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Object Tracking And Elimination Using Lod Edge Maps Generated
from Modified Canny Edge Maps

+t

Jihun Park” - Yung-Dae Jang™ - Dong-Hun Lee™ - Jong-Kwan Lee™ - Miok Ham

ABSTRACT

We propose a simple method for tracking a nonparameterized subject contour in a single video stream with a moving camera and
changing background. Then we present a method to eliminate the tracked contour object by replacing with the background scene we get
from other frame. First we track the object using LOD (Level-of-Detail) canny edge maps, then we generate background of each image
frame and replace the tracked object in a scene by a background image from other frame that is not occluded by the tracked ohject. Our
tracking method is based on level-of-detail (LOD) modified Canny edge maps and graph-based routing operations on the LOD maps. We
get more edge pixels along LOD hierarchy. Our accurate tracking is based on reducing effects from irrelevant edges by selecting the
stronger edge pixels, thereby relying on the current frame edge pixel as much as possible. The first frame background scene is
determined by camera motion, camera movement between two image frames, and other background scenes are computed from the previous
background scenes. The computed background scenes are used to eliminate the tracked object from the scene. In order to remove the
tracked object, we generate approximated background for the first frame. Background images for subsequent frames are based on the first
frame background or previous frame images. This approach is based on computing camera motion. Our experimental results show that our

method works nice for moderate camera movement with small object shape changes.

Key Words : Object Tracking, Level-Of-Detail Canny Edge Maps, Moving Camera, Object Elimination

1. Introductions and Related Works

The tracking of moving subjects is a hot issue because
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of a wide variety of applications in motion capturing for
computer amimation, video coding, video surveillance,
monitoring, and augmented reality. We track a highly
textured subject moving in a complex scene compared to
a relatively simple subject tracking done by others. We

mean complex because both tracked subject and back-
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ground scene leave many edges after the edge detection.
We assume our subject is never occluded by any back-
ground objects, but it occludes other objects in the
background. Our background generation assumes all
background objects are static. We can classify the meth-
ods of representing a subject contour into two categories
depending on the method used; parameterized contour or
nonparameterized contour. In tracking a parameterized
contour, a subject contour estimating the motion is repre-
sented by using parameters. In general, these methods
use the Snake modelll]; Kalman Snake[2] and Adaptive
Motion Snake[3] are popular Snake models.

In the method of tracking a nonparameterized contour,
a subject contour as a subject border is represented. The
contour created by these algorithms is represented as a
set of pixels. Paragios’s algorithm[4] and Nguyen's algo-
rithm[5] are popular in these approaches. Recently,
Nguyen proposed a method[5] for tracking a non-
parameterized subject contour in a single video stream
with a moving camera and a changing background.
Nguyen’'s approach combined the outputs of two steps:
creating a predicted contour and removing background
edges. Nguyen's background edge removal method of
leaving many irrelevant edges is subject to inaccurate
contour tracking in a complex scene because removing
the background edges is difficult. Nguyen's method[5] of
combining the predicted contour computed from the pre-
vious frame accumulates tracking error. In Nguyen's al-
gorithm[5], a watershed line that was determined by us-
ing the watershed segmentation[6] and the watershed line
smoothing energyl[5,7] becomes the new contour of a
tracked subject. Nguyen’s approach removed background
edges by computing subject motion. But Nguyen's ap-—
proach left many irrelevant edges that prohibit accurate
contour tracking because removing the background edges
is difficult. The watershed line is generated by combining
the previous frame contour and the current frame Canny
edges that do not always make a closed edge contour. In
this way, tracking errors are accumulated by always in-
cluding the previous contour regardless of the intensity of
the current Canny edges. Predicted contour that is com-—
puted from the previous frame is usually different from
the exact contour for the current frame. A big change
between the previous and current contour shapes makes
this kind of contour tracking difficult. The non-parametric
contour tracking research presented in this paper is im-—
provement on our previous works of parametric contour
tracking[8] and non-parametric contour tracking[9]. We
replaced parametric contour tracking of our old work[8] to

avold tracking error accumulation. This paper has no big
difference in object tracking of our old work[9] but we
extend our research in tracked object elimination. This
technique can be basic in editing a movie compared to a
popular image editing. Our object elimination by back-
ground is basically similar to other works[10].

