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ABSTRACT

Spectral modeling synthesis (SMS) has been used as a powerful tool for musical sound modeling. This technique considers a sound as
a combination of a deterministic plus a stochastic component. The deterministic component is represented by the series of sinusoids that
are described by amplitude, frequency, and phase functions and the stochastic component is represented by a series of magnitude spectrum
envelopes that functions as a time varying filter excited by white noise. These representations make it possible for a synthesized sound to
attain all the perceptual characteristics of the original sound. However, sometimes considerable phase vanations occur in the deterministic
component by using the conventional SMS for the complex sound such as whale sounds when the partial frequencies in successive frames
differ. This is because it utilizes the calculated phase to synthesize deterministic component of the sound. As a result, it does not provide
a good spectrum matching between original and synthesized spectrum in higher frequency region. To overcome this problem, we propose a
modified SMS that provides good spectrum matching of original and synthesized sound by calculating complex residual spectrum in
frequency domain and utilizing original phase information to synthesize the deterministic component of the sound. Analysis and simulation
results for synthesizing whale sounds suggest that the proposed method is comparable to the conventional SMS in both time and
frequency domain. However, the proposed method outperforms the SMS in better spectrum matching.

Keywords : Whale Sound Synthesis, Spectral Modeling, Short Time, Fourier Transform(STFT), Additive Synthesis, Phase Variation

1. Introduction
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sounds, such as songs, moans, clicks, roars, and sighs.
Some of the sounds produced are not only particular to a
species but are also unique in certain areas. Some baleen
whales such as bowhead, minke, right, fin whales can
produce complex sound. In this study we synthesized
different kinds of baleen whale sound using spectral
modeling synthesis.

The spectral modeling synthesis (SMS) extracts the
synthesis parameters out of real sounds using analysis
procedures, being able to reproduce and modify actual
sounds. This approach is based on modeling sounds as
stable sinusoids (partials) plus noise (residual components)
to analyze sounds and generate new sounds. The analysis
procedure detects partials by utilizing the time-varying
spectral characteristics of a sound, and represents them
with time-varying sinusoids [5-6, 8]. These partials are
then subtracted from the original sound where the
remaining residual is represented as a time-varying filtered
white noise component. The synthesis procedure is a
combination of additive synthesis for the sinusoidal part and
subtractive synthesis for the noise part [1-2]. However,
sometimes phase variations occur in the deterministic
component using the SMS for complex sound when the
partial frequencies in successive frames differ. This is
because it utilizes the calculated phase to synthesize
deterministic component of the sound. As a result, it does
not provide a good spectrum matching between original
and synthesized spectrum in the higher frequency region.

To overcome this problem, we propose a modified
SMS that utilizes original phase information to synthesize
the deterministic component of the sound. The stochastic
spectrum is calculated by subtracting the deterministic
spectrum from the original spectrum and then using
spectral fitting. The stochastic signal is generated by
using an inverse short time Fourier transform (STFT) on
a series of magnitude spectrum envelopes that function as
a time varving filter excited by white noise. We then add
the deterministic and stochastic signal in time domain for
each frame. In this paper, we synthesize whale sounds
using the proposed method and compare the proposed
method to the SMS technique. The analysis and simulation
results illustrate that the proposed method are comparable
to the SMS in both time and frequency domain. However,
the proposed method outperforms the SMS in better
spectrum matching with original spectrum because of the
use of original phase to synthesize the deterministic com-
ponent of the sound. Thus, the proposed SMS technique
can efficiently synthesize the complex whale sound which
resembles much more closely the original sound.

The rest of this paper is organized as follows. Section

2 presents background information regarding the determi-
nistic plus stochastic model, an overview of the SMS
analysis and synthesis process, magnitude and phase spectra
computation, peak detection, pitch detection and peak
continuation process. Section 3 presents our proposed
method for the higher quality of whale sound synthesis.
Section 4 summarizes and discusses experimental results
of the different whale sounds for both the SMS and the
proposed method, and Section 5 concludes this paper.

2. Background Information

2.1 Deterministic plus Stochastic Model

A sound model assumes certain characteristics of the
sound waveform or the sound generation mechanism.
Sounds produced by musical instruments, any physical
system, or any human voice can be modeled as the sum
of sinusoid plus noise residual components. The sinusoidal
or deterministic component normally corresponds to the
main modes of vibration of the system. The residual
component comprises the energy produced by the excitation
mechanism not transformed by the system into stationary
vibrations plus any other energy component that is not
sinusoidal in nature.

A deterministic signal is traditionally defined as
anything that is not noise. A stochastic or noise signal is
fully described by its power spectral density which gives
the expected signal power versus frequency. When a
signal is assumed stochastic, it is not necessary to
preserve the instantaneous phase. This model considers a
waveform signal s(t) as the sum of a series of sinusoids
plus a residual e(t), which is defined as

s(t) = f}Ar(t)cos[(—)r(t)Pe(t} (1)
r=1

where R is the number of sinusoids, Ar(¢) and 6r(t) is
the instantaneous amplitude and phase of the rth sinusoid,
respectively, and e(t) is the noise component at time t (in
seconds).

