BDI OIOINE HHOAM S 2T GIOITE B4 4] 21

BDI ojjo|HE #FNA F4E AT do]AE FA Ao

o & =

2

&l

Xl /g.ﬂ

e}

A7k FEHY FAA YFHL FFHY AHE FHY F e 8L dPsd FaE d4¥E @€Y olF A W dolnE
A="olA e Bgol FEL AolHE A Ao1E AR MAAY afd ¥ APdna APE B =RANE AEHoln, A7) &
2ol 4, 848 A9 71 BDL Aol HER H A U Wl dolg A B¢ ooldEs] YR Feje] v R

A8 BDL ool HES A% Y Z2EEL AL

An Agent Communication Language for Negotiation
in BDI Agents Environments

Myung Jin Lee'- Jin Sang Kim'

ABSTRACT

Negotiation plays a fundamental role in human cooperative activities, allowing people to resolve conflicts that could interfere with cooperative
behaviors. Negotiation in multi-agent systems is achieved through the exchange of messages in a shared agent communication language (ACL).
We introduce a rational negotiation meta-language for autonomous, self~interested, and resource-bounded artificial BDI agents. We then propose
a negotiation protocol for BDI agents with communicative acts based on their mental states.

719 - WE HOIME AlAH(Multi-agent Systems), BDI GIOIHE(BDI Agent), MOIHE B4l PI0{(Agent Communication Langu-

age), MAt mREF(Negotiation Protocol)

1. Introduction

A language for inter-agent communication should allow
agents to enlist the support of others to achieve goals, com-
mit to the performance of actions for another agents, monitor
their execution, report progress, success and failure, refuse
task allocations, and acknowledge receipt of message. As
such, it is essential that the functions being offered by the
communication language be common across the language of
intetligent agents. It so happens that there is such alanguage
of speech acts, or more precisely, illocutiongry acts which
actions include requesting, promising, offering, acknowle-
dging, proposing, accepting, etc.

A speech act is defined to be an action that a speaker
performs in order to convev part of its mental state to the
hearer that the act is directed to. This notion has been ado-
pted in agent communication languages (ACL) such.as Kn-

8] € obAlopd S BRE AB e Z UL 2s
2 O ARdE AFHFRY a5
£H4 20024 79 129, AAEE 20024 129 309

owledge Query Manipulation Language (KQML) {1, 8] and
Foundation for Intelligent Physical Agents (FIPA) ACL [2,
3], which prescribe the syntax and semantics of a collection
of speech act-like messages, each of which is comprised of
a performative, a content, and some additional parameters
as the sender and receiver of the message.

KQML has the lack of semantics for communicative acts
and so agent designers cannot be certain that the interpre-
tation they are giving to a performative is in fact the same
as the one some other designer intended it to have. FIPA
ACL has several shortcomings. For example, the distinction
among inform, tell, and assert is only relevant for an external
observer. For an agent’s subjective view they are equivalent.
Also, an inform may be used answer gueries which should,
however, be done only by a reply.

In this paper, we consider three modalities : B for beliefs
used to represent an agent’s mental attitudes to the state
of the environment, D for desires used to represent moti-
vations of the agent, and 7 for intentions used to represent
goals of the agent. We address rational communicative

22 BEXNe|=g=EX B H10-BH H1320032)

behaviors in autonomous, self-intérested, resource-hounded

artificial BDI agents that have to what to communicate, to
whomn, and how. We then introduce a variant of KQML,
FIPA ACL specification, and the negotiation meta-language
as our negotiation language for BDI agents to resolve goal
conflicts. Finally, we present a negotiation protocol for BDI
agents with our negotiation language. When an agent recei-
ves a message from another agent, it interprets the message
and generates a reply message based on its mental state.