2. Our Approach

In this paper, we remove redundant edges by modifying
Canny edge generation. To overcome Nguyen's two
problems, difficulty in removing noisy background edges
and accumulating tracking errors, we propose a new
method to increase the subject tracking accuracy by using
LOD Canny edge maps in predicted contour normal
direction. We compute a predicted contour as Nguyen does.
But, we use two major approaches. First, in order to reduce
side-effects caused by irrelevant edges, we generate Canny
edge maps around the predicted contour in the contour

(a) Ordinary Canny edge map
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(b) Horizontal Canny edge map
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(c) Vertical Canny edge map

(Fig. 1) Effect of computing Canny edge maps according to
the contour direction
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normal direction. Second, we start our basic tracking
contour using simple (strong) Canny edges generated from
Jlarge image intensity gradients, called Scanny edges.

(Fig. 1) (a) shows an ordinary Canny edge map, and
(Fig. 1) (b,c) show modified Canny edge maps generated
assuming horizontal and vertical contour direction
respectively. It is quite easy to modify the Camny edge
generator by considering the computed predicted contour
and computing the image intensity derivatives in the con-
tour normal direction. As can be found from the figures,
the contour direction effect on generating Canny edge
maps is removing redundant edges generated in an ordi-
nary Canny edge map.

A strong Canmy edge map is generated by a pix-
el-wise union of the simplest Canny edge maps out of
various scaled Canny edge maps. Contrary to Nguyen's
approach, we do not remove the background edges that
are difficult to remove. Our new method selects only the
Canny edges with large image intensity gradient values,
Scanny edges. A Scanny edge map does not have noisy
background edges and looks simple, meaning there are
less edges in the Canny edge map of the scene. Working
on Scanny has an effect of background removal. Our ac-
curate tracking is based on reducing the effects from ir-
relevant edges by only selecting strongest edge pixels,
and relying on the current frame edge pixels as much as
possible contrary to Nguyen's approach of always com-
hining the previous contour.

For Canny edge maps generated with smaller image
intensity gradient values, we call Weanny,,i=M+1,--- N
where N is the number of LOD Canny edge maps, M is
the number of Canny edge maps used in computing
Scanny edge map. Weanny,,,, has the simplest Canny
edges generated from a set of large (strongest) intensity
Weanny,, has the most detailed
Canny edges generated by an accumulation from largest

gradient value edges.
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(strongest) till to the smallest (weakest) intensity gra-
dient valued edges. Basically, we rely only on a Scanny
edge map and a predicted contour from the previous
frame to find reference pixels, called selected Scanny pix-
els, for building a basic (but not closed) tracked contour
frame. Then, we seek additional edge pixels from Weanny,
s according to the descending sequence of multi-level de-
tailed edge pixels, following LOD in edge maps. These
selected Scanny pixels become start nodes and end nodes
in routing. LOD Canny edge pixels become nodes in
routing, and LOD values of adjacent edge pixels de-
termine routing costs between the nodes. We mean ad-
jacent to be four-neighbor connected. From a set of ad-
jacent selected Scanny edge pixels, we find segments of
contours, called partial contour. In finding a partial con-
tour, we find the best route to follow Canny edge pixels
favoring stronger Canny edge pixels.

We consider Scanny edges around a predicted contour,
computed from the previous frame contour, to likely be a
part of the new contour. To make a closed contour, we
do a final routing using the above segments of partial
contours and Scanny edges around the predicted contour.
We do a routing between two disconnected Scanry edge
pixels using LOD Weanny edge maps favoring stronger
edge maps. The disconnected contour is connected using
Dijkstra’s minimum cost routing.

3. Overview of Our System

(Fig. 2) shows an overview of our system for tracking
and eliminating an object (to make a background image)
in a single image frame. First, we generate the first
frame background scene that will be explained in Section
3. Then we compute a tracked object contour for the
next frame. As inputs to compute an object contour, we

bg(1) —-> bg(t-1)
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(Fig. 2) Overview of our single frame tracking and background generation
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get a previous image frame, denoted as frame (t—1) and
the corresponding tracked subject contour of input
frame {t—1), and a current image frame, denoted as
frame (t—1). From frame (t—1), contour of frame (t—1),
and frame (t—1), we compute a predicted contour, 8!2(1””),
for frame (t) using subject motion[d). Then, we generate
various detailed levels of modified Canny edge image
maps for the input frame (t). We select Scanny edges
from the LOD Canny edge maps. From a Scanny edge
map, we derive a corresponding distance map. Using the
predicted contour, the best matching is then found
between the predicted contour and the Scanny distance

