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Evaluation of Restoration Schemes for Bi-Level
Digital Image Degraded by Impulse Noise

Hyun-Kyung Shin’

- Joong-Sang Shin™

ABSTRACT

The degradation and its inverse modeling can achieve restoration of corrupted image, caused by scaled digitization and electronic
transmission. De-speckle process on the noisy document(or SAR) images is one of the basic examples. Non-linearity of the speckle noise
model may hinder the inverse process. In this paper, our study is focused on investigation of the restoration methods for bi-level

document image degraded by the impulse noise model.

Our study shows that, on bi-level document images, the weighted-median filter and the Lee filter methods are very effective among
other spatial filtering methods, but wavelet filter method is ineffective in aspect of processing speed: approximately 100 times slower.
Optimal values of the weight to be used in the weighted median filter are investigated and presented in this paper.

Key Words : Image Processing, Document Imaging, Image Restoration, Image Clean-Up, And De-Speckle Filters

1. Introduction

Burst of coherent radiation of active radar sensor,
corrupted electronic transmission used in fax and scanner,
or digitization scaling engenders the specks and noises
appeared in digital images. For a computer generated
document image, existence of noises in electronic image
is the cause of at least two bad consequences: first of all,
it increases the size of document file resulting in wasting
of disk storage(about 120% to 600% reduced space depending
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on the residence of noises) and secondly, it worsens
performance in both time and quality of optical object
recognition processes such as barcode recognition, O.M.R,,
O.CR, and ILCR,, which take the chief roles in document
imaging industry.

The key subject on restoration from corrupted digitization
is in comprehension of degradation procedure which can
be modeled as degradation function, A(x, v), and additive
noise, «(x, ¥) is. The mathematical formulation of degradation
process can be described as follows[1]:

gl ¥) = hix, ») * Aix, ») + dx, y), (1)

where f(x, v) represents the input image. Unlike other important



370 ZEMeIE =X B M13-BT X4=(2006.8)

imaging formats adapted by remote sensing SAR(synthetic
aperture radar) images, medical images(DICOM) or digital photo
images, having & to 64 bit scale for their pixel representation,
a document image without picture included can be represented
by binary pixel value. ISO/IEC standards CCITT-3[2//CCITT-4
[3] and JBIG[4)/JBIG2[5] were proposed in order for scanned or
faxed bi-level document images to save their file sizes[6].
Having its pixel value in one bit, i.e., the range of pixel value
is {0, 1}, bi-level images lead most of noise models such as
Gaussian, Raleigh, Gamma, and Exponential to be ineffective for
study of bi-level image restoration. Only suitable noise model
is the ‘saturated salt and pepper style impulse noise’. Due to binary
property of its pixel value, in document imaging, degradation
function described at (1) h(x, y) is usually considered as identity
transformation, i.e., noise only degradation. In this type of situation,
frequency domain methods adapting noise filtering techniques
by detection of abnormal frequencies is not effectual than spatial
filtering methods.

Various de-speckling and de-noising techniques have
been offered as depicted below. As stated in[l], some
restoration techniques are formulated in the spatial domain
while the others are formulated in the frequency domain.
The simple spatial morphological filters such as mean
filterf1] and median filter[7] have evolved to the advanced
forms in which local statistics of pixel neighborhood is of
great concerns: Lee[8], Lee-Sigmal9], Frost[10], Gamma-
MAPI11, 12], Kuanl13], local region[14], and modified
(weighted) median(1]. Each method will be explained later
in this paper. On the other hand, the frequency filters
usually based on the wavelet transformation also have been
developedl[15-20]. [15, 16] are the research framework for
wavelet based de—noising methods. The wavelet-based speckle
removal methods are proposed on medical images[17], and
on SAR images[18-20]. Besides the spatial-and frequency
domain methods, with application of elliptic PDE, a new
approach called non-isotropic diffusion, typically accepted
in image segmentation, has been introduced[21]. Comparative
studies between various de—noising filters for SAR images
are presented[22-24].

The aim of this paper is to rigorously evaluate the noise
filtering methods to find properly representing restoration
process of the impulse noise model applied in binary
document image. Since no multiplicative noise is assumed
in hinary image, as mentioned above, spatial domain filtering
is more convincing than frequency domain filtering. For
the comparability of test, we tested both spatial and frequency-
domain filter methods: Frost, Gamma-MAP, local region,
Lee, Lee-Sigma, modified median and classic Daubechies’
wavelet filter{12, 13).

