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Automatic Object Recognition in 3D Measuring Data

Sung Joon Ahn'

ABSTRACT

Automatic object recognition in 3D measuring data is of great interest in many application fields eg. computer vision, reverse
engineering and digital factory. In this paper we present a software tool for a fully automatic object detection and parameter estimation in
unordered and noisy point clouds with a large number of data points. The software consists of three interactive modules each for model
selection, point segmentation and model fitting, in which the orthogonal distance fitting (ODF) plays an important role. The ODF
algorithms estimate model parameters by minimizing the square sum of the shortest distances between model feature and measurement
points. The local quadric surface fitted through ODF to a randomly touched small initial patch of the point cloud provides the necessary
initial information for the overall procedures of model selection, point segmentation and model fitting. The performance of the presented

software tool will be demonstrated by applying to point clouds.
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1. Introduction

One of the main tasks of computer vision and robotics
is to extract and recognize geometric objects from the
environmental scene, where an object should be represented
through geometric information such as size, position and
orientation. Especially the parametric model recovery (PMR,
Fig. 1) is aiming to represent the shape and size of an
object in term of mathematical formulas. A fully auto-
matic and generally applicable solution to parametric model
recovery might be realized only through a highly sophisti-
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cated software technique analyzing all the available infor-
mation on objects, such as point cloud, object database,
object surface color and texture. In this paper we present
a software tool for increasing the accuracy and automa-
tion degree of PMR by exploiting the 3D point cloud of
objects.

If we restrict our interest field to industrial environ-
ment, we find out that a large portion of industrial objects
including manufacturing facilities and work pieces can be
modeled as exact features, ie. planes, spheres, cylinders

or COH&SM

. Thus, even when we limit the range of our
interest model features to geometric primitives (exact
features), there is still a large demand on a fully auto-

matic identification of these features, especially from the
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Real Object [—)

Object description:
{—| size, form, position and
rotation parameters

3D point cloud:

| =) | unstructured,
| incomplete

(Fig. 1) Parametric Model Recovery of real objects via 3D point cloud

fields of reverse engineering, robotics and digital factory.

Under the circumstances mentioned above, we have de-
veloped a software tool for a fully automatic extraction of
exact features from point cloud, based on our previous
work on a semi-automatic solution”. The functionality of
the software tool is analogous to that of the human intelli-
gence searching for objects of exact feature in a dark
room environment. In this paper we describe in detail the
algorithmic techniques implemented in our software tool.
The performance of the software tool is tested on point
clouds generated by X-ray CT technology.

2. Parametric Model Recovery

2.1 Model Features for Real Object

There are three analytic forms of describing curve/surface,
ie, explicit, implicit and parametric form™*"”, In general,
diverse applications handling dimensional models or objects
use the implicit or the parametric form. In addition, many
applications e.g. the bin-picking and the obstacle-avoidance
task in robotics involve describing the real objects in terms
of shape, size, position, and orientation. Thus, we group
the model parameters a of a curve/surface into form 2,
position 2, and rotation parameters 2, as follows:

f(a,,x)=0 * implicit feature
x(a,,u) * parametric feature (1)

X=R,, x+X, or x=R,_  (X-X)), @

y PT, R 3
a =(aa,

a,T)z(a,,...,a,,Xo,Yo,ZD.a),(a,x). (3)

The form parameters, e.g. half lengths a,b,c¢ of an
ellipsoid, represent the shape and size of the canonical
model feature (1) defined in model coordinate frame xyz.

They are invariant to the rigid body motion (2) of the
model feature in reference coordinate frame XYZ. Our soft-
ware tool extracts exact features from given point cloud
and estimates their model parameters in terms of form,
position, and rotation parameters (3).

2.2 3D Paint Cloud

The optical 3D measuring devices available on the
market can generate millions of dense 3D points in a few
seconds"”. However the point cloud is usually not dense
enough to cover the details of the object surface. And it
is generally assumed that the point cloud is not ordered.
Furthermore, because of the limited accessibility of the
measuring devices to the object surface, the point cloud
covers only partially the object surface. OQur software tool
can handle such unordered incomplete and complex point
cloud with a large number of data points.

A measurement point is the probable observation of an
unknown nearest point on the object surface to the mea-
surement pointm. The distance between the measurement
point and the unknown object point is the true measure-
ment error. In practice, because the true object surface is
unknown, it is substituted by the associating model fea-
ture’® and the true measurement error is substituted by
the minimum distance (geometric distance, Euclidean dis-
tance) between the model feature and the measurement
point. This error definition outlines the algorithmic func-
tionalities which should be implemented in the software
tool for a reliable and accurate PMR from point cloud.
The minimum distance should be used not only as the
decision measure between the inliers and the outliers of
the model feature (segmentation), but also as the error
measure to be minimized by the estimation of model para-
meters (model fitting)"”, Although the calculation and mini-
mization of the minimum distances are computationally
expensive, they are of vital importance to a reliable and
accurate PMR from point cloud.



2.3 Orthogonal Distance Fitting

We briefly describe the orthogonal distance fitting (ODF)
that estimates the model parameters by minimizing the
square sum of the error distances between the model fea-
ture and the given points. Interested readers are referred
to [3] for a complete description of the ODF algorithms.