map. Scanny edge pixels matching with the predicted ,

contour become the frame of the contour build up. We
call these pixels selected Scanny contour pixels. Selected
Scanny contour pixels, generated using Secanny and
predicted contour, are the most reliable (but not closed)
contour pixels to start building a closed tracked contour,
and are stored in the selected Scanny found list. We then
route a path to connect adjacent selected Scanny contour
pixels in the found list using LOD Canny edge pixels. If
we finish connecting every adjacent selected Scanmy
contour pixel pair, we get a set of partial contours
although not guaranteed to be the best closed contour.
We mean best because the contour is four-neighbor
connected and follows every possible Scanny edge. To
build a best closed contour for the frame (t), we use
LOD Camny edge maps around the predicted contour. We
run a final routing using the computed segments of
partial contours and Scanny edges around it to find the
best contour. In this process, we fix the incorrectly
computed basic contour. The resulting contour becomes
the contour of frame (t), and it is used to generate

background of frame (¢).

3. LOD Canny Edge Maps and Matching for
Selecting Reference Gontour Pixel

A strong Canny edge map is generated by a pix-
el-wise union of the simplest Canny edge maps out of
various scaled Camny edge maps. Contrary to Nguyen's
approach, we do not remove the background edges that
are difficult to remove. Our new method selects only the
Canny edges with large image intensity gradient values,
Scanny edges. A Scanny edge map does not have noisy
background edges and looks simple, meaning there are
less edges in the Canny edge map of the scene. Working
on Scanny has an effect of background removal. Qur ac-

curate tracking is based on reducing the effects from ir-
relevant edges by only selecting strongest edge pixels,
and relying on the cwrrent frame edge pixels as much as
possible contrary to Nguyen’s approach of always com-
bining the previous contour. For Canny edge maps gen-
erated with smaller image intensity gradient values, we
call ~ Weanny,,i=M+1,-N where N is the number of
LOD Canny edge maps, M is the number of Canny edge
maps used in computing Scanny edge map. Weanny,,,,
has the simplest Canny edges generated from a set of
large (strongest) intensity gradient value edges. Weanny,,
has the most detailed Canny edges generated by an ac-
cumulation from largest (strongest) till to the smallest
(weakest) intensity gradient valued edges.

By varying control parameters, we can get various
Canny edge maps of different scales given a single
image. The resulting Canny edge maps are mainly af-
fected by the image intensity changes between pixels. We
take advantage of the fact that we can get various
Canny edge maps by varying these control parameters.
Usually, very detailed Canny edge maps confuses us in
finding the exact outline, but simple Canny edge maps
generated from large image intensity changes do not have
enough detail to make a closed contour for the tracked
subject. But simple Canny edge maps are very reliable
because they are generated only if there are big intensity
changes in the image. We need both simple and detailed
Canny edge maps for the best subject tracking. Various
detailed Canny edge maps are generated by varying the
values of control parameters. We totally order the result—
ing Canny edge maps by counting the number of edge
pixels in each edge map.

Let " where i=1,--,N, be a totally ordered set of
Canny edge maps of an input image frame(t). The order-
ing is done by counting the number of edge pixels.
gbf[’t) has the smallest number of edge pixels while 45}{’”
has the largest number of edge pixels. N is the total
number of Canny edge maps generated for the input
image. Then, we take the top 10 percent to 30 percent of
the simple Canny edge maps and union into pixel-level to
make a Scanny edge map, S8, M is the total number
of Canny edge maps used to make a S8, The rest of

the Camy edge maps are wused to generate
Weanny; yVIﬁﬁEm.
M

Sptht) = U Gt 1)
i=1

wa( = SQSWU( U ¢§Lf)), i= (M), N

J=M+1
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where U is pixel-wise union of bitmaps.