Organization of this paper is as follows. In §2, each
filter method exploited in this paper is briefly explained.
In 83, test data and specification of system on which
tests were performed is described. In §4, test results and
discussion are presented.

2. Restoration Methods

In this section the de-speckle methods employed in
this paper are introduced briefly.

Frost filter uses a minimum mean square error algorithm
which, adaptive filtering exponentially damped convolution
kernel, adapts to the local statistics of the image to preserve
edges and small features. The formula with convolution

kernel is

where a = (4/np?)(6%/m?) 2
k(gt) = e

where a is the local coefficient of variation, A is the
normalization constant, p is the image coefficient of variation,
0 is the local variance, m is the local mean, and ¢ denotes
the distance from the pixel of interest. The resulting
digital number D will replace the pixel value.

MAP(Maximum A-Posteriori) filter maximizes the a
posteriori probability density function. This filter assumes
that the original pixel value lies between that of the pixel
of interest and the moving window average. This algorithm
incorporates the assumption that the noise has Gamma
distribution based on a multiplicative noise model with non—
stationary mean and variance parameters. An analytic
solution[25] of the following cubic equation,

X-mxf+ro-&x-v)=0 (3)

where v, m and ¢ are given pixel value, local mean and
local variance, respectively, will replace the pixel value.

Local region filter divides the moving window into eight
rectangular regions based on angular position. Once variance
is calculated locally for each region, the pixel of interest
is replaced by the mean of all pixel values within the region
with the lowest variance.

Own =min { 0, & & 0 G & 05 G} 4)

where ¢ denotes local variance in the specified i-th
region.

D = <p> for all p € ILnin region (5)
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where the bracket indicates averaging. The digital number
D is the candidate replacing the pixel value.

In practice, it can be used sequentially two or three
times, increasing the window size with each pass.

Based on the assumption that the mean and variance
of the pixel of interest is equal to the local mean and
variance of all pixels within the user-selected moving
window, Lee-Sigma filter utilizes the statistical distribution
of the pixel values within the moving rectangular window.
For a given window, the sigma value 1s computed as

=V Ym? (6)

where 02, m are local variance and mean, respectively.
It uses the average of all pixel values within the moving
window that [all within the designated range of standard

deviation.
D=<{p [ (1-wXpp<p<d+wZp > (7)

where po is the given pixel value, > is global variance
as seen in Eq. (6), and w = 2 in this paper.

In practice, Lee-Sigma filter and local region filter can
be a successive pass iteratively for better resultant image.

One of the most widelv used noise reduction filter in
camera industry, the Lee filter is able to smooth away
noise in flat regions, but leave fine details(such as lines
and text) unchanged. Like the Lee Sigma filter, Lee filter
is based on assumption that the mean and the variance
of the pixel of interest is equal to the local mean and
vartance of all pixels in the specific moving windows. Within
each window, the local mean and variance are estimated.
In regions of no signal activity, the filter outputs the local
mean. Its major drawback is that it leaves noise in the
vicinity of edges and lines.

A well-known nonlinear method is the median filter
that, useful for removing impulse(salt and pepper. pulse
or spike) noises{l], finds the median value in a given
window to replace the value of the pixel of interest. A
main drawback of this method is blurring/eroding effect
at the black and white pixel boundary. Switching scheme
(performs filtering at only the pixels of interest, for example
only at black pixels) is an alternative method to resolve
this problem. In addition, the modified(weighted) median
filtering shows more effectiveness. This weighted median
filter replaces a pixel value of interest with a specified
percentile(70%, for example) rather than median. In section
4 we present the optimal value for percentile.
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(Table 1) Dimension of Test Images
Noise Type Size Resolution | File Size| Colors | Noise
High Level | 1728 x 2144 in pixel|204 x 196 DPI| 454 Kb | 2 10%
Low Level | 1728 x 2144 in pixel|204 x 196 DPI| 454 Kb 2 7%
Correlated {1728 x 2144 in pixel 204 x 196 DPI|454 Kb| 2 |88%

3. Test Data and Computer System Specification

Generation of Noises: For the study of this paper, we
generated three types of impulse noises: high level, low
level, and vertically correlated. In order for producing high
and low level noises in each white pixel, Gaussian noise
is generated and then compared with the given threshold.
The higher threshold produces the higher level noises. In
this paper, the image with higher level noise has 10% noise
level which means that 109 of white pixels switched to noise.
The image with lower level noise has 7% noise level. The
vertically correlated noises were created by low quality
scanner and printer. We printed and scanned the original
image to get the noisy image.