2 Agent Communication Languages

21 KQML

KQML is intended as a general purpose communication
language for the exchange of information and knowledge
between software agents and it is conceptually a layered
language [7]. It can be viewed as being divided into three
layers : the content layer, the message layer, and the com-
munication layer. The content layer is the actual content of
the message in the programs own representation language.
The message layer forms the core of the language. It deter-
mines the kinds of interactions one can have with a KQML-
speaking agent. Finally, the communication level encodes a
set of features to the message which describe the lower level
communication parameters. KQML consists of logical com-
binations of the following five operators : bel (a, ¢) denoting
that ¢ is in the knowledge base of ¢ and know (e, ¢), want

(a, ¢), intend (a, ¢), standing for the fact that ¢ knows
@, wants ¢, and is committed to ¢, respectively. Finally,
there is an operator process (a, m) denoting that the messa-
ge m will be processed by agent a.

KQML is offered to the agent community as an extensible
language with an open-ended set of performatives, whose
meaning is independent of the propositional content language
such as Prolog, first-order logic, and SQL. KQML, however,
has yet to provide a precise semantics for these languages,
as is customary with programming languages. Without one,
agent designers cannot be certain that the interpretation they
are giving to a performative is in fact the same as the one
some other designer intended it to have. Moreover, the lack
of semantics for communication acts leads to a number of
confusions in the set of reserved performatives supplied.

22 FIPA ACL
FIPA ACL specification is based on speech act theory :
messages are actions, or communicative acts, as they are

intended to perform some action by virtue of being sent [4].
Every communicative act is described with both a narrative
form and a formal semantics based on modal logic. The
format of messages is similar to that of KQML, while their
semantics are given by means of feasibility preconditions
{FP) on the mental state of the sending agent that should
hold prior to the dispatch of the message and rational effects
(RE) that the sender can expect as a result of the dispatch.
For example, irform act that agent i informs agent j that
“it is true that it is raining today” can be represented as
follows :

(inform
: sender i
! receiver j
* content “weather{today, raining)”
: language Prolog
)

Above inform act has the following underlying formal
model :

<, inform(j, ¢)>
FP: Big A~ BiBifig vV Ui @)
RE : Bie

The semantics of inform act is that a sending agent i holds
that proposition ¢ is true and i does not already believe that
a receiver j has any knowledge of the truth of . ¢, and, as
the RE of the inform act, j believes that ¢ is true.

2.3 Negoliation meta-language

Wooldridge and Jennings [5, 6, 12] have explored two im-
portant computational problems in the use of logic-based
languages for multi~agent negotiationthe success problem,
le., given a particular negotiation history, has agreement
been reached? and the guaranteed success problem, ie.,
does a particular negotiation protocol guarantee that agree-
ment will be reached?. They have considered three more
complex langwages for negotiationclassical propositional
logic, a language for electronic commerce, and a negotiation
meta-language.

In classical propositional logic, agents are negotiating over
a domain that may be characterized in terms of a finite set
of attributes, each of which may be either true or false. An
outcome is thus an assignment of true or false to every attri-
bute. In a language for electronic commerce, agents are
trying to reach agreement on the values of a finite set of

negotiation issues, where each issue has. a natural number
value. They have also considered a negotiation meta-lan-
guage which consists of illocutionss : for example, request(,
J, @) means a request from ¢ toj for a proposal based on
¢, where ¢ is a formula in classical propositional logic.

3 An Agent Communication. Language for Negotiation

3.1 An ACL for BDI Agents

Our language is for negotiation between multiple agents
over scarce resources. In this case, negotiation is achieved
through the exchange of messages in a shared commini-
cation language. We assume that BDI agents meet the.fol-
lowing requirements :

® Agents may interact asynchronously with more than
one other agent at the same time ,

® Agents are known to one another by theirnames, rather
than itheir IP addresses ; and

¢ The arguments of a message may affect the mental
state' of both the sender and the receiver

We also consider that the B, D, and I are taken as meta-
predicates. In order to represent these predicates, we take
advantage of several characterizations in logic programming
such as declarativity, unification, deduction rules, and meta-
PIOZramIming,

