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Improvement of Accuracy of Decision Tree By Reprocessing

Gyesung Lee'

ABSTRACT

Machine learning organizes knowledge for efficient and accurate reuse. This paper is concerned with methods of concept learning from

examples, which glean knowledge from a training set of preclassified ‘objects’. Ideally, training facilitates classification of novel, previously

unseen objects. However, every learning system relies on processing and representation assumptions that may be detrimental under certain

circumstances, We explore the biases of a well-known learning system, ID3, review improvements, and introduce some improvements of our

own, each designed to vield accurate and pedagogically sound classification.

7|19 E : 72[Hg&(Machine Learning), X4 E#® (Knowledge Representation), ID3

1. Introduction

Learning organizes environmental observations into a
knowledge base so as to efficiently and accurately perform
some tasks. A widely used form of machine learning is le-
arning from examples. This task assumes that objects are
classified by a ‘teacher’ with respect to a number of object
classes. The goal is to define conceptual rules that ap
propriately delineate the important properties of each class.
Concepts allow future observations to be classified effici—
ently and accurately.

It is assumed that experls can enumerate features that
might be relevant and classify examples framed in that
featural language, more easily than they can supply rules
that may not have been consciously or verbally accessed.
Rather, machine learning is better suited to the task of
focusing on that subset of the available features that vield

a consistent description of expert-supplied examples.

#
—+rj

Despite the promise of machine learning, individual lear—
ning systems have built-in procedural and representational
biases that may make autonomous knowledge acquisition
difficult or impossible ; it is unreasonable to expect that the
initial expert-supplied feature language is necessarily well
suited to the biases of a given system. This paper inves—
tigates the biases of a well-known machine learning system,
ID3 [1]. We describe augmentations to the ID3 family of
systems. In addition, we describe several alternative approa—
ches that seek to overcome limitations of traditional learning
from examples svstems. We focus our attention on the de-
gree to which an acquired knowledge base can accurately

support classification.

2. ID3

1D3 organizes conceptual knowledge in the form of de-
cision trees. A decision tree recursively divides observations
into subsets according to their value along a single attribute.

For example, consider the decision tree of (Figure 1). An



594 HEMEEZ=FA1B H10-BR H6=(2003.10)

object is classified via the tree by following a path defined
by values matching those of the object. The object is clas-
sified by the class given at the leaf of the appropriate path.

sick  neg

(Figure 1) An example decision tree -thyroid diagnosis

The critical issue in decision tree construction is the se-
lection of an attribute whose values will decompose envi—-
ronmental observations at each node. ID3 has traditionally
applied an information theoretic measure to the training
objects. Under the assumption that the training objects re-
flect environment wide distributions, the attribute whose
values best predict class membership is selected as the root's
divisive attribute.

The second critical 1ssue in decision tree construction 1s
when to terminate tree expansion. Early versions of ID3 de-
Ived down a path until all objects of the training subset that
were classified by the path were members of the same class.
However, this method was found to overfit the tree to the
peculiarities of individual objects. The presence of noisy (in—-
correctly described or classified) training objects could detri—
mentally lead future classification astray. To mitigate these
sensitivities, ID3 was altered to cutoff expansion when no
attribute divided up the training subset in a statistically
significant manner. In particular, a chi-square approximate
function is used to determine when optimal rules are likely
not to have arisen by chance. Presumably, this strategy sc-
reens spurious and irrelevant statistical relationships bet-
ween attributes and classes during classification and predic—
tion.

ID3 and its extensions vield accurate classifiers [2-4].
Moreover, the decision tree is learned efficiently and is an
efficient post-learning classifier. However, there are seri-
ous problems with the straightforward approach as we have
described. We turn to these problems next and to a variety
of solutions that have been proposed.

3. Polythetic versus Monothetic Learning

1D3 is highly efficient, in large part because at each step
in decision tree decomposition it only considers the relative
merits of single attributes ; for this reason we term D3 a
monothetic learner. The best attribute is selected to decom-
pose the tree at each step. In terms of the search paradigm
that dominates Al and machine learning ID3 hill climbs
through the space of decision trees. In this hill climbing
search it uses very limited look ahead. A problem is that
the best attribute considered in isolation may not be the best
{or even close to it) when considered in combination with
other attributes. The predictive merits of an attribute may
only be exposed in the context of other known values.