Weanny,;,., 1S a pixel-wise union of Scarny and the
next detailed sets of Canny edge maps. Weanny, is gen-
detailed
sets of Canny edge maps, etc. Weanny, has the union of

erated by unioning Weanny,_,, and the next

all levels of detail Canny edges generated by an accumu-
laion from highest-to-lowest intensity gradient value
edges. (Fig. 3) (ab) shows an example of Scanny and
Weanny Canny edge maps respectively.

LOD Canny edge map, I8 is generated using %"
and WBs edge pixels around 82", MIBY (2,9)) is a
function returning an LOD value given an edge pixel
(x,y) of a LOD edge map, 26", To build a 28", we
search 6% and Wa"’s from the simplest edge map to

the most detailed edge map.

o (I35 (z,y)) =1 if S8 (z,y) is an edge pixel and
around 9 (29,

s NI () =i+1  if WYY (z,y) is an edge pixel

and around 9Q 9 and M(Ie*(z,y) is not ini-
tialized any value where i=M,---,N—1.
« I(I8") (3,y)) =255 if pixel(x,y) does not belong to

any edge pixel or is not around R (9.

Basically, we rely only on a Scanny edge map and a
predicted contour from the previous frame to find refer-
ence pixels, called selected Scanny pixels, for building a

basic (but not closed) tracked contour frame. Then, we
seek additional edge pixels from Weannys according to
the descending sequence of multi-level detailed edge pix-
els, following LOD in edge maps. These selected Scanny
pixels become start nodes and end nodes in routing. LOD
Canny edge pixels become nodes in routing, and LOD
values of adjacent edge pixels determine routing costs
between the nodes.

Nguyenlb] removed background edges using object
motion. But, Nguyen’'s approach left many irrelevant
edges which prohibit accurate contour tracking.

We do not remove any background edges. Removing
background edges is not easy. (Fig. 3) (ab) shows an
example of Scanny and Weanny, Canny edge maps.
Rather than removing background edges, we start with a
Scanny edge map, as presented in (Fig. 3) (a), that has
simple edges in a scene.

(Fig. 3) shows a process of computing selected Scanny
pixels, and the selection result is presented in (Fig. 3)
(e). Selected Scanny pixels are denoted as green pixels in
(Fig. 3) (e), along the predicted contour, while red pixels
mean a failure in finding a matching Scanny pixel. By
using an image matching as used by others[5], we can

get a predicted contour, 9@ 9, as presented in (Fig. 3)
(c). Then, we generate a distance map of Scanny, DSBE,
as in (Fig. 3) (d).

Given a pixel (z,.;,.,;) on a2®", we find the corre-
sponding Secanny edge pixel, if one exists, by finding the
best matching between the predicted contour and the dis—

n

(@)

(Fig. 3) Scanny edge map (a), LOD edge map (b), predicted contour from (c), distance map generated from
Scanny (d), matching between predicted contour and Scanny distance map (e), circular distance map

used in matching (f), final routing result favoring Scanny (8)



176 dEXNZStel ==X B M14-B H3=(2007.6)

tance map. In computing the matching, we use the best

that we can find (Ax, Ay) minimizing equation (2).

SY—15X—1 9
2wl (DSBE) (a,) — 0029 (- Ay + 29))(2)
y=0 z=0
where  30(x ., ¥ o) 15 @ weight function such as a

circular distance map as presented in (Fig. 3) (f), SX and
SY is the width and height of the input image. The cen—
ter of the circular distance map is positioned at the refer-
ence pixel on the predicted contour. The (Az,Ay) mini-
mizing equation (2) is denoted as (Ar, .4y, ). If the
matching pixel, pixel(z,,;+ Az, .9, + Ay, ), corresponds
to a Scanny edge pixel, then the pixel 8% (z,y) is
selected. We call this pixel a selected Scanny contour
pixel. Tracing along 2% we get a set of selected
Scanny contour pixels. These pixels are totally ordered in
terms of a2®% and stored in the found list.

(Fig. 3) (e) shows an example of the best matching
with the reference contour pixel point (marked as red
cross). The green contour denotes the predicted contour,
while black edge pixels denote Scanny edge pixels. Gray
levels are shown because of a distance map of Scanny
edge map. Selected Scanny contour pixels are the refer-
ence pixels to start building a segment of a tracked con-
tour and are stored in the selected Scanny found list.
These pixels are usually not connected as a four-neigh—
bor connection but are most likely to become part of the
new contour to be computed.