The actuai exchange of messages is driven by the par-
ticipating agents’ own needs, goals, or mental attitudes. We
represent the set of beliefs as B, the set of desires as D,
and the set of intentions as I. Each agent has a unique
identifier and we denote the set of identifiers of the agbnts
involved in negotiation as Agents. Assumed BDI agents are
negoti‘ating'y é:baut the allocation of deficient resources, ag‘pnts
require the allocation of deficient resources to achieve haeir
goals. We denote a set of goals as Gools and a set of the
resources as Resources. In this case, we can define a com-
munication language CL, communicative acts, for BDI agen-
ts as follows :

Definition 1 Given al, a2 € Agents, g € Guoals, r €
Resources, and m< B, D, or I, we define a CL :
requestial, a2, g, r € CL
ask_iflal, a2, m) € CL
inform(al, a2, m) € CL
givelgl, a2,) € CL
rejectlal, a2, g, r) € CL

BOI GIOIME 2B0IM Hug 2B OI0IME &4 210 23

diternativelal, a2, g, subgoals) € CL
achieved_goal(al, a2) € CL

In definition 1, reguest(al, a2, g, r) means that agent al
requests deficient resources r from agent a2 to achieve its
goal g where g is the reason why al needs r. ask_if(al, a2,
m) indicates that al asks a2 if m is true while inform{al,
a2, m) that al informs a2 that m is true.

32 A Nagotiation Protocol for BDI Agents

Intelligent agents are software pfograms that use agent
communication protocols to exchange information and to
achieve theéir conflicting goals and resources allocation. The
interaction protocols for intelligent agents are’ aémt com-~
munication rules and based on speech-act language theory.
They can be used as negotiation protocols which specify the
messages that each agent is allowed to make.

In order to sunphfy protocol analysis, we assume that two
BDI agents are involved in our negotiation protecol. The
sequence of our negotiation protpcol‘ for BDI:agents can be
shown in (Figure 1) as a finite state diagram. In (Figure
1), S0~S7 represent different. negotiation states during a
negotiation process. S0 is the initial state and S7 is the ter-
minal state in which an agreement br disagreement is rea-
ched. The process of negotiation starts when an agent
generates a request message. This process continues until
all the agents involved agree on a request or 'they cannot
reach an agreement.

O nrequest request
injtial state
At agens pchisved their goals or foikure

P et
P} mined sate 2

ranus® reanet”

(Figure 1) A negotiation protacol for BDI agents

In our negotiation protocol, a sequence of simple negotia-
tion message can be shown as follows :

24 BEHZ|=D=EX B MH10-BH M1z(2003.2)

(D State that starts a negotiation (S0). An agent knows
that it wants to have any resources to achieve its goal.
It sends a request message to another agent that has
the resources. Negotiation processes start from this
state. '

@ State that receives a request (S1). An agent has recei-
ved the request message, it interprets the request me-
ssage, and generates a respond message. The message
that can be generated in this state is a reject, a request,
an dlternative, or a give.

D State that terminates the negotiation (S7). Two agents
involved in the negotiation reach an agreement. The

negotiation is terminated.

4. Experiments and Comparisons

4.1 Experiments

Our simple BDI agents’ negotiation mechanism is tested
on InterProlog supporting Java 2 SDK version 1.3.1 and XSB
Prolog version 24. InterProlog is a programming environ-
ment for XSB Prolog. It consists of a Java application front-
end that communicates with a Prolog system running as a
subprocess, using standard console redirection and TCP/IP
sockets. It is implemented as a set of standard Java classes
and Prolog predicates.