The model assumes that the sinusoids are stable partials
of the sound, and each one has a slowly changing
amplitude and frequency. The instantaneous phase is taken
to be the integral part of the instantaneous frequency @
r{t) and therefore satisfies

or(t) = f i @)
0

where awr(t) is the frequency in radians and r is the



sinusoidal number.
By assuming that e(t) is a stochastic signal, it can be
described as a filtered white noise,

t
e(t)= f h(t,tult)dt (3)
0

where u(t) is the white noise and h(t,7) is the response
of a time varying filter to an impulse at time {. Thus,
the residual signal is modeled by the convolution of white
noise with time varying frequency-shaping filter [1, 3].

2.2 An Overview of SMS Analysis and Synthesis Process

The deterministic plus stochastic model supports many
possible implementations. Both analysis and synthesis
models are the frame-based process with the computation
done one frame at a time. (Fig. 1) shows a block diagram
for the SMS analysis process. We have analyzed the
sound by multiplying it with an appropriate analysis
window. Its spectrum is obtained by fast Fourier transform
(FFT) and then the prominent spectral peaks are detected
and incorporated into the existing partial trajectories by
the mean of a peak continuation algorithm. It detects the
magnitude, frequency, and phase of the partials presented
in the original sound (the deterministic components). When
the sound is pseudo harmonic, a pitch detection step can
improve the analysis by utilizing the fundamental frequency
information in the peak continuation algorithm as well as
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by selecting the size of the analysis window [1-3].

The stochastic component of the current frame is
calculated by generating the deterministic signal with
additive synthesis and then subtracting it from the original
waveform in time domain. The stochastic representation
is then obtained by performing a spectral fitting of the
residual signal.

(Fig. 2) shows a block diagram of the SMS synthesis
process. The deterministic component (sinusoidal component)
is calculated from the frequency and magnitude trajectories.
The result of the synthesized stochastic signal is a noise
signal by time varying spectral shape obtained in the
analysis (ie., subtractive synthesis). It can be implemented
by a convolution in time domain or by a complex
spectrum for every spectral envelope of the residual and
an inverse-FFT in frequency domain.

2.3 Magnitude and phase spectra computation

The computation of the magnitude and phase spectra
of the current frame is the first step in the analysis. By
analyzing the spectra the sinusoid are tracked and decided
whether a part of the signal is considered as deterministic
or noise. The computation of the spectra is carried out by
the short time Fourer transform (STFT). (Fig. 3) shows
the magnitude and phase spectrum for the first frame of
the bowhead whale sound.

window [
generation
analysis fundamental freq.
window magnitude pitch det. freq.
spectrum — > >
FFT 4 > peak detection peak det. mag.
> 3 .| continuation -
phase detection » det. phase. >
spectrum
LA A J
additive
synthesis
window
generation
residual signal
stoc. coeff,
spectral
fitting stoc. mag.

(Fig. 1) Block diagram of the SMS analysis process
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40 - in frequency has a well defined frequency representation.
& (Fig. 4) shows the peak detection of the first frame of
_ bowhead whale sound.
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(Fig. 3) Magnitude and phase spectrum for the

first frame of bowhead whale sound

2.4 Peak detection
Once the spectrum of the current frame is computed, 4 o e 5@ P — -4
the next step is to detect its prominent magnitude peaks. Frequancy (Hz)
A peak is defined as a local maximum in the magnitude (Fig. 4) Peak detection in magnitude and phase

spectrum. A sinusoid that is stable both in amplitude and spectrum



2.5 Pitch detection

Before continuing a set of peak trajectories from the
current frame it is useful to search for a possible funda-
mental frequency for periodicity. If it exists, we have
more information to simplify and improve the tracking of
partials. This fundamental frequency can also be used to
set the size of the analysis window, in order to maintain
the constant number of periods to be analyzed at each
frame and to get the best time-frequency trade-off
possible. This is called as a pitch-synchronous analysis.

26 Peak Continuation

Once the spectral peaks of the current frame have
been detected, the peak continuation algorithm adds them
to the incoming peak trajectories. (Fig. 5) shows the peak
tracking of the bowhead whale sound.