4. Scanny Contour Pixel Connection-LLocal Routing

We route a path to connect adjacent selected Scanny
contour pixels in the found list using LOD Canny edge

pixels, [.S® (1Y We mean adjacent to be adjacent in
the found list. If we finish connecting every adjacent se-
lected Scanny contour pixel pairs, we get a set of partial
contours although they are not guaranteed to be complete.
We mean complete because the contour is four—neighbor
connected and follows every possible Scanny edge. These
selected Scanrty contour pixels become start and end no-
des in routing.

LOD Canny edge pixels become nodes in routing, and
LOD values of adjacent edge pixels determine routing
costs between the nodes. In finding a partial contour, we
find the best route to follow Canny edge pixels favoring
stronger Canny edge pixels. We mean best because

(Fig. 4) Close-up of selected Scanny pixels after matching
between the predicted contour and the current frame
Scanny edge map (a), selected Scanny pixels as well
as accumulation from Weanny,,. , untl Weanny,, edge

pixels (b)

building an optimal partial contour route by taking pos-
sible strongest Canny edges (minimizing routing cost) ac—
cording to the descending sequence of multi-level de-
tailed edge pixels, following LOD in edge maps.

(Fig. 4) shows a close up of a matching result be-
tween the predicted contour and the current frame Scanny
edge map. The green pixels were stored in the selected
Scanny found list. We need to connect adjacent selected
Scanny contour pixels, stored in the found list, to build a
new closed contour. We mean adjacent, adjacent in the
found list. This computed contour will be the basic
tracked subject contour for frame (t).

Our Weanny Canny edge tracing to find a route to
connect selected Scanny contour pixels is done using the
concept of LOD. The LOD Canny edge maps consist of
various levels in Canny edge generation. The Scanny
edge pixels are assigned LOD value one, LOD value i+]
for Weanny, edge pixels, and LOD value (N+1) for
Weanny,, and so on. LOD value 255 is reserved for pixels
with no edge, but number 255 does not have any special
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meaning. The LOD function is presented in Section 5.

We take a part of the LOD Canny edge map around
two adjacent selected Scanny contour pixels. Pixels of
the LOD map become nodes, and we determine costs
between adjacent pixels. We mean adjacent to be
fourneighbor connected. We determine costs between ad-
jacent pixels using a Canny edge LOD value of each
pixel. We favor traversing the most simple (stronger)
edge pixels in the map rather than the most detailed
(weaker) edge pixel in LOD. We assign the lowest cost
between two adjacent Scarmy edge pixels to encourage
Scanny-based routing.

An LOD edge map [ is a pair([;Y) consisting of a fi-
nite set I' of pixels, and a mapping Y that assigns to

each pixel ¢ in ' an LOD edge pixel value Y ({) rang-
ing from 1 to 255. An adjacency relation A is an irre-
flexive binary relation between pixels of I'. The LOD
edge map I can be interpreted as a directed graph with
nodes that are the LOD edge pixels and with arcs that
are the pixel pairs in A. sAt depends only on the
four-connected neighbor of the pixels in the LOD map,
and (s,t)eI'xY. A path is a sequence of pixels

T =<ty by, oty >, Where (4,t,,,)EA4 for 1<i<k—1 f is
the origin, and t is the destination of the path. We as-

sume given a function f that assigns to each path T a

path cost Am), in some totally ordered set of cost

values. The sef of cost values contains a maximum ele-

ment denoted by + co. The additive cost function sat-

isfies
F (T e <8, )= F qun(®) + (s, D

where (s, ) A, T is any path ending at s, and w(s,t)
is a fixed nonnegative weight assigned to the arc (s,t).

wist) :{ + oo ifsandt are not adjacent pixels
’ Y(s)*Y(t)*Y(t)  if s and t are adjacent pixels

This weight function guarantees to take stronger
Canny edges in the optimum path routing. If there is no
edge pixel present, the routing takes ordinary pixels

with Y wvalue 255 to make a closed contour. The routing
is done using Dijkstra’s minimum cost routing algorithm,
We route a path to connect each adjacent selected
Scanny contour pixels pair in the found list.  we finish
connecting all adjacent selected Scanny contour pixels

al
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pairs, we get a basic contour although it is not guaran-
teed to make a closed contour for the tracked subject.

