FH MM HIERIIMNA Compromises Aggregatortil [HEE 215 ZLIEE 7|8 AR IO ¢8 2282 313
http://dx.doi.org/10.3745/KIPSTC.2011,18C.5.303

T4 AA b EY I A Compromised Aggregatoroll
e 9% U 74t A5Fo] dlo| B3 Z2EF

Boonsongsrikul, Anuparp - 0| Z A" . st =

0>

2 o

Hole #ge 74 AA MEYIY 8 7|&o|A¢ bie] Bl EAE 528 ¢ gon ofF 7184 shuis} dojd Wi }4 9
compromised nodecll 9| # 9| wjoje] defolrt vlAA] Fetolc), o] Fao] g vlF-Ee F AL otmald olEdtn gl o)L
B2 g §4 58 gag @ olg e 2T UL BTl 7|E WHES £ wxo 8x7} ohd 339 8ol 7)5we 7}
Ack ol2(§ Aok AMEE FHo| WA o2 WhAlals HS, A xEe] o] Yu|E fuai, v g v)Ee § Al A #9) el 49
e Adahe 7158 Adstn AT o Wle Ha k= F Hd 50%2] kEZgto] dlojE Ao Helahs A sAth webd A
gelo] 715 % Wk opfet, EAlol dHolg Hie ojsh: w2 8 F7ME F A MRS IS Yol 2T E =RAME Y
tole] 49 & viAl4] w2k Fa5hs compromised aggregatorol EIHF_‘ 982 ¢la mYE g 7|4 Al diojE H§ ZREEL Aokt
ch AgkEl ZREFS 2 W Eg] A AlFel diol Witez P4 s, AFe deolg Wil RuUHAL oz s 6gA
tole 49 ©|eh Higte] 433 7ol gk *IHEIOI”F f-}oﬂ w29 Aty ZREFL folE Afd) Flde =9 2
B FELR F7MAE FA, #e dole 4% && vjAA] ek F4dlhs compromised node?] ¥ 7F 7Fed Aoy gelHgo #
H Atd TREEZM compromised noded F4sh=d 86 %*1 eFes dH w29 7t nd 9, OneR 7|F A3 438

7vh Al $EL A

FIE M WM ENZ, HiojE W, =20 39 GlolE Mg, MulA HE 2H

Monitoring-Based Secure Data Aggregation Protocol
against a Compromised Aggregator in Wireless Sensor Networks

Boonsongsrikul, Anuparp’ - Lhee, Kyung-Suk™ - Park, Seung-Kyu™

ABSTRACT

Data : ggregation is important in wireless sensor networks. However, it also introduces many security problems, one of which is that a
compromised node may inject false data or drop a message during data aggregation. Most existing solutions relv on encryption, which
however requires high computation and communication cost. But thev can only detect the occurrence of an attack without finding the
attacking node. This makes sensor nodes waste their energy in sending false data if attacks occur repeatedly. Even an existing work can
identify tie location of a false data injection attack but it has a limitation that at most 50% of total sensor nodes can participate in data
transmission. Therefore. a novel approach is required such that it can identify an attacker and also increase the number of nodes which
participat in data transmission. In this paper, we propose a monitoring-based secure data aggregation protocol to prevent against a
compromised aggregator which injects false data or drops a message. The proposed protocol consists of aggregation tree construction and
secure dita aggregation. In secure data aggregation, we use integration of abnormal data detection with monitoring and a minimal
cryptograshic technique. The simulation results show the proposed protocol increases the number of participating nodes in data
transmission to 95% of the total nodes. The proposed protocol also can identify the location of a compromised node which injects false
data or crops a message. A communication overhead for tracing back a location of a compromised node is ({n) where n is the total
number of nodes and the cost is the same or better than other existing solutions.

Keywords : Wireless Sensor Networks, Data Aggregation, Security, False Data Injection, Energy Consumption

tFE 3 fiopFigm ARg e Ak AT 200 54 1Y
A A Aol ARAFE T 2 4 912 201149 79 209
A 8 Qobrdistn JRFHGe -E’-T(-l_l"-*]“]*H H*}elh 011 84 8d

H

304 FEME|SE=EX C H18-CH M5=(2011. 10)

1. Introduction

Data aggregation is important in wireless sensor
because it substantially reduces the
communication cost. However it also introduces many

networks

security problems, one of which is that a compromised
node may inject false data during aggregation. This may
be difficult to detect because the data source is unknown
during the in-network processing.