We consider three home improvement BDI agents with
different objectives and resources. Agent al has the intention
of hanging a picture, i(dolal, hang_picture)), and believes
that it has in its possession a picture, a screw, a hammer,
a hanger nail, and a screwdriver. It also believes that its
name is al and agent a3 has a hanger. Agent @2 has the
intention of hanging a mirror, i(do{a?, hang_mirror)), and
believes that it has a mirror and a nail. It also believes that
its name is a2 and agent al has a screw, a hammer, and
a screwdriver. Finally, agent a3 has the intention of hanging
a clock, i{dola3, hang_clock)), and believes that it has a clock
and a hanger. It also Be]ieves that its name is a3 and agent
al has a hanger nail.

We construct BDI agents and allow them to negotiate with
each other from the top-level window. NegotiationWindow
class is responsible for creating this window, constructing
the BDI agents, and starting a negotiation with the agents.
<Table 1> illustrates the roles of the methods in Nego-

tiationWindow class.

(Table 1> The methods in NegotiationWindow class

Method mames Roles
negotﬂatim?ﬁ?ndm Constructor to create the instance
constructWindowContents | Creates a 600 X500 pane
const Menu Crearm menubar-and menu, handles ac-
tion events

createSimpleBDIAgent | | Creates agent I's window with Prolog
engine

createSimpleBDIAgent 2 | LTS agent Zs window with Prolog
engine

createSimpleBDIAgent 3 Cne?tes agent 3's window with Prolog
engine

addItemtoM e Adds items to menu

rgin Displays system information and take an
array as a default Prolog engine

When we click Create simple BDI Agent 1 item in the
top-level window, AgentlWindow class displays Simple
BDI agentl window with two panes : the top shows all out-
puts, stdout and stderr, from Prolog and the bottom is an
editable text field which is sent:to Prolog’s input, stdin, after
hitting the Enter key. Agentl Window: class then consults
a routine of initializing agent al using sendAndFlush method
in PrologEngine class. AgentZWindow and Agent3Window
classes perform similar tasks to AgentlWindow class. Pro-
logEngine class represents and gives access to a running
Prolog process in background. Multiple instances correspond
to multiple Prolog processes, outside the Java virtual ma-
chine. send7oFlush method in this class sends a string to
Prolog's input.

Let's look at the initialization routine of al in the form
of XSB Prolog. This routine consults negotiatibn mechanism
routines for BDI agents and the knowledge base of al. It
also prepares ¢l for communication with a2 and a3. There
are many mechanisms of communication such as stream-
oriented and message—oﬂente¢ but: we use buffeted, mes—
sage-based communication mechanism using sockets : co-
mmunication processes exchange messages that have well~
defined boundaries, and use sacket_send/3 and socket/3 to
talk to each other where p/n represents predicate p has an
arity of n.

On the other hand, the initialization routine of a2 consults
negotiation mechanism routines for BDI agents and the
knowledge base of a2. After it prepares a2 for communica-
tion with al, a2 sends a message to al, receives a confir-
mation message, and waits for a message from al to nego-
tiate with al. This means that we assume that al gives an

initial request, but if a2 does, we may have the same result.

‘When we click Start simple BDF agents negotiation item
in'the top-level window, negotiation among al, a2, and a3
starts. <Table 2> shows how these three agents can reach
a mutual agreement state through a shared wmuMCaﬁpn
langﬁage. In <Table 2>, communication messages, dsk_if(dl,
a2, blhave(a2, nail))) and ask_iflal, a3, bhave(a3, nail))),
means that al asks a2 and a3 if they have a nail. '\ajZ whxch
receives an ask_if message from al checks its knowledge
base, informs al that it has a nail, informia2; al, bhave(a2,
rail))). Now, al comes to know that a2 has a nail, requests
a nail from a2, reguestial, a2, hang_ picture, nail). This
message means that gl requests a nail from:-a2 to achieve
its goal; ‘hanging a picture.