The ODF task can be interpreted as an energy mini-
mization problem illustrated in (Fig. 2), with which the
energy (cost) function is defined as:

ol=(X-X)"P'P(X-X) or o;=d"P'Pd , (4

where the vectors X' =(X,~-X,) and X" =(X;,--X})
are the coordinate row vectors of the m given points and
of the m corresponding points on the model feature, res-
pectively. d" =(d,,+--,d,) is the distance row vector with
d =[x -X|. The diagonal elements of the weighting matrix

p'P correspond to the spring constants [k.- }::1 in (Fig. 2).
To minimize the cost functions (4) the ODF algorithm
minimizes not only the square sum but also every single

distance 14.}", between the model feature and the given

points. Because the minimum distances {4}, are nonlinear
to the model parameters, the ODF task is inherently a
nonlinear minimization problem that must be solved through
iteration. The computing cost and the memory space usage
of the ODF algorithms in [3] are proportional to the num-
ber of data points, thus the algorithms are suitable for
processing a massive point cloud.

3. Automatic Feature Extraction

For a given set of points {X,}I, the feature extraction
procedure consists of two substantial sessions of segmen-
tation and model fitting, respectively (Fig. 1). At this
point we confront a chicken-and-egg dilemma. Namely,
without the geometric information on the model feature
we cannot decide between the inliers and the outliers of
the model feature (segmentation), and reversely, without
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the inliers we cannot get the geometric information on the
model feature (model fitting). To resolve this information
deadlock, either of the two sides should provide the seed
information triggering the other side.

3.1 Model Selection and Initial Model Parameters

We obtain the geometric seed information on the model
feature from a small patch of point cloud, which is com-
parable with touching an object and then guessing its
geometry in a dark room environment:

1. Cut (touch) a small initial patch from the point cloud.

2. Fit a plane to the patch through the moment method
(non-iterative linear ODF)"”.

3. Fit a quadric surface to the patch through ODF
starting from the plane parameters.

4. Get the orthogonal footing point on the surface from
the mass center of the patch.

5. Calculate the surface normal, principal curvatures at
the footing point™.

6. Choose the model type for the patch by analyzing the
signed curvature radii (Fig. 3).

7. Derive the initial values for size, center, and orien-
tation of the chosen model feature from the surface normal,
curvature radii at the footing point.

8. Fit the initial model feature to the initial small patch
through ODF starting from the model parameters derived
in the last step.

The quadric surface in the third step is a second order
surface:

fla,x)=Ax* + By* + C2* + 2Dxy + 2Eyz+ 2Fzx +2Gx + 2Hy + 2z 4 J = 0. (5)

If f(a,x,):eﬂ the given point X, does not lie on the
surface (5). By applying the ODF algorithm to the point
set X7, of the initial small patch we obtain the
parameter values of {4,B,C,D,E,F,G,H,1,J}. The footing
point X, on the surface (5) from the mass center

X=L{x|" of the patch can be determined by using a

Model: curve/surface

Given points: {X,}7,

m Adz

jut 4

Energy: 0'03 =

Task: min o

a8,

(Fig. 2) Interpretation of the orthogonal distance fitting as an energy minimization problem
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(Fig. 3) Classification of local surface types according to the two principal curvatures & and k,. (a) Elliptic for sphere/torus,
parabolic for cylinder/cone, planar for plane, and hyperbolic for torus™; (b) Curvature radius map for local surface types

(rn=1k, n=1/k)

constrained minimization method (method of Lagrangian We solve (7) through iteration as below:
multipliers™). The footing point X, is the closest point
on (5) from the point X: [2]4.,11-] Vf) [ Ax _(2(?—:)—,1?)‘ 3
v'f 0]1 at)\  =f l with B=7-V/
xo=argm‘in=(i-x)T(i—x) (%), Ax
1), N aa). (®)

Subject to
Now given X,, we can calculate the surface normal n

fla,x)=0 and the principal curvatures k, and k, of the surface at
the footing point x,. If we set a temporary coordinate
system xyz on X,, of which z-axis is parallel to the

We solve this problem by minimizing the Lagrangian 1,y of the point patch plane of )5, then the implicit

ke beow surface (5) holding f.=3f/3z#0 could be regarded as a

" parametric surface patch around x, as belo o,
L(2,x)=(x-x)"(x-x)+ 4. ®
x 1 0
A necessary condition for a minimum of (6) is xxn=| ¥y b x S I i x._=§1= 1],
z(x,y) w Z, 4 Z.
VL) (-2(x-x)+AVf 0 " 5
EF) o axax - [ T a‘ay » W ayay L (9)

with V=(o/ox,8/ay,0/ez)" . @) Z z, z,



Where, we get Zx, Zy, Zw, Zw, and Z» from (5) as
below:

of of oz _ _ __
“é;"'aé;—fﬁf;zx—f’, z.==f/f:
L Lo+ In =0 4=-f/L
xx -f:l ?

s =f.~;ﬂﬂ+fuﬁf:“fq-ff‘fnﬁfv

W f;} 3
z B0 e P

w f-3 *

Given (9), we derive the coefficients E,F,G of the
first fundamental form of the surface™

ds* = Edx* + 2Fdxdy + Gdy® |

L = 2 L% A = — 2
E=xx =1+z;, F=xx =z2, G=xX =l+z,

And, the coefficients L, M, N of the second fundamental
form of the surface are

k cos gds® = Ldx* + 2 Mdxdy + Ndy*

z Z., z,
, M=nx_ =—2, N=nx, =-=
D : D »

e [fw
V) Ry ) M,
where D is the dscriminent of the surface.