Most existing schemes for detecting false data injection
use expensive encryption, which require high computation
and communication costs due to the complexity of the
encryption algorithm itself and the necessary key
distribution and management algorithm. They might be
too expensive for some sensors with limited resources
(slow CPU, small memory, weak transceiver, and small
battery capacity), substantially reducing the sensor
network's application functionality.

Most solutions can detect the occurrence of an attack,
but solutions merely discard an injected false aggregate
without finding the attacking node. As long as the
attacker hidden in the network keeps injecting false data,
the Base Station (BS) stops receiving correct data and
sensor nodes also waste their energy in sending false
data.

Recently researchers [1] proposed the lightweight
protocol in finding the false data injection attacker.
However, the solution has limitations: 1) the protocol
requires a specific aggregation tree that many external
nodes only monitors an intemal node but cannot
participate in data aggregation and 2} the protocol does
not deal with an attacker which drops an aggregated
value.

To counter such problems, in this paper we propose a
monitoring-based secure data aggregation protocol to
prevent compromised aggregators from injecting false
data or dropping messages. Compared with other existing
schemes, the main advantages of the proposed protocol
are the following. The proposed protocol is applicable to
many sensors with limited resource. It also can locate the
attacking node so that stop occurring the attack. Note
that once the offending nodes are identified, they can be
easily handled. For example, the BS can broadcast the ID
of the offending nodes so that they are ignored by other
nodes in the next aggregation session. The proposed
protocol also improves over [1] by increasing the number
of nodes that transmit their reading values during the
aggregation session, therefore achieving better utilization
of the deployed sensors.

We assume that the attacker initially performs passive
attacks by eavesdropping on communications and learmning
the formats of the sensor nodes' data packets. After a
particular amount of time, the attacker performs active
attacks through a compromised node by either injecting
false data in data aggregation or dropping an aggregated

value,
2. Related work
Przydatek [10] proposed a secure Information

aggregation, which uses a statistical security property to
prevent false data injection attacks. However, there is
only one aggregator, so it does not scale well to large,
multi-hop sensor deployments. In addition, internal nodes
do not process sensing raw data but merely compute a
hash value using data from their two children. Therefore
this scheme requires deployment of many more sensors
than other schemes.

Yang [14] proposed a secure hop-by-hop data
aggregation protocol. This protocol divides sensor nodes
into multiple groups. The aggregated value of each group
is sent to the BS. The BS then identifies the suspicious
groups based on the set of proup aggregates. However,
the protocol cannot pinpoint the location of the attacking
node. Therefore the attacker may launch an attack by
repeatedly injecting false data (or giving an inconsistent
Message Authentication Code, MAC).

Vu [13] proposed threshold security for information
aggregation in sensor networks, under the assumption of
a single aggregator. A sensor node does not provide its
signature if aggregation data is not close to its reading
value. The BS discards aggregation data, if the number
of sensors’ signatures is less than a given threshold. The
cost of establishing and maintaining cryptographic keys is
expensive. In particular, sensors require a cluster key
shared by all nodes in a cluster, which is used by the
cluster head to encrypt an aggregated value and
broadcast it to all nodes in the cluster.

Mlaih [8] proposed a secure hop-by-hop aggregation
and end-to-end authentication scheme. The ID list of the
sensors involved In a par of aggregated values is
produced, which is used to regenerate a MAC to check
the integrity of the aggregated values. Using the ID list,
this scheme may identify the attacker. However the ID
list is concatenated to the aggregation messages and
therefore increases the overhead.
Moreover, an aggregator who is closer to the BS will

communication

have to send longer packets (due to the longer ID list)

S MM NIERINAM Compromised Aggregatordil CHES QIS TLIEE! 7|4t AIR0{ CIOE! Wt Z252 305

and therefore suffers a higher communication overhead.

Da Silva [6] proposed a decentralized intrusion
detection scheme. In this scheme, monitor nodes issue an
alert when the number of occurrences of abnormal
behavior is greater than a threshold value, which is
computed from all network failures observed by monitors.
This scheme is lightweight in that it does not rely on
expensive cryptographic techniques. However, this scheme
does not ficus on securing data aggregation and has
other limitiations including the following: 1) it needs
special moritoring nodes, 2) no securitv mechanism is
provided to protect monitoring nodes themselves, and 3)
it cannot pnpoint the attacker. In contrast, our proposed
protocol car handle all these problems.