(Table 2> Commuynication messages in negotiation. processes

Diredtion Messages
ask_if(al, a2, blhavela?, nail})),

ask_iflal, a3, blhavela3, nwil)))

al a2, al —»a3

a2~ al inform(a?, al, blhavela?, nol

al —+a2 requestial, a2, hmg,_ptctw]

a2-+»al | request(a2, al, hang mirrar; Mym«gr)

al — a2 alternativelal, a2, hngﬂlL?‘r@’. -
Iscrewdriver, screw, mirrorD) .

a2 al ‘ request{az al, hang,mzrrqr mﬂmveﬁ g

al = a2 give(al, a2, screwdriver) '

aZz—al requestia?, al, hang _mirror, screw)

al a2 | givelal, a2, screw)

az—al, a2 - a3 | achieved _goalla?, al), achieved_goal(a2, a3)

a3—al request(a3, al, hang_clock, hanger_rail)
al —a3 givelal, a3, hanger_nail)

a3-ral, a3 —a2 | achieved goala3, al), achaevedﬁgMQaS aZ)
al—a? requestial, a2, hang . picture, mu 1
a2—ral givela?, al, nail) ‘

al = a2, ‘al > a3 | achieved_goal(al, a2), achzeued,gm{éal a3)

4.2 Comparisions

We defined the most basic inter-agent communication ac-
ts : inform, ask-if, request. In the case of reguest act, the
KQML has achieve performative similar to request act. We
consider a request act that al requests a2 to give the re-
sources r. There is an important difference between KQML
achieve, FIPA ACL request, and our request(al, a2, g, r)
act. KQML agent @2 does not know the reason why it sets
the new value and FIPA agent a2 does not know the reason
why al requests the resources r, while our BDI agent a2
knows the reason why al requests the resources r, i.e., be-
cause of the goal g. This fact helps an agent to reason about
others’ mental attitudes so that the agent may plan its goal

BOI GIOIME SBOM HAE 2 OOIME B 240 25

more effectively.

The mental attitude m in definition 1 can be represented
as follows : B(p), D(p), or I(p) where p is an atomic sen-
tence. The use of inform for supplying new information to
an agent is related. to the data manipulation.commands of
SQL and Prolog. Assumed that an, SQL, database has belief,
desire, and intention tables, called b_table, d_table, and i_
table, respectively, an SQL INSERT of a new row <p> into
the belief table or a Prolog assert(p) corresponds to sending
an informfal, a2, B(p)) message. Sending informlal, a2, B
(=p)) with the negated sentence —p as content corresponds
to an SQL DELETE of the respective row or a Prolog retract.
<Table 3> shows these relationships between our commu-
nication acts, SQL, and Prolog.

{Table 3) The relationships between our communication acts,
SQL, and Prolog

Our ACL SQL Prolog
informlal, a2, B(p))| INSERT INTO b._table VALUES p |assert(p).
DELETE FROM b_table

informial, a2, B(p)) WHERE x = p retract(p).
. SELECT x FROM b_fable :

ask-iflal, a2, B(p)) WHERE x = p P-p.

ask-iflal, a2, B(p}) | na. ?-not p.

In this paper, when each agent interacts one another and
notices inconsistency of its beliefs, we try to confine beliefs
as much as possible, making each agent modify its beliefs.
In Rao and Georgeff a:damatizatioh"[g—‘ll], if an agent has
an intention to do a particular action, the égent does the
action. We also try to confine intentions to commit when
the agent believes that it can do the action.

5. Conclusion and Future Research

In this paper, we have represented agents’ beliefs, desires,
and intentions for MAS in logic programring environments
and introduced a negotiation mechanism for BD{ agents. We
have considered a MAS in which beliefs, desires, and in-
tentions are taken as meta predicates and then introduced
an ACL for BDI agents such as request, ask_if, and inform,
described the relationships among .our ACL, KQML, FIPA
ACL, SQL, and Prolog. We finally introduced a negotiation
protocol for BDI agents as a finite state diagram and defined
a message generation function for BDI agents.