While these may appear to be extreme examples, logical
relationships that can confound ID3's limited lookahead are
likely lo arise in engineering applications, as is noise. Thus,
we are in a quandary as to whether we should keep noise
tolerant machinery that may also lead to premature termi-
nation of tree expansion. An obvious extension of course is
to extend the lookahead from one attribute to many. Because
we are basing expansion on many attributes we term this
extension a polyvthetic learner. An obvious strategy would
be to extend look ahead by some constant.

As to pruning insignificant subtrees, the polythetic, ret-
rospective-pruning strategy of 1D3 takes a step in the di-
rection of consolidating noise tolerance with more exten-
sive look ahead. Unfortunately, the approach only retrospec
tively prunes the irrelevant attributes at the bottom  most
portion of the tree. Irrelevant attributes that were inadver-
tently selected near the beginning of tree construction (ie.,
the most likely time for such selections) will remain. This
may adversely affect prediction accuracy, but it also affects
the comprehensibility of the tree to outside inspection ; it
will appear strange to a knowledgeable user (and will be
misleading to a novice user) that irrelevant attributes are

being used to guide classification.

4. Decision Tree to Productions and Vice Versa

Problems with retrospective pruning have been exten—
sively investigated in recent researches [5-7]. As before the
decision tree is decomposed to uniclass leaves. lowever, it
is then converted to a set of independent production rules :

one rule for each path of the tree. Each rule is then inde-



pendently pruned using a chi-square like measure. They
report improved accuracy results using this strategy. In
another variation, the tree is converted to rules and then de-
termines whether each attribute value's presence or absen-
ce significantly impacts the distribution of objects that match
the rule. In this manner, a significance filter is applied to
each value of a path, not simply the bottom most. In addition,
this strategy carries another advantage ; ID3 divides a tree
by the attribute with the most predictive values on average,
but particular values may nonetheless be unhelpful. Conver-
sion to production rules allows the predictiveness of each
value to be assessed independently of other values.

This procedure improves accuracy in noisy domains, wi-
thout detracting (at least significantly) from accuracy in
ideal (non—noisy) domains. However, there are disadvan-
tages to flattening the decision tree in this manner. Most
importantly, a production set is not as efficiently examined
as a decision tree. The maximum number of decision tree
comparisons is bounded by the total number of attributes,
while the number of production set comparisons is bounded
by the number of attributes times the average number of
values per attribute (i.e., the length of each rule). In ad-
dition, a decision tree orders the attribute tests, a property
that can be useful for guiding queries of an expert and
otherwise exploiting commonality between rules. To main
tain the accuracy of the pruned production set and the ef-
ficiency/pedagogical advantages of a tree structured knowl-
edge base, we propose to return the rule set to a tree format.

We describe two strategies for this process.

4.1 Rules to Tree via 103

The gist of our strategy is to collectively treat the pro-
duction rules as a training set of partially described ‘objects’.
However, the conversion from rule set to decision tree is
not as straightforward as it might appear. This difficulty
stems from the generalized nature of each rule. If an attribute
value is not present it does not indicate that the value is
missing or unobserved in the object description. Rather, it
indicates that the attribute may take on any value (eg., a
‘dont-care’ condition). In general, rules or partial rules are
not mutually exclusive. For example, the tree of (Figure 3)(a)
was created using the standard 1D3 algorithm on the pruned
rules of (Figure 2). But this tree would not accurately reflect
the rules of (Figure 2). An incoming object may satisfy the

top right-most test, while satisfying a rule in the left subtree.
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Before pruning
(((tsh nh)(fti nil)
({{tsh nh)(fti rh))
({{tsh nh)(fti m)(age a3))
({{tsh nh)(fti m)age ad))

{class hvpothyroid))
lclass negative))
{class negative))

{class negativel)