Boonsongsrikul [1] proposed securing data aggregation
by identifyiig the location of false data injection attacks.
This schemre is divided into three phases: 1) the query
disserminaticn phase, where the base station initiate the
aggregation. 2) the aggregation phase, where all nodes
perform the aggregation; and 3) the attestation phase,
where suspecting nodes send verification messages to the
BS to find suspicious nodes and verify them. However,
there are limitations. First, external sensor nodes are only
dedicated for monitoring the data sensing nodes and
cannot participate in aggregation data because they are
left unmoniored. Second, the scheme does not deal with
a compromised node which is able to drop an aggregation
message. This motivates us to develop our protocol.

3. Requirements of the Proposed Protocol

3.1 Physical phenomena and cryptographic requirements

We assume that the sensor nodes are responsible for
sampling piysical phenomena such as temperature and
humnidity. Sensor nodes have overlapping sensing ranges.

The BS shares a unique key with each node and also
knows the pairwise key shared between a parent and a
child. Unigie keys between a node and the BS are
pre-installec before the deployed. In
exchanging a pairwise key between a parent and child,

network is

we may use a Needham-Shroeder style key exchange.
The BS brcadcasts messages to all nodes using pTESLA
[9] for the security mechanism.

3.2 Requirements of the aggregation tree

(1) External nodes and the aggregation graph

One of the two main ideas of our detection strategy is
monitoring oy children. That is, the activities of a node
are monitored by its children nodes. However, in this

strategy the external nodes themselves are left
unmonitored and therefore should not be allowed to
provide data during an aggregation session (since they
can freely lie). This is a serious problem, because the
number of external nodes (who do not contribute to
aggregation except by monitoring their parents’ activity)
may be larger than the number of internal nodes. Thus,
when we build the aggregation tree we minimize the
number of extenal nodes by allowing them to monitor
each other. Therefore the aggregation tree can be
represented as a graph. We will explain this in Section
4.1 in the details.

(2) Minimum number of children per node

To ensure monitoring by children is effective, a node
needs to have a sufficient number of children (who can
snoop on the messages sent by the node). The minimum
number of children is determined a priori, depending on
the desired level of accuracy in detecting falsely injected
data (since the BS uses a statistical technique for
detection in [1], [11] and [14]).

4. Proposed protocol

The proposed protocol consists of the following phases.
1. Tree construction phase

2. Tree post-processing phase

3. Query dissemination phase

4. Aggregation phase

5. Attestation phase

6. Testification phase

Aggregation tree construction consists of phases 1

2. Secure data aggregation consists of phases 3 - 6. In
phase 5, nodes who suspect an injection of false data
send verification messages to the BS. In phase 6, nodes
who did not receive aggregation messages from their
children send a report to the BS in order to deal with
dropping data attacks. The message formats for these
phases are described in <Table 3 and 4>.

4.1 Tree construction phase

In the tree construction phase, we build the aggregation
tree that is suitable for our protocol. Basically, we ensure
that each node has a minimum number of children. We
propose two algorithms to build such a tree, as described
in <Table 1 and 2> The first algorithm produces a
shortest-path spanning tree using breadth-first search as
in [15], where the degree of an internal node is equal to

306 FE2MelEE=EA C AH18-CH M= (2011, 10

(Fig.1) Classification of external contributing nodes (white)
and external non-contributing nodes (gray)

or greater than the minimum number of children (Section
51 later illustrates this algorithm in more detail).
Subsequently, the second algorithm reshapes the tree to
allow multiple parents for an external node (therefore the
tree is represented as a graph). This maximizes the
number of nodes being monitored. Those nodes will be
eligible to provide data during an aggregation session.
After this algorithm, each node will be one of the three
types below (refer to Fig. 1).

® Internal node (black node)
* External contributing nodes (white nodes)
o External non-contributing nodes (gray nodes)

An external node who can find a minimum number of
children will be an external contributing node. An
external contributing node has 1) a primary parent, whom
it monitors and sends its reading value to, and 2) a
number of secondary parents whom it monitors but does
not send its reading value to. Note that an external
contributing node himsell becomes a secondary parent of
its siblings.