5. Scanny Contour Pixel Connection-Final Routing

To build a closed and complete contour for the current
frame, we use Scanny edge maps around the predicted
contour as well as a set of partial contours computed
from selected Scanny edge pixels. The resulting contour
becomes the contour of the current frame. We run a final
routing using the computed basic contour and Scanny
edges around it to find the best contour. These pixels are
usually not connected as a four-neighbor connection, but
these pixels will most likely become part of the new
contour to be computed. To get a globally best contour,
we mean best that the contour is four-neighbor con-
nected, closed, and follows every possible Scanny edges.
We run a final routing using the computed basic contour
and Scanny edges around the computed contour. We
mean global considering the entire contour rather than
considering a part of the edge map. The resulting contour

becomes the contour of Frgme (f). The major reason
for considering only Scanny edge pixels excluding
Weanny pixels is because of computational complexity,

O(#?). As the number of pixels involved in the final
routing grows, the computation slows down. In computing
the final contour, we consider Scanny edge pixels rather
than all LOD edge pixels to reduce the number of nodes
in the routing computation. For the final contour routing,

I consists of Scanny pixels as well as the computed
partial contour pixels, the pixels found from the routing
between adjacent selected Scanny contour pixels, and that

Y ({) has dual values each for Scanny and the computed

contour pixels. Y values for Scanny edge pixels have
value one, and the computed partial contour pixels have
value two. The weight function for the final routing is as
follows:

+ o if s andt are not adjacent wxels
wls,t) =Y (s )*Y{t)*v(t)

We assign cost one between adjacent Scanny pixels,
while there are higher costs between pixels of the com-
puted basic contour. This has an effect of favoring
Scanny edges rather than computed contour pixels. If
there i1s no route made by Scanny pixels for a special
part of an edge map, then a corresponding segment of

if s andt are adjacent and Y{s) = Y(¢)
1 if s and t are adjacent and Y(s) = Y{(¢)
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the computed partial contour is selected.

6. Object Elimination and Background Generation

(Fig. 5) shows a process to determine the first frame
background given a sequence of video stream. As inputs,
we get the kth frame denoted as frame (k), the first
image frame denoted as frame (1) and the corresponding
The first
of the tracked object as well as

tracked subject contour of input frame (1).
frame consists
background. The kth frame is the earliest frame, in video
sequence, that has the background information for the
part occluded by the tracked object in frame (1). From
frame (1) .and contour of frame (1), we compute a size of
the bounding box of the tracked contour, and remove
inside of the tracked object contour, the part of the image
frame occluded by the tracked object. By filling the
occluded/removed part using background image from
frame {k), we build a background image of frame (1),
denoted as bg (1).
frame to fill occluded part is as follows. First we try

The process to determine the exact

with an arbitrary frame, say frame (k). In order to verify
that the frame actually contains the missing background
part of the first image frame, we compute object motion
between frame (1) and frame (k)[5]. If the object motion
magnitudes in both x and y direction are bigger than the
width and height of the bounding hox of the first frame
respectively, we are done in finding the exact frame to
fill the missing part of frame (1). Otherwise we try with
the next image frame until the exact frame is found.
Then we compute camera motion between the first frame

and the kth frame, and the computation result is used in
generating a background image of the first frame denoted
as bg(l).
contour inside removed. In order to compute camera

woframe (1) denotes the first frame with the

motion, we find the best matching displacement between
woframe (1) and frame (k). In order to fill the occluded
part of woframe (1), we use computed camera motion and
As a

result, we get the background image .of the first frame,

take corresponding image part from frame (k).

denoted as bg (1).

(Fig. 6) shows a process to determine the fth frame
background. As inputs, we get a fth image frame, de-
noted as frome (t), the corresponding tracked subject
contour of input frame (t), and the computed background
denoted as bg (t—1).
frame (t) and the contour of frame (¢t), we eliminate in-

image of frame (t—1), Given
side the contour, the tracked object. The resulting image
frame is denoted as woframe (t). Using woframe (¢) and
bg (t—1), we compute the camera motion between the
frame (t—1) and the frame (t). Using the computed cam-
era motion, we fill the occluded part of woframe (t) using
bg (t—1). As a result, we get the background image for
frame (t), denoted as bg (¢t). (Fig. 7) shows an example of
generating the background image for the first frame. The
inputs were a sequence of video, the first frame, and the
contour for the full tracked body of the first frame. (Fig.
7) (a) shows the first frame, (Fig. 7) (h) is the selected
kth frame which has the background image for the oc—
cluded part of the first frame, and (Fig. 7) (¢) is the
computed background image for the first frame. As you
may find, there are some dark image areas that do not
have any corresponding background image available.