{class hypothyroid))
({tsh nn)(t3 onlitt4 ph)sex bf)lon-thy ct)) {class negativel)
({tsh nn)(t3 on)(tt4 phl(sec bi)lon-thy cf)) i
{{tsh nn)(t3 onl(tt4 ph){sex bm))

(tsh nhl(fti m)(age a5))
(
(
(
{tsh nn)(t3 on)ited pn))
{
{
(
{
{

class sick-euthyroid))
{class negative!)
{class negative))
{class sick-euthyroid))
(class negativel)
{class negativel)
1 {class sick-euthyroid))
| {class sick-euthyroid))
{{tsh nni(t3 olage a3i(sex bm)) {class negative))
{ttsh nn)(t3 ol)age ad)) {class sick-euthyroid))

|

|

|

((

(

(

{

(

({{tsh nn)(t3 ohl(fti rh))

({{tsh nn){t3 ohltfa m))

(t{tsh nn){t3 olage al))
({(tsh nn)(t3 ol)age 42))
ttitsh nn)(t3 oliage adiisex bi))
(
(
{
(
(
{

({tsh nn)(td ol)age ab)goitre mt)) {class negativel)
{tsh nn}t3 ol){age ab)(goitre mfd(g-hypo gtion-thy ct))  (class sick-euthyroid))
({tsh nn)(t3 ol}(age ab(goitre mflg-hypo gtion-thy cf))  (class negative))
({tsh nn)(t3 ol}age a5)(goitre mf)q-hypo gf)) [class sick-euthyroid))

After pruning
(({tsh nn} (t3 en) (ttd pn)) [class negativel)
{((tsh nh) (fti d)) (class hypothyroid))
{((tsh nn) (13 ol)) (class sick-euthyroid))
{{{tsh nh)) (class hypothyroid))
(({fti )} (class negativel)

(Figure 2) Rule sets before and after pruning

nn

nh nn nh
o R
on ol il m on ol
neg sick hypo neg neg Hi
rl m
sick neg
(a) (b)

(Figure 3) Tree-structured rule set

The tree building procedure for rules is a simple aug
mentation of the basic ID3 procedure, called ID3-R. Once
the information heuristic selects a best divisive attribute,
rules without the attribute are placed in each value subset.
This is consistent with the idea that these rules can be
satisfied by a test object regardless of its value along the
test attribute. In addition, for purposes of determining the
best divisive attribute, we consider the ‘dont-care’ attribute
as a value. This occurs of necessity since over a collection
of pruned rules, many attributes exhibit only one value. Us-
ing the standard evaluation function, a single value attribute
would not be regarded as predictive. However, the presence
of the value has predictive benefits that are not overlooked
if we consider ‘dont-care’ as a value. ‘Dont- care’ is not part

of the object description language in which test objects are
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expressed -thus, we do not use ‘dont-care’ as an arc label,
but simply place a copy of each ‘dont care’ rule with each
value subset to be further distinguished. Thus, these rules
are represented at deeper levels of each subtree, and can be
recovered regardless of a test object’s value at the top node.
(Figure 3)(b) shows that the decision tree derived by ID3-R

from the pruned rules of (Figure 2).

4.2 Rules to Tree via Conceptual Clustering

An alternative to using ID3-R is the use of conceptual
clustering. In particular, we use CLUSTER/2 [8] and REIT
[9] to organize the rules into a classification tree. Like ID3,
CLUSTER/2 tree-structures a collection of objects in a set
of mutually exclusive classes. However, it differs from [D3
in two important respects. First, they do not rely on an a
priori classification of objects ; it discovers classes with
‘best’ conceptual descriptions characterizing objects of the
class. Second, it forms a more general classification struc-
ture than ID3, since each arc may be labeled by a con-
junction of attribute values and not simply a single value.
However, like ID3, they are sensitive to missing attributes.
In practice many attributes disappear after rule pruning.
Thus we need lo develop a method to handle missing at-
tributes.