An external node who cannot find a minimum number
of children will be an external non-contributing node.
Such a node only monitors its parent(s) but does not
provide data during an aggregation session.

In (Fig. 1), external nodes whose in-degree is equal to
or greater than three are contributing nodes (white
nodes). The solid lines denote the primary parent-children
relationship, and dotted lines denote secondary
parent-children relationship.

Note that a memory overhead to build an aggregation
tree is equal to the number of IDs of neighboring nodes
which rebroadcast the BS's flooding message.

4.2 Tree post-processing phase
After building the aggregation tree (actually a graph,
but we will henceforth refer to it as a tree for

(Table 1> Building the aggregation tree algorithm

1) In the flooding stage,

a) The BS broadcasts the discovery message.

b) Each node receiving the flooding message records it
in the parent list. The node rebroadcasts it, if it
received the flooding message for the first time.

2) After flooding, each node

a) Picks a candidate parent from its parent list and
requests childship to the candidate.

b) Picks its children from the received requests by
choosing ¢ children (where ¢ is the minimum number
of children), and acknowledges parentship to the
chosen children.

If the node receives less than t requests, it will be an

external node.

3) To reduce orphans (nodes who do not have parents)

a) Each orphan broadcasts an adopt-me message.

b) Each internal node that received an adopt-me
message replies by sending an adoption message to
the orphan.

¢} The orphan chooses its parent from the adoption
messages and acknowledges the parent.

(Table 2> Reducing the number of external nodes algorithm

1) Each orphan broadcasts an adopt-orphan message.

2) Each external node broadcasts an adopt-external
message.

3) I an external node receives more than { such
messages (where ¢ is the minimum number of
children) then it will be an external contributing node.
a) It picks ¢ nodes and replies by sending an adoption

message to them (chooses orphans first and then
considers external nodes).

b} Each external node who receives an adoption
messages marks the senders as its secondary
parents (note that an external node sends an
aggregation message only to its primary parent, not
to its secondary parents).

4) Otherwise it will be an external non-contributing node.

simplicity), each node sends a report to the BS. The
report contains the following information.
* The node's primary parent and the list of secondary
parents
The purpose of this information is to enable the BS to
find out the topology of the aggregation tree in order
to verify the integrity of the tree.
* The type of node (internal, external contributing or
external non-contributing)
The purpose of this information is to let the (primary)
parent of this node snoop on this message in order to
discover whether or not this node is allowed to provide
data during aggregation.
If node A falsely claims to be an internal or external
contributing node, the BS can detect that node A is a liar
because the number of reports {confirming that node A is

S48 AN HERZUM Compromised AggregatorCll LHEE I8t TUEIR 718 AlF0 HIOIE @z 2222 307

a parent) iy less than a given threshold. The BS lets the
parent of node A know that node A is a liar. Then node
A is not al owed to provide data.

4.3 Query dissemination phase

Data aggregation may be regularly requested (this
depends on applications). The BS starts data aggregation
by flooding a query message. We do not provide an
authenticated broadcast mechanism but instead assume a
technique of pnTESLA [9].

4.4 Aggregation phase

Different from query dissemination, data aggregation
starts from extemal nodes towards the BS. Since an
external contributing node does not need to do
aggregation, so it sends its reading value to its primary
parent. Th2 primary parent first venfies the AMAC
(MAC type A, explained in Table 3). If the AMAC is
legitimate, then the primary parent aggregate its own
reading value and a child's reading value; otherwise it
discards the message. External non-contributing nodes
sense data values but do not send aggregation messages.
Their roles are to monitor their parents and participate in
the attestat on phase. If an external non-contributing node
sends an aggregation message to its parent, the message
will be discarded because its parent knows the types of
their children (after post-processing the aggregation tree).
If there are no suspicious values after a primary parent
and all secondary parents send a data value, a node goes
into the sleep mode. The node has done monitoring.

4.5 Attestzfion phase

During the aggregation phase, each child also overhears
the aggregetion message sent by its parent (to the grand
parent). In detecting an abnormal value, we can consider
LWo cases.

1. If the difference between the readings of a child and
that of its secondary parent 1s greater than a given
threshold hen the secondary parent is considered
suspicious. Since a child is close to its secondary parent,
so their readings should be similar.

