Algorithm greedy-maximal
3. Experiments

Since there is no published benchmark graphs for
MDSP, in order to measure the performance of our
proposed three algorithms we run these algorithms on the
41 graph instances published by DIMACS[10], which
originally developed for the problems of maximum
independent set and minimum coloring. In all tests we
used the following parameters: 7" = 10000, « = 098, T\ =
10, and M = 40. Our experiments were run on a
computer with a 2.33 GHz with 2 GB memory.

Table 1 shows the results of executing each algorithm
ten times. For each algorithm the first three columns
contains the result of best, worst, and average sizes of
the dominating set for the corresponding graph among 10
executions of the algorithm. The fourth column shows the
average execution time in seconds. For each algorithm b,
w, and ave represent the best, worst, and average
dominating size. The symbol t represents the average
running time.

YEMLIS S =2A A HI18-AR M2=(2011. 4)

72

{Table 1) Test Results

~|5(3(3|3|5|2(2 (2|82 2(2| 2|8 (28| 8|R|5|3|E|8|8|2|8|3| 23|52 |8 |5| 8| 8| 2|22 | 8| 8|2 (8| =|=|8|2
mmmmmummmmmmmmmmmmmnmmwmmmmmmmmmnmwhﬂmmman%mwm%m
<
Swmmmu_.mMMMMMmﬂmmmwmﬁmmwmmmmmmﬂmmmmﬂm%mmﬂ%ﬂ%%mm%M
A [=lzl=l2]z2(zlz]z]z|z]e]e]e| e |e] 2] =[=|=]=|2|2|c|2]2] s [=]s]c] s |a|a]z] = [a]a]x|a]= 2] 2] 5] =] <]
14 p]
m pd] e e B e Rt]] facd B b I i e 3 R pal b B) Bond) B BB] R o] e el =1] e e e el e Roed ocd e 14 bt ot Bl B
alw] o] lalalalelalalwlelallaldelclalslelalal ol slalz el cbals laldlalslala] sl b sl &)
mmwmmmmmwmmmmmmnmmm%m%m%mmmmmmmmmmmmmmwwwmmmmmm&
S|«
mSwwnwnmmmwmmmm,ﬂ%mzm%mmmmmmmmmmmmmmswmmvm%mxummmmm
m N B EE E E E S E R B R B B R A R R B N S N A B S B R B R R R B E R E R B B N BRI
S elals|a|s| =] = N el Bl Bl =l Bl e el el Bl Kl Bt o (el el 0N el el Bl K20 Bl Kol el Bl Bl ol =) g B
~|12(2(2|2|2|5|2(=2|2|3|F|8|[|](]]|F|2|F|F[F|2|2|2|2|S| 2|28 |2[R[B|R|R|Z|8|2|R|5|8[8|3]=|F|8
meﬁB?,o.ﬁzDBA?.86,,3,21,JBBBDDJ5.86045A3558.2353.282695.03
mmnmmmwm%wmgm%mmmwmmmm%mm%mwwm%%mmmmwﬁ@mMm&nmmwm
<
4| s|g|3|=|s|s|s|s|8]|8|s|=[3|c]ss]8]a]g]se|s|2|g|e|e]|z|elz]||e|g|2|2|2|a]| 928|888 ¢x
o =1 - Bt e e e B S BN e BN e P e B S S S S B B B B B B B B R S R S B B E B B B R E S E
S |zelz|x|e|r|n|ez|3|8|5||s]|8|s|z|n|a|e|z|e|=|r|a|s|z|s|2|a|z|n|2||8|3|8|e|2|z|8|2|3|8] <
R IR R R B EH AN R EEEEEBE EEBEEHE EEHREEHBEBEREBEBE BB EE
NI o= = 0|= Tod =8 1S @ — 2|5 5 2= S|B|8 = = | o =
E mmmnmmmmmmuunmmwwmm%mm&mmmmm mmmmmmmmmmm mm&%
< |5|8|3(3(3|8|8|8|8(8(8(8(2]|8|8|2|2|2(8(2|B|2|3|B|B|8|R(8|5|E|E|8|8|8(8|E|B|B|B|E|E|g|8|E|8
o ol e Il 5 ol il Bl B 0 B Bl I o o sl Bl s B B3 i Bl 5 B Bl il B B Bl ol 5 Il S Bl B B B B) Y Y =T
m %%%%m«.mﬂ%ﬂﬂmmmmmmmmm%m%%mmﬂmmw%%m%%%%_%%wmmmm
21818|8|8(8(2(|8|F| SI818|8 Z(B|B BIB(B|B(B|B|B|Z|B|B|F|3]|5|2
© mmﬁnﬁmmmﬁmmnmm,ﬂnnr.ﬁmmmmﬁmmmmmmwﬁﬁﬁﬁmﬁﬁﬁw_mmmmmm