As with ID3-R, we treat a missing attribute as having
a special value (‘dont-care’) for purposes of heuristic eval-
uation, but do not use these values in the final tree. Unfor-
tunately, at the top levels of the tree. class characterization
may be too general to discriminate belween siblings because
no meaningful attributes remain after removal of ‘dont- ca-
re’s. The tree is refined by removing meaningless nodes of
the tree and by adding new links from the parent (root) to
the meaningful descendants.

Unlike ID3, we do not place objects with missing ‘value’
in each subtree during building. Our use of multiple values
at each node mitigates our need to do this. Nonetheless, it
may be necessary to search over the forest until a concept
is found that matches a test object.

REIT was developed based on the category utility of COB-
WEB. Incremental approach and greedy property of COB-
WEB is known to be detrimental to stable clustering due
to the order dependency of data. It is also known that the
COBWEB control structure and evaluation function are ori-
ented toward maximizing predictive accuracy, and there-
fore the hierarchies it constructs may not reflect the un-

derlying class structure of the data set. The REIT algorithm

was developed to improve the drawbacks of COBWEB. The
main idea of the REIT algorithm is to select the initial par-
titions from a classification tree and then introduce a parti-
tive control structure to refine the partition structure. The
main procedure of the REIT algorithm is summarized as fol-
lows. The procedure is recursively run until the node is
composed of same class objects. The detailed description can
be found in [9].

Construct a COBWEDB tree by using category utility.

Select mitial partition from the tree (k clusters)

Redistribute data objects over the partition by use of
category match [10]

@) Compute new partition score ( % 3 CU;) for n clus-

ters
@ If no improvement in partition score, then stop

@ Repeat the entire steps.

The hierarchy derived from REIT has node description on
the link with multiple set of attribute value pairs. It is also
different from CLUSTER/Z in that the occurrences of at-
tribute values on the arc are represented with conditional
probabilities. When experimenting with test cases to calcu-
late the accuracy of the outcome, the probabilistic compu-—
tation is required to determine the final prediction. This type
of probabilistic approach for prediction over the test cases
makes the algorithm more robust to the noises.

Modifications to the REIT algorithm were made to handle
large numbers of systematic missing values. The compu-
tation of the category utility function is modified to account
for missing attribute values in the data observations by
redefining the terms P(A ;= V;) and P(A ;= V,;| C,).
P(A ,= V,) is redefined to (the number of objects ob—
served for (A, = V) )/(the number of object ohserved for
A ;). Furthermore, a salience factor, a post-predictive mea-
sure, to represent the probability that a value for an at-
tribute will be observed for a particular class is taken into
account to the modified CU for cluster k :

P(C)(Z Plobserved A;| C)Z P(A ;= V| Ci)?
— 2 PlobservedA ) 25 P(A, = V,)%)

(Figure 4) and (Figure 5) show the results of class hie-
rarchy for thyroid data and congress data, respectively [11].
Due to the limited space, probabilistic description for REIT
structure is removed in (Figure 5). The noticeable difference



from the structure of ID3-R is that the arc labels become
more complex and are described with different types of
description languages. While CLUSTER/2 has arc labels
with a set of conjunctive attribute values, REIT takes proba—
bilistic values each illustrating the portion of attribute values
in the node. Unlike ID3-like learner, there is no order as to
the degree of importance of attributes. Therefore, there must
be a mechanism to traverse the tree to find the right class
for a new case. Especially, when a test case is fed into the
REIT structure, the candidate nodes compete by probabilistic
matching with the class descriptions shown in the arcs. The
CLUSTER/2 structure is arranged in such a way that order
of the search for classifying a new case should be done from

most specific node to the general node.

tsh=nn
tt3 =onorol
tt4 =pn

fii=rn

tsh=nn
3 =o0n
tt4 = pn

Hyp Neg

tsh=nn

Neg 3 =ol Sick

(a) CLUSTER/2 hierarchy

P(tsh = nn | Neg or Sick) = 0.6
P(t3 = on | Neg or Sick) =02
P(t3 = ol | Neg or Sick) = 0.4
P(tt4 = pn | Neg or Sick) = 0.2