2. If an aggregated value of a primary parent is
abruptly changed from aggregated values in the history
then the primary parent is considered suspicious. We
assume thst aggregated values are initially trustworthy
(before perlorming passive attacks). A node compares an
aggregated value with the aggregated values given by its
primary parent in the history.

Note tha: we do not consider detecting the case where
a comprom sed node tries to forge an aggregated value

(Fig. 2) The attestation tree. The dashed edges are the
attestation tree and the double circle s an attack node,
Black, gray and light gray nodes denote high, moderate, and
low probability of detecting abnormal values, respectively

(Table 3) Message fields

Notation Meaning
. 1-bit value specifving the types of aggregation
p functions (sum or mean).
s 2-bit value specifying the message type
g (aggregate, attest, absence or testify),
sid Unique session identifier.

id Node identifier,

pid Identifier of a parent node.

epid Identifier of a grandparent node.

Identifier of node who did not send an

cid
aggregate.
R A reading or raw data value of a node.
An aggregated value combined by a reading of a
s node and readings of children.
An aggregated value of a parent which a child
pagg agereg. I

SNOOPs o1

Kij Shared key between node i and J.

MAC of data A calculated with key Kigpa where

A is a concatenation of id and sid.

AMAC

MAC of data B calculated with key Kigps where

BMAC . :) . ;
B is a concatenation of id, pid, agg and sid.

pBMAC| BMAC of a parent which a child snoops on.

MAC of data C calculated with key Kiyps where
CMAC | C is a concatenation of id, pid, R, agg, pagg
and sid.

MAC of data D calculated with kev Kqns where

IMAC . 2 . . 5
DMAC D is the concatenation of id, cid and sid.

(Table 4> Message formats in an aggregation session

Messages Format
query <sid,type>
aggregate <op,id,pid.age, AMAC,BMAC>
attest <op,id,pid,R,agg,pagg, CMAC,pBMAC>
absence <op,id,ctd DMAC>
testify <op,id pid,gpid pagg,pBMAC>

8 BERMEER=EX C H18-CH M5=(2011. 10)

being a normal data range because it has a little effect
and hard to detect. In contrast, we are interested in
detecting a compromised node that is trying to forge
aggregation data of their non-compromised children.

When a node finds an abnormal value, it sends an
alert message to the BS. This alert message is called an
attestation message. The attestation message is not sent
through the aggregation tree. Instead, the sender picks
another node in its parent list to send its attestation
message. This is because it may not trust its primary
parent to reliably forward its attestation message, Such a
routing is possible for many existing routing algorithms.
Note that there may be many shortest paths between a
node and the BS if the network is sufficiently dense [12].

In order for an attack to be effective, the data value
injected by the adversary usually needs to be quite
different from the normal reading value. However, in such
a case, children of the adversary would send attestation
messages to the BS. All the ancestor nodes on the path
from the adversary to the BS are affected by the injected
value to a diminishing degree, so their siblings would
detect an anomaly and send attestation messages with
decreasing probability. The BS then uses the attestation
messages to identify a subtree consisting of alerting
nodes. We call it an attestation tree, which is used to
locate the adversary. (Fig. 2) illustrates such an
attestation tree.

486 Tesfification phase

If a node sends a normal value with an invalid AMAC
in an aggregation message, its parent will discard its
message. However, its children who snoop on the
aggregation message would falsely assume that it
successfully sent its aggregation message.

(Table 5> Finding dropping data attack algorithm

1) Before starting the aggregation phase, each internal node
sets a timeout according to the longest aggregation time,

2) After the time has expired, each internal node sends an
absence message to the BS, containing the IDs of any
of their children who did not send aggregation messages
(the suspicious nodes).

3) From these messages, the BS builds a testification tree.

4) The BS finds the suspicious node claimed by the leaf
node of the testification tree, and asks the children of
that suspicious node to send the aggregation message of
the suspicious node (which they snooped during the
aggregation phase).

5) If the children supply the valid aggregation message of
the suspicious node, then the parent of the suspicious
node is the attacker {case 2 in Fig. 6). Otherwise the
suspicious node is the attacker (case 1).