frame {13 4 o Remove fi'ilﬂtlﬂﬁll) W:ijh Compute Fill {nside
: REYE | santour Inside e U
ey tside of e Camara  peos ?”““f’“&f{m
EE Compute Size || Contour | femoved Motion Irame (1)
ZE of Coutour ] 5 usIng ;
e vt B e ) e (k) art of
=) Bounding Box L) compare magnitudes g.ﬂﬂw )
L™ _oof H{V:nm?{Emg Eﬂf’{ Bize -~ (sject Motion "
Computs sl Object Motien 1y Bigger ¥
f 1y Object Backeroand
rame (k) | RE i e
m'{“ﬁ* Motion || hacranent e e of ?”j*me (1),
- Frime mumher Ezt%ﬁ‘;iﬁj;’ Haw bgil}
(Fig. 5) Process of generating the first frame background
Contonr of ‘ et
frame (1) . Eliminate | woltune (1) Compute E" il Uﬂkﬂﬂwﬁ < be(n)
e — i T = Camers | Background Part off U5
frame (1) Je - woframe (U .
Rotion i ) .
bglt 1) i _asing bu(t 1

(Fig. 6) Process of generating the tth frame background using (t-7)th frame background
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(a) /st frame (b) Ath frame

(c) background of Jst
(Fig. 7) The result of generating background of the first frame

7. Experimental Results on Tracking while Handling
Occlusion

7.1 Experimental Environment

We have experimented with easily available video se-
quences either available on the Internet or generated with
a home camcorder, SONY DCR-PC3. We have generated
64 different LOD Canny edge maps, ordered them accord-
ing to the number of Canny edge pixels, and union sim-
plest 18 (top 30 percent) Canny edge maps to make
Scanny Canny edge map. It does not take a long compu-
tational time to generate 64 Canny edge maps, and it is
not necessary to keep 64 different levels. We may vary
the percentage of Canny edge maps in determining a
Scanny edge map, but the percentage is not critical in
tracking performance as far as we take 10 percent to 30
percent of the Canny edge maps. (Fig. 8a-jl) show a
man walking in a subway hall, and (Fig. 8[k-t]) are cor-
responding background generated images. The hall tiles
as well as a cross stripe shirt generate many complicated
Canny edges. The tracked contour shape and color
changes as the man with a cross stripe shirt rotates from
facing the front to the back as he comes closer to a
camera and then moves away from it. To make tracking
more difficult, the face color of the tacked subject is sim-
ilar to the hall wall color (Fig. 8[c,e])  while his shirt col-
or is similar to that of stairs (Fig. 8[ijl), and tracked
body black hair is interfered with by a walking woman
in (Fig. 8(fg)) and a man with a black suit in (Fig.
8(k-1)). Stair colors in (Fig. 8(j-s)) are similar to the
tracked subject shirt color. We tracked the upper body of
the man because his pants color is similar to that of the
subway station floor (Fig. 8lal).

There are many edge pixels in the background and the
subject has many edges inside the tracked contour. There
are other people moving in different directions (Fig.
8[f-hl), in the background, causing errors in background
image generation(Fig. 8lo-s]). To make tracking more
difficult, the face color of the tacked subject is similar to
the hall wall color (Fig. 8[a-c]) while his shirt color is
similar to that of stairs (Fig. 8ifgl), and tracked body
black hair is interfered with by a walking woman in (Fig.
8(fg)) and a man with a black suit in (Fig. 8(h)). Our
tracked contour is bothered by these interferences, but
recovers as soon as we get Scanny edges for the inter-
fered part. Even under this complex circumstance, our
houndary edge-based tracking and background generation
was successful.