Pitsh = nh | Hyp) =1 P(fti = rn | Neg or Sick) = 0.4

P(fti=r | Hyp)=05

P{tsh = nn | Neg} = 0.33

HYP P(t3=0n|Neg)=033
Pitt4 = pn | Neg) = 0.33

P(fti = rn | Neg) = 0.67
Neag Sick

P(tsh = nn | Sick) =1.0
P(t3= ol | Sick) = 1.0

(b) REIT’s hierarchy
(Figure 4) Thyroid classifications

A3=y3
A5=ng

Rep Rep Dem Dem Dem

(a) ID3-R

Rep Dem Dem Rep
(¢) REIT
(Figure 5) Congress Classifications

The probabilistic description reflects not just the exis-
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tence of the attribute values but also their strength in the
group with respect to the predictability. For example, P(fti
=11 | Hyp) = 0.5 means that the half of the node has the value
‘11" for attribute ‘fti’. In this regard, the algorithm to search
for the final prediction among possible candidates is as

follows :

)

=

(D initialize the sum to o.

@ for each child of the node,

@) if corresponding attribute value matches the one of
the test case, add up the probability to sum

(b) otherwise, the probability is subtracted from the sum

3 pick up the best child node with highest sum

@) if the child has no child, retun the class

B else set the node to best child node and repeat from 1.

4.3 Accuracy of the algorithms

We have performed experiments for accuracy test. The
results were obtained by first submitting a set of training
objects to the ID3 system for thyroid and congressional do—
mains [11], which returned a decision tree. Production rules
were then generated and pruned. These were submitted to
ID3-R, CLUSTER/2, and REIT, which created the corres-
ponding decision and classification trees. The accuracy of
the resulting prediction systems was evaluated with sets of
unseen test objects (30 data objects for the thyroid domain,
and 50 for the congressional domain).

<Table 1> shows prediction accuracy results for the initial
ID3 tree, pruned production rules, and three tree-structured
rules (ID3-R, CLUSTER/Z, REIT).

{Tahle 1> Accuracy for different algorithms

D3 | ntes | T | pa-R| cLUSTER/ | REIT

Rules
Thyroid 83 33 90 92 93 93
Congress | .90 90 96 elt 96 96 ]

The results show that the conversion of a decision tree
into a set of production rules can be performed without loss
of accuracy. But we expect that it is done at a high cost
in efficiency due to the nature of rules. The pruning of the
production rules produced a dramatic positive effect. Ac-
curacy was improved by 6% (from 90% to 96%) for congress
data and 7% (from 83% to 90%) for thyroid data, The con-
version of rules to decision trees (ID3-R), and classification
trees (CLUSTER/2, REIT) improved the accuracy by 2% for
ID3-R and 3% for CLUSTER/2 and REIT for thyroid data.
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But the gain in accuracy of REIT and CLUSTER/2 was pre—
served for congress data. Even a slight amount of gain was
lost for ID3-R. Our experiment also shows a slight increase
in accuracy of ID3-R for thyroid case, but that may be mis-
leading because the tree created was unable to classify se

veral objects, and only the objects for which a class was
given (either correct or incorrect) were counted in the ac-
curacy calculations. If those are counted the accuracy goes
down than the pruned rules. We conclude that the clustering
algorithms derived from pruned rules outperformed D3,
rules, pruned rules, and [D3-R. We have not fully inves-
tigated the efficiency issue. From the efficiency point of
view, since a large amount of reduction is done in the rule
pruning process the gain of efficiency 1s relatively small for

rebuilt trees.

5. Conclusion

We have described several extensions to the basic 1D3
algorithm with an eve towards accuracy and pedagogical
advantages. Our preliminary extension to existing techni-
ques is the conversion of a rule set to a tree structure. This
conversion created different kinds of tree structures. Single
attribute branching of ID3-R would be favored by novices
in understanding the classification (ree because of its sim
plicity. If some erroneous attribute appears in the top part
of the tree, the accuracy would drop considerably. Ordering
of single attributes may not always lead to a strong cla-
ssifier. As we have seen, the polythetic learner would out-
perform monothetic learner. The merits of our approaches
must await systematic experimentation in other larger do-
mains to see if more significant gain can be realized. We

also plan to do research on efficiency issue.
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