A number of issues raised in this paper require further
investigation. We have considered the ACL containing some
communication actions or performatives. Existing communi-

26 HEMDI=B=EX B M10-BH RI1%(20032)

cation languages consider additional communication actions
such as critique, withdraw, threaten, reward, persuade, and
so on. We need to investigate whether some of these ad-
ditional actions could be defined via negotiation protocels
and have an assumption that different agents share the same
communication language. However, this assumption is not
essential. Indeed, translator agents could be defiried, acting
as mediators between agents with different communication
languages. This may be possible by virtue of the metalogic
features of the language.

References

[1] T. Finin, Y. Labrou, and J. Mayfield, “KQML as an Agent
Communication Language,” In Proceedings of the Third
International Conference on Information and Knowledge
Management, pp.456-463, 1994.

[2] FIPA Agent Communication Language Message Structure
Specification, http://wwn fipa.org/specs/fipad0061/, The Fo-
undation for Intelligent Physical Agents (FIPA), 2000.

{3] FIPA Communicative Act Library Specification, Attpi//wwuw,
fina.org/specs/fipa00037/, The Foundation for Intelligent
Physical Agents (FIPA), 2000.

[4] FIPA Specification Part 2 : Agent Communication Langu-
age, hitpt/fwww fipa.org/, The Foundation for Intelligent
Physical Agents (FIPA), 1999.

[6] N. R. Jennings, P. Faratin, A. R. Lomuscio, S. Parsons, C.
Sierra, and M. Wooldridge, “Automated Negotiation : Pro-
spects, Methods and Challenges,” International Journal of
Group Decision and Negotiation, 10(2), pp.199-215, 2001.

(6] N. R. Jennings, S. Parsons, C. Sierra, and P. Faratin, “Au-
tomated Negotiation,” In Proceedings of the Fifth Inter-
national Conference on the Practical Application of Intelli-
gent Agents and Multi-Agent Systems, pp.23—3(); 2000.

{71 Y. Labrou and T. Finin, A Proposal for a New KQML
Specification, Technica! Report CS-97-03, Computer Sci-
ence and Electrical Engineering Department, University of
Maryland Baltimore County, 1997.

{8} Y. Labrou and T. Finin, “A Semantics Approach for KQML-
A General Purpose Communication Language for Software
Agents,” In Praceedings of the Third International Corfe-
rence on Information and Knowledge Managerent, pp.
447-455. 1994.

[9] A. S. Rao and M. P. Georgeff, “BDI Agents : From Theory
to Practice,” In Proceedings of the First International Con-
ference on Muiti-Agent Systems, pp.312-319, 1995.

[10] A. S. Rao and M. P. Georgeff, “Modeling Formal Models
and Decision Procedures for Multi-Agent Systems,” Te-
chnical Note 61, Australian Artificial Intelligence Institute,
1995,

[11] A. S. Rao and M. P. Georgeff, “Modeling Rational Agents
within a BDI-Architecture,” In Proceedings of the Second
International Conference on Principles of Knawledge Re-
presentatipn and Reasoning, pp.473-484, 1991.

[12] M. Wooldridge and S. Patsons, “Languages for Negotia-
tion,” In Proceedings of the Fourteenth European Confer-
ence on Artificial Intelligence, 2000,

of & &l

e-mail - mjleekor@korea.com

19006 diFd 8 8o FAL

19943 AP SR ey HFeFesn
(B4}

c2002d Agditts JEY AREHTEH

bbb Lt (FEA})

20036 ~ @A} obAlopd Brstgigta el 223}
AU7A

PRk MAS, AAEA, §4 uAUS

FARE -
e-mail : jsk@kmuackr
1978 ARdEE Ald) s 8
1981 #xaetsed Basy A4
1990 Y#=ld#eln] Aiat dAeR
1981 ~1982'd KAIST A4AdAE
‘ a4
1829 ~dA AYdgn AFE IR a5
Aok 7IASE, g2ErtelY, AFA T, dnF