7.2 Handling Occlusion

We assume our subject is never occluded by any
background objects, but it occludes other ohjects in the
background. Our tracking condition is tougher to track
than the experimental environment by Nguyen[5]. A
series of occlusions occur in frames (Fig. 8(f-r)). We
suffer serious interference whenever similar colored
moving objects are occluded by the tracked subject. The
occlusion in frames at (Fig. 8(f-h)) could be easily
handled because the white color of the woman moving in
the background is distinct from the tracked subject.
There are strong Canny edges generated around the
tracked subject contour. According to the matching, we
get enough set of selected Scanny points around our

(f) frame 185

(e) frame 150
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(i) frame 240 (j) frame 300

(k) bg(1)

(1) be(60)

(s) bg(240) (t) bg(300)
(Fig. 8) Tracking and background generated(upper body removed)
result

subject and can find a correct routing around the
tracked subject contour using LOD Canny edges.
Whenever Scanny edges are missing from the basic edge

map, we refer to detailed Weanny edge maps with a
penalty to favor stronger Canny edges. A series of
serious interference occurs starting at (Fig. 8(i)). The hair
color of a woman in the background is the same as that
of the tracked subject, and the contour is disturbed as
she moves to the right. But, the following bold-haired
man seriously interferes the tracked subject. He generates
many strong Canny edge maps, and the tracked contour
is seriously deformed because of the similar color with
the tracked subject. When the background object moves
away from the tracked subject, we get strong Canny
edges back between the tracked subject and the
background object, and we get a tracked contour that is
heavily deformed. Whenever the background subject is
gone, there is another strong Canny edge map generated
by wall tiles. But, the tracked contour because of the
wall tile has similar colors around the inside/outside of
the tracked contour. Because our contour routing favors
short routes, the tracked contour successfully shrinks to
our tracked subject in several tracking frames. We
received source codes from Dr. Nguyen to compare his
tracking performance with our tracking performances.
Because Dr. Nguyen’s algorithm is not designed for a
highly textured environment, the tracking result is poorer
than that of our result as can be found in (Fig. 9) (Fig.
10) shows our parametric contour tracking result mainly
coded by T. Kim[9]. Please note the first frames of (Fig.
9) and (Fig. 10) (these results are based on parametric
contour tracking) are later than our test result presented
in (Fig. 8 which is based on non-parametric contour.
This is due to parametric approaches[5,9] cannot handle
object boundaries of similar colors with their background.
(Fig. 11) shows our result of tracking a pingpong ball.
(Fig. 12) shows our result of tracking a man wearing a
shirt with very strong textures. Our method degrades by
contour shrinking while tracking an object with strong
textures because they generate strong Canny edges.
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) . . (Fig. 12) Our result of Tracking a man with very strong texture
(Fig. 9) Upper body tracking result by Nguyen's codel5], shirts (thanks to input image provided by T. Kim)
images were generated by T. Kim

8. Conclusion

In this paper, we proposed a brand-new method of im-
proving accuracy in tracking a highly textured object and
eliminating it to generate corresponding background scene.

We start by selecting a boundary edge pixel from the
simple (strong) Canny edge map, referring to the most
detailed edge map to get edge information along the LOD
Canny edge maps. Our basic tracking frame is determined
from the strong Canny edge map, and the missing edges
are filled by the detailed Canny edges along the LOD
hierarchy. Even though detailed Canny edges are noisy,

our basic tracking frame is determined from the Scanny,
and is not disturbed by noisy edges. This has an effect
of Nguyen's background noisy edge removal. Another
major contribution of our work is not accumulating track—
ing errors. We minimize the possibility of accumulated
tracking errors by relying on the current Canny edge
map only. In Nguyen's approach[5], a new contour is de-
termined by mixing the current image edge map with the
previous contour. If there is no edge present, we may

have a tracking error for the part. Whenever we get
Scanny edge information, the tracking error disappears,
and we can restart accurate tracking for the erroneous
part. Our tracking condition is tougher to track compared
to Nguyen’'s. The problem with our approach is that we
need edge information as every other edge-based ap-
proach does. If there is no edge information available he-
cause of the same color with the background, our track-
ing performance degrades heavily, and this is inevitable
for all approaches. But, our tracking performance recovers

whenever we get edge information back. By using our
[

. novel method, our computation is not bothered by noisy
(Fig. 11) Pingpong ball tracking result by our approach

edges resulting in a robust tracking. Our experimental re-
sults show that our tracking approach is reliable enough
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to handle a sudden change of the tracked subject shape
in a complex scene.
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