Image Acquisition: The sample images in presence of
noise, as seen in Figure 1, were obtained from commercial
NET SDK software DotlmageTM of Atalasoft, Inc. The
original test image is an e-faxed document saved in TIFF
as CCITT Groupd format. We added low-level and high-
level noises(See A.l, B.1 in Figure 1) using random generator
as explained in the previous paragraph, and correlated
noise(See C.1 in Figure 1). The dimensions of test images
are as follows:

Computer Programming Language : For the de-noising
filters described in this paper, Microsoft Visual C# in Net
Framework was used to write programming code.

Computer System Specification : In this paper tests
were performed on PC with AMD AthlonTM XP 1800+ 1.5
(GHz and 512 MB of RAM.

4. Experimental Results and Discussion

Our study is focused on comparison among filtering
methods. Before presenting our results, it is required to
mention compatibility of the sample images and filters. We
have performed experiments with various types of images:
different resolutions, noise levels, impulse noise model
with diverse underlying random generators(Gaussian, Raleigh,
and Exponential). At first, resolution issue is important since
boundary between speck and noise can be affected. Image
filtering is a discrete version of function convolution. To verify
that filtering process is independent on image resolution,
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the scale invariance property of convolution operation is
described. For convenience of understanding, notations for
functional symbol are tabulated as follows: [Ts, ITp, 1T,
™, where superscripts cR and fR indicate coarse and
fine resolution, respectively, and subscripts s and p signify
source and processed images, respectively. Suppose that
two images, I"s and Img, are acquired from the same source
with different resolution. Then the following consequence
of relations can be derived between the two images:

I (x, v) = I™s (ax, by), where a > 1, b > 1,
I (x, y) = <IT = g> (x, y)

= <R % g>(ax, by) = [T (ax, by),
e, I% (x, v) = ™ (ax, by),

where the convolution operation <I * g (x, y)> = [ [ (s,
t) - gls—x, t-y) ds dt.

Secondly, our presumption “there is no dependence
between noise levellof impulse noise with underlying
(Gaussian random generator) and performance because of
the local property of filter masking method” is confirmed
by the experiment. We present high and low level noise
models to confirm this. However, processing time was
reduced in low level noise, which was caused by the
switching scheme(skipping white pixels). So we can still
affirm that noise level doesn't affect performance of noise
reduction by filtering. Refer to <Table 2> Finally, in binary
image, conventional underlying random generators(Raleigh,
Gauss, Exponential) used to produce impulse noise didn't
affect filtering performance. Refer to <Table 2>.

To provide evidence the statements above that performance

of filtering process is independent on the underlying
random generators and the image noise level, we present
the statistical analysis data on a relative error, n, and
noise removal rates, ®, in the <Table 2>. The simulations
are performed by a 3x3 median filter with pure noise
images created by three different noise model, Gaussian,
Exponential, and Raleigh generator. Each random generator
constructs 5 images with different noise levels, 0.01, 0.03,
0.05, 0.10, and 0.15. Proximity of each row gives an
evidence of random generator independence, and that of
each column demonstrates noise level independence.

From now on, performance comparison between filters
will be discussed. The three types of noise model are
exercised: high level, low level, and machine inducing vertically
correlated noise. Please refer to section 3 for detailed
description of noise types. Six of conventional filtering
method plus wavelet method are evaluated. The sample
images in presence of noise and the restored images are
become visible in (Figure 1) at the left side of the table
are the images in the presence of noise and at the right

(Table 2> independence of noise level and underlying random
generator on filtering performance.