Finally, we can calculate the principal curvatures k, and
k, of the surface by solving the second order equation
below:

kE-L kF-M
k,=14k| =0
kF-M kG-N ,

(KE — L)(kG — N) - (kF — M)(kF — M)
=(EG—-F*)k* —(EN —2FM + GL)k + (LN - M*)
=0 !

By investigating the Gaussian curvature

LN -M*
= FeF

and the mean curvature
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EN-2FM +GL
k, +k, =_—7EG—F1

we can discriminate the type of the surface as shown
in (Fig. 3). For example, if k and k, are both nonzero
and have the same sign, the surface is concave or con-
vex. It could be a part of a sphere or ellipsoid, etc. If K
and k, have different signs, the surface is saddle shaped
and could be a part of a torus.

The classification of the local surface types (Fig. 3a)
according to the local curvatures (including the mean and
Gaussian curvatures) of a curved surface fitted to a small
point patch is known in literature™”, Instead of the cur-
vatures k, and k,, our software tool employs the curva-
ture radii x =1/k and r,=1/k, which correspond to the
feature radius (Fig. 3b).

3.2 Overall Process and Experimental Result

Once the model type and parameters are initialized, the
interaction loop between the segmentation and the model
fitting can be triggered. As noted in Sect. 2, the minimum
distance of a given point to the model feature should be
used as the decision measure whether a point is inlier
point of the model feature. However, with regard to a
specific model feature, the large part of a point cloud is
occupied by plain outliers, causing a high computing cost
of unnecessarily calculating the minimum distances. Through
utilizing the parameter grouping (1)-(3) and the properties
of the implicit model description, we can efficiently eli-
minate the plain outliers from the point cloud. The overall
process of the automatic feature extraction can be described
below (see Fig. 4):

1. Initialize the model feature (model type, size, posi-
tion, and orientation).

2. Put a domain box enclosing the interest volume of
the model feature in xyz frame.

Xieg SXS X Vo SYS Yok Zootom SZS Zip.

For example, the domain box encloses an ellipsoid with
extra margin of 10% of the half-lengths of the ellipsoid.

3. Stamp all the points lying outside the domain box
as plain outlier.

4, Except for the inlier candidates lying between the
two (inner and outer) iso-surfaces

fl(a,x)-const,,, =0 and f(a,x)-const,,, =0 of the model
feature f(a,x)=0, stamp all points as plain outlier. For ellip-
soid, we could put €OnStae =f(x] .00 and oMl =
f(a’ xll"{l.la.ﬂ.O] .

5. For each inlier candidate X, remained in the last step,
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ODF task

Touch Segmentation &
points outlier elimination
Clear inlier Refining Model
points fitting
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(Fig. 4) Automatic feature extraction in point cloud

we determine the footing point X by using (8) and cal-
culate the shortest distance 4, =[x, —x|| between X, and the

model feature. Evaluate the rms distance dms=y%2.,d"
of the inlier candidates to the model feature (s : number
of inlier candidates).

6. Stamp only the inlier candidates as inlier, of which
distances d; to the model feature are not larger than 2-3
times the rms distance @y,

7. Update the model parameters through ODF to the
inliers.

8. If necessary, repeat from the second step (‘Refining’
in Fig. 4).

9. Save the model parameters, and, clear the inliers
from the point cloud.

10. Repeat from the first step until no more dense
point patch can be found (touched).

As an experimental example for the automatic feature
extraction from point cloud, we applied our software tool
to a point cloud generated by X-ray CT (Fig. 5a). All
the relevant model features could be extracted fully auto-
matically and correctly (Fig. 5b).

4. Summary

We have developed a software tool for a fully auto-
matic extraction of geometric primitives from unordered
incomplete and error-contaminated 3D point clouds. The
necessary information for model selection, segmentation,
and model fitting could be obtained from a local quadric
surface fitted to a small initial patch of the point cloud.
The geometric error measure is of vital importance to
both the segmentation and the model fitting, although the
required computing cost is relatively high. In order to

save the computing cost of the segmentation, we exploited
the parameter grouping and the properties of the implicit
model description. Our software can handle a variety of
model features, e.g. line, 2D/3D circle, 2D/3D ellipse, plane,
sphere, ellipsoid, circular/elliptic cylinder, circular/elliptic
cone, etc. We demonstrated the outstanding performance
of the software tool on a set of real measurement points
generated by X-ray CT.
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(Fig, 5) Feature extraction from a point cloud. (a) Unordered and incomplete point cloud obtained by X-ray CT technology; (b) Fully
automatically extracted exact features
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