Simulated Annealing 202|158 083! %4 Dominating Set 2M2 SEA S710| CHEt A7 73

Table 1 shows that the performance of SA-degree is
much better than those of the other two algorithms. This
is due to the fact that unlike the other two algorithms,
SA-degree does not totally depend on randomness.
SA-degree uses the heuristic of larger degrees of the
graphs, Comparing the best and worst cases of each
algorithm, it can be easily seen that the performance of
SA-degree are very steady. For the 29 test graphs only 4
graphs show the different best and worst size of
dominating sets. These results show that, rather than
based on total randomness, if we add some heuristic
knowledge of the problem, then the performance of the
simulated annealing algorithm can be greatly improved.

Figure 5 shows the convergence ratios of the three
algorithms for the graphs Frb30-15-1 and DSJC250.1,
respectively. For the graph Frb30-15-1, when the number
of iterations closes to 400 the fitness values are start to
converge. However, from the Fig. 5(e), it is easy to see
that SA-degree shows steadier performance compare to
the other two algorithms. Similar observations can be
obtained from the graph DSJC250.1.

4. Conclusion
g
,8. SA-random
2
0 100 200 300 400 500 600
(a)
& 4
81 SA-order
R
2 4
- -
a 100 200 300 400 500 600
(c)
" SA-degree
0 100 200 300 400 S00 600

(e)

100 140

B0

16 17 18 19 20

In this work, we showed that simulated annealing can
be wused to efficiently approximate the size of the
minimum dominating set of graphs. For these purposes,
we proposed three simulated annealing algorithms and
measured the performance of these algorithms by
applying them to the widely known graph instances. The
results of the experiments clearly show that, by adding
some suitable heuristic knowledge of the problem, it may
improve the quality of the solutions when we search the
solution space.

References

[1] West. B, “Introduction to Graph Theory”, Hall & Co.. 2000.

[2] Teresa W. Haynes, Stephen T. Hedetniemi, Peter J. Slater,
“Fundamentals of Domination in Graph”, Maecel Dekker.
1998,

[3] Abhay, K. Parekh, “Analysis of a Greedy Heuristic for Finding
Small Dominating Sets in Graphs”, Information Processing
Letters, Vol.39, pp.237-240, 1991.

[4] L. A, “Experimental Analysis of Heuristic Algorithms for the
Dominating Set Problem”, Algorithmica, Vol.33, pp.3-18,
2002.

[5] F. Kuhn. and R. Wattenhofer, “Constant-time distributed

SA-random
0 100 200 300 400 500
(b)
&
R 4
0 100 200 300 400 500
(d)
SA-degree
0 100 200 300 400 500

(f)

(Figure 5) Graphs (a), (c), (e) and (b), (d), (f) show the convergence ratios of the three algorithms for the graphs Frb30-15-1
and DSJC250.1, respectively. x- and y-axis represent the number of iterations and fitness values, respectively

74 ZBEHM2SD=FX A HI18-AZ H2=(2011. 4)

dominating set approximation”, Distrib. Comput., Vol.17, pp.
303-310, 2005.

[6] V. Turau, “Linear Self-Stabilizing algorithms for the
independent and dominating set problems using an unfair
distributed scheduler” Information Processing Letters, Vol.
103, pp.88-93, 2007.

[7] Garey, M. R. and Johnson, D. S. Computers and Intractability
“A Guide to the Theory of NP-Completeness”, W. H.
Freeman & Co., 1979.

[8] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi, “Optimization
by Simulated Annealing,” Science, Vol.220, No.4598, pp.
671-680, 1983.

[9] P. J. M. Van-Laarhoven, E. Aarts, Simulated Annealing:
Theory and Applications, Kluwer, Dordrecht, 1987.

[10] Johnson, D.S., Trick, M.A., eds.. Cliques, Coloring and
Satisfiability: Second DIMACS Implementation Challenge.
Vol.26 of DIMACS Series. American Mathematical Society,
1996.

H B <

e-mail : tejeong @skuniv.ac.kr

19798 aejcfsta A3 8 a(EAL

19823 w5 Q8o e F Yol A7 F 8}
(44

1989 o]z @ Fetgwio)eh dibe}a)
(44h

19943 w5 e Fetsobo)st Aaksta(akAl)

1983 109 ~1986¢d 6¥ FAREAATA HFEHFEE
dejdT4

1986 79 ~19871 8¥ Engineering Manager, United Microtek,
Inc.(San Jose, California)

19959 39~8 A MAdSx FFEHE 25

T4 #ok: Computational Complexity, Formal Languages,

Graph Languages, ¥ elF, o]5%4