Random Generator

Gaussian Raleigh Exponential

n ¢ n ¢ n ¢
0.01 0 1 0 1 0 1
0.03 0 1 0 1 0 1

approximate

. 0.05 | 0.0017 | 0.9994 | 0.0014 | 0.9994 | 0.0014 | 0.9997
noise level

0.10 | 0.0142 | 09921 | 0.0114 | 0.9936 | 0.0142 | 0.9921
0151 0.0487 | 0.9720 | 0.0430 | 0.9746 | 0.0448 | 0.9741

Image in
Presence
of Noise

L TINTAYY T Y

'EVENT|
ANY C(

Bl

Restored
Image by
de-speckle
filter

EVENT
ANY (X

EVENT
ANY CX(

TNIZTE T YY

EVENT
ANY (X

TR Y ra e wvw

A2

B.2 C2

(Figure 1) llustration of test images: at left panel are the images in presence of noises(A.1/A.2 - high level noise model, B.1/B.2-
low noise model, C.1/C.2-correlative noise model) and at right panel are the images with noises removed by

restoration process.
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(Figure 2) Processing time in millisecond(1/1000sec). The acronyms “Loc Reg’, “Lee-Sig", and W-Med” denote “Local Region’,

‘Lee-Sigma’, and “Weighted Median”, respectively. Image A, 8, and C stand for the images representing high, low level,

and correlated noises, respectively.

(Table 3» Reduction of file size is presented. “Noised” and
‘Restored” represent the image in presence of noises
and the image after de-noising process, respectively.
The unit of file size is Kilo-Byte.

High Level | Low Level | Correlated
Image |File Saving Methods| Noise Noise Noise
CCITT-G4 TIFF 271 78 15
Noised e
JPEG 1.89% 908 1.250
CCITT-(4 TIFF 13 1 36
Restored -
JPEG 39 D39 A0

side are the images after reduction of noises by the filters.
The 1mages illustrated in the table were cropped, size of
200 <75 in pixel with fixed ranged of coordinates{(100,
100), (300, 175)]), to preserve shape of the noises and
speckles{Automatic resizing operation at some stage in
inserting our image in Word diminishes noises or converts
them to gray scale). For simplicitv of presentation. we
present only the results from the Lee filter.

Reduction of file size on hehalf of de—noising/de-speckling
process can be observed in <Tahle 3> the file size of
restored image 1s reduced by 47% - 85% compared to that
of image with noise. We can also notice that CCITT G4
is better format than JPEG for saving 1 bit bi-level image
into file. For the JPEG compression, we used typical 75%
quality level from the range of 0 to 100.

The main topic of our study between de-noise filters
1s in comparison of “processing time”, “relative error levels”,
At the

processing time for each method. The result is scen in

and “noise removal rates’. first. we evaluate

(Figure 2). As the figure shows, the weighted median,
the Y%-MAP and the Lee filters are the fastest. The
wavelet filter is the slowest, which is anticipated hecause
of its frequency domain transformation. For the other
filtering methods such as the Frost filter, the local region
filter, and the Lee-Sigma filter have bottle neck of heavy
computation. For the Frost, computation of the kerncl
function, for the local region filter, estimation of the
eight different local variances in each pixel, for the Lee-
Sigma filter, evaluation of local variance in cach pixel
costs a lot of operations to slow down the whole process.

Secondly, the relative error level of restoration n is

estimated as helow:

n :lR_Ol/lD_Qly ,
wherelR - O/ID - 0l = =/ (r - oy)* / X/ (dy - 0)°

(8)

where R, O, and D denote the restored image, the
original image without presence of noise, and the degraded
image by noise, respectively. As described in the second
line of Eq. (8), the absolute value is evaluated by mean square
of pixel-by-pixel distance. Ideally, if the restored image is
same with the original image, n is zero. n = 1 implies no
restoration. In general, the higger value of n indicates the
poorer restoration result. As seen in Figure 3, the local region
filter shows excellent performance while it has problem
with processing time as seen previously. The Frost, the
MAP, the Lee, and the weighted median filters are also
good. On the other hand, a drawback of the T.ee- sigma filter,
inahility of removing noises at the character boundary, is revealed.
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Relative Error Level of Denoise Filters

08

A B C A B C A

Frost MAP Loc Reg

B C A

Lee Sig Lee

&
A

c‘h‘y
o
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B C A B C A B C A B C

Wavelet W Median

(Figure 3) Comparison of the relative error level of de-noise filtering. Refer to Eq. (8) for details. The values are dimensionless.
The acronyms “Loc Reg’, “Lee-Sig". and W-Med™ denote “Local Region”, ‘Lee-Sigma”, and “Weighted Median”, respectively.
A B, and C stand for the images in Figure 1 representing high, low level, and correlated noises, respectively.