3. Proposed Method

To provide better spectrum matching, we propose a
modified SMS that calculates the complex residual
spectrum in frequency domain and utilizes original phase
information to synthesize the deterministic component of
sound. We can obtain the stochastic representation of the
residual signal by subtracting the deterministic spectrum
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(Fig. 5) Peak tracking of the bowhead whale sound
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from the original spectrum and then utilizing spectral fitting
(line segment approximation) of the magnitude spectrum.
In the synthesis process, the deterministic signal is
calculated by a sine wave for each magnitude, frequency,
and phase trajectory. The stochastic signal is calculated
by a complex spectrum envelope of the residual and an
inverse STFT. We then add the deterministic component
with stochastic one using an overlap add method [4, 7] in
time domain for each frame to obtain the synthesized
whale sound. (Fig. 6) and (Fig. 7) show the analysis and
synthesis processes of the proposed method, respectively.
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(Fig. 6) Block diagram of the analysis process in the proposed SMS
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(Fig. 7) Block diagram of the synthesis process in the proposed SMS

The success of the analysis process depends on the
selection of the program parameters such as STFT
window, window size, and hop size. One of successful
parameter sets is the hanning window, window size of
512, and hop size of 256. These selected parameters
provide a better result for the whale sound analysis. The
sampling frequency of the whale sounds used in our
simulation is 11 KHz. The duration of the recorded
minke, right, bowhead and fin whale sounds is 3.072,
2.365, 2406, and 1.226 second respectively.

4. Results and Discussion

In this section, we evaluate the performance of our
proposed method to synthesize different whale sound, and
compare the proposed method to the SMS. The metrics
of time domain representation, frequency domain represen-
tation, spectrum matching, and listening of each case
form the basis of the study comparison.

We observe that both the proposed method and the
SMS generate a good synthesized sound which resembles
much more closely the original sound. However, phase
variations were occurred in the deterministic component
using the SMS for complex whale sounds when the
partial frequencies in successive frames differ. This is
because it utilizes the calculated phase to synthesize
deterministic component of the sound. This results in not
providing a good spectrum matching between original and
synthesized spectrum in higher frequency
Sometimes we can ignore phase variation to synthesize

range.

deterministic component for simple harmonic sound when
the partial frequencies in successive frames are similar.

However, some whale sounds are more complex sound
than the harmonic sound such as musical instrument
sounds. Thus, to synthesize such complex whale sounds
we should consider the phase variation for good spectrum
matching between original and synthesized spectrum. The
proposed SMS can overcome this phase variation problem
by utilizing original phase information to synthesize the
deterministic component of the sound.

In the synthesis process, conventional SMS utilizes the
calculated phase to generate the synthesized deterministic
component of the sound. This method provides good
spectrum matching of original and synthesized sound
when the partial frequencies are only stationary in
successive frames. (Fig. 8) (a) and (Fig. 8 (b), for
example, show the original and synthesized sounds of the
guitar and piano generated by using the SMS which
provides good spectrum matching.

However, for the complex whale sounds including
bowhead, minke, right, fin whales this method does not
provide good spectrum matching in higher frequency
region when partial frequencies in successive frames
differ, resulting in phase variation in the deterministic
component of the sound. This is because it uses the
calculated phase to synthesize the deterministic signal.
(Fig. 9) (a), (Fig. 10) (a), (Fig. 11) (a), (Fig. 12) (a) show
the spectrum matching of original and synthesized minke,
right, bowhead, and fin whale sound generated using the
SMS, respectively. We observed that in lower frequency
region (between 0 to 35 KHz approximately) the conven-
tional SMS provides good spectrum matching but in
higher frequency region (between 35 KHz to 5 KHz
approximately) it does not provide good spectrum
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(Fig. 8) Spectrum matching of original and synthesized sounds: (a) guitar and (b) piano
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(Fig. 12) Spectrum matching of original and synthesized sound for fin whale: (a) using SMS and (b) using proposed SMS

matching of the original and synthesized sound. The
proposed SMS overcome this problem by utilizing original
phase information to synthesize the deterministic component
of the sound. (Fig. 9) (b), (Fig. 10) (b), (Fig. 11) (b),
(Fig. 12) (b) show the spectrum matching of original and
synthesized minke, right, bowhead, and fin whale sounds
using the proposed SMS. We observed that the proposed
SMS provides better spectrum matching of the original
and synthesized sound than the conventional SMS in the
higher frequency region (between 35 KHz to 5 KHz
approximately) as well as in the lower frequency region
(between 0 to 35 KHz approximately). Overall, the
proposed method outperforms the SMS in better spectrum
matching of the original and synthesized whale sounds.

5. Conclusion

In this paper, we have proposed a modified spectral
modeling synthesis (SMS) to synthesize whale sounds.
Since whale sounds are more complex than musical
instrument sounds, the conventional SMS cannot be used
directly to the whale sound. We observed that the
conventional SMS has occurred considerable phase
variations in the deterministic component of whale sounds
when the partial frequencies in successive frames differ
each other. This was because it utilizes the calculated
phase to synthesize the deterministic component of the
sound. As a result, it could not provide a good spectrum
matching between the original and synthesized spectrum
in the higher frequency region. To overcome this problem,
we have presented our modified SMS which utilizes



original phase information to synthesize the deterministic
component of the sound and calculates the complex
residual spectrum in frequency domain. This provides
good spectrum matching of the original and synthesized
sound. Analysis and simulation results for different baleen
whale sound synthesis indicate that the proposed method
outperforms the conventional SMS in spectrum matching
between original and synthesized spectrums.
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