Noise Removal Rates of Denoise Filters

80%

60%

Frost MAP

Loc Reg LeeSig Lee

ABCABCABCABCABCABCABGC

Wavelet w
Median

(Figure 4) Comparisoniofﬁé'noise removal rates of resulting restored image is illustrated. Refer to Eqg. (9) for details. The values
are dimensionless. The acronyms “Loc Reg”, “Lee-Sig", and W-Med" denote “Local Region”, “Lee-Sigma’, and “Weighted
Median", respectively, A, B, and C indicate the test images defined in the (Figure 1)

The relative error levels introduced above offered a method
of rigorous mathematical quantification of restoration performance.
It indicates an error level on identifying noises of the given
filter. Now, we introduce a new indication of performance
quality, the noise removal rates, ¢. This concentrates on
the rates of removal pure noises while excluding the case
when a filter identifies a pixel in character as noise. This is
a practical measurement especially when we use the
switching scheme(skipping either black or white pixels).

Thirdly, the noise removal rates ¢ are calculated as

follows:
d = IR-Dly / 10 - DI )
where [R-Dl| , / ID-0| = Zmax(r;; - dg, 0) /
>V (dy - oy) :

R, D, and O are used as the same manner in Eq. (8).

IR - D} and |D - Ol are the number of removed pixels and
the total number of degraded pixels, respectively. Since we
already have the original image without noise, obtainment
of values of IR -D! and |D -0l is straightforward from
direct pixel-by-pixel comparison among original, degraded,
and restored images. In Eq. (9), in case the resulting ¢ =
1 means perfect removal of noises, while ¢ = 0 does no
removal of noises. As seen in (Figure 4), the Lee and the
Lee-Sigma show excellent performance, the +-MAP, the
Frost, and the weighted median show good performance.
Finally, in this paper, we present our interesting discovery
on the optimal values for the weighted median filter. The
value for weight(of a weighted median filter) affect on the
restoration process in serious manner. For a reminder, the
conventional median filter is a weighted median with 50
percentile. For examples, in 3 by 3 windows 5-th value

out of 9 datalafter sorting) will replace the pixel value; in
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(Table 5> Finding of optimal weight valug: n, and ¢ are defined in Egs. (8), (9), respectively. The second column indicates the
modified median value and its corresponding percentile. Figure 1, A1, B.1. and C.1 stand for the images in the table
representing high, low level, and correlated noises, respectively.

Tigure 1 Al Figure 1 B.1 Figure 1 C.1
Filter size Order(%) n ¢ n ¢ n ¢

4/9(44) 0.1109 0.9039 0.9038 0.9892 0.2378 0.8449

5/9(55) 0.0731 0.9561 0.3187 0.9622 0.1186 0.979%

83 6/9(66) 0.0998 0.98%4 0.1402 0.9488 0.1763 0.9797
70T 0.3427 0.6573 0.1017 0.8989 04547 05454

13/25(52) 0.3163 09791 04501 0.9859 0.7183 0.9806

14/25(56) 0.2238 0.9666 0.4054 0.9707 0.5166 0.9701

15/25(60) 0.1580 0.9552 0.2963 0.9631 0.3197 09622

3x5 16/25(64) 0.1257 0.9499 0.1316 0.9552 0.2293 0.9524
17/25(68) 0.1082 0.9403 0.1568 0.9483 0.1810 0.9398

18/25(72) 0.1002 0.9275 0.1398 0.9394 0.1594 09181

19/25(76) 0.1012 09116 0.1240 0.9214 0.1533 0.8832

5 by 5 windows 13-th value out of 25 data(after sorting)
will do the job. It is well known fact that the conventional
median filter has problem with eroding foreground/background
houndaries due to the boundary geometry of the foreground.
To avoid the erosion, weighted median is frequently
applied[1, 26].

In <Table 5> we present relative crror levels and
noise removal rates from modified median filter method.
At the first column are filtering window sizes indicated,
and at the second column are the modified median and
its corresponding percentile shown. As seen in the table,
20 - 66 percenttle(when 3 x 3 windows are used). and 60
72 percentile(when 5 x5 windows are used) are good

candidate for the optimal value of weight.
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