In effect, a (compromised) node can drop a message.
To deal with this type of attack, nodes who did not
receive an aggregation message from one or more of its
children (and are thereby unable to complete the
aggregation process) participate in the testification phase
by sending absence messages to the BS. Then the BS
builds the testification tree which is a subtree consisting
of the nodes who sent absence messages as illustrated in
(Fig. 5).

For this we assume that each node knows the longest
time required to complete an aggregation session, which
may be inferred from the number of nodes, average node
density, collision rate, etc. [7]. The algorithm for this
phase is shown in <Table 5>.

5. Detecting the Injected False Aggregated Value

In this section, we discuss a scenario in detecting a
false data injection attacker. When the BS receives
attestation messages, it computes CMACs (MAC type C)
to verify authentication of reporting nodes. If CMACs
computed by the BS and CMACs sent by reporting nodes
match, the BS uses id and pid in attestation messages to
build an attestation tree. The parent of leaf nodes of the
attestation tree is the most suspicious. If this parent has
either an inconsistent value which its children snooped or
an outlier aggregate, it will be a compromised node. The
BS carries out two steps: 1) checking consistency and 2)
finding an outlier.

5.1 Checking consistency

The BS retrieves a reading of a parent of leaf nodes
in the attestation tree. If the parent gives inconsistent
data value between the aggregation phase and the
attestation phase then it is the attacker. As illustrated in
(Fig. 3), we assume using a sum function for data
aggregation. Node S is a parent of nodes 10, rl, r2, r3
and 1. Node r2 is an internal node. Nodes rl and r3 are
an external contributing node. Nodes) and 15 are an
external non-contributing node. In the aggregation
message, node 12 sends (aggregated value) 14 while node
rl and r3 send (reading) 3 and 5 respectively. Node S
sends (aggregated value) 38 to its parent. If node rl, 12
and r3 consider that node S sends an abnormal value
then they report the attestation message to the BS. Since
an aggregated value of node S exists in the afttestation
messages of children, the BS can retrieve a reading value
of node S. The reading of node S (Ro) is 38-3-14-5 = 16.
Note that the aggregated value is not included readings

S MM WERINM Compromised Aggregator0il LHEE 213t @UIE{R 718t AIF0] CIOIE Hg IREE 310

of external non-contributing nodes) and r5. If node S
16 to the BS, then node S is the
attacker. (Since node S possibly gives a normal range of
R but an ¢bnormal aggregate of its parent, pagg, in its
attestation message in order to claim that it does not

does not give R =

inject false Jdata but its parent does.)

5.2 Finding the outlier

If node S gives its reading, R; = 16, then the BS goes
into a next step in computing the outlier. If value 16 is
the outlier then node S is the attacker. Otherwise, if
value 16 is not the outlier, then there is a false positive.
The outlier is normally quite different from the other
values. Criteria in considering the outlier depend on the
allowable value and applications. To compute the outlier,
the BS uses a set of readings in the attestation
messages. As illustrated in (Fig. 3), the partial formats of
the attestation messages given by node (), rl, 12, r3, r4,
o and S are <R=2, agg=2> <R-=3, agg=3> <R=4,
agg=14>, <R-=5, agg-5>, <R=6, agg=6> and <R=16,
agg=38> respectively. The agg denotes an aggregated
value combined by a node's reading and children's
readings. Assume a reading value of node 2 is 4 and
after combizing the reading and children’s reading, the
aggregated value is 14. The completed format of the
attestation message is showed in <Table 4>. Therefore
the set of tie readings given by the leaf nodes and their
parent in th2 attestation tree is {2,3456,16}. In computing
whether or not a suspicious value, Sv, is the outlier the

BS computes the sample statistic, S, = (3,.—5)/ s

s

where = aid s are the mean and standard deviation of
all readings in the set. If the sample statistic, S, falls in
the rejectior. range defined by the critical values then the

<agg=38:-

<R=3>

<agg=14>
a) aggregation phase

suspicious value, S, is the outlier. (In our example, S, =
16) However, we do not propose an algorithm in finding
the outlier. We adopt an algorithm [14] in finding the
outlier. The other example of computing an outlier is
showed in [1].

Note that when a compromised node is found, the BS
can broadcast the ID of the offending node so that it will
be ignored by other nodes in the next aggregation
session. Altemmatively, we revoke compromised keys using
techniques in [3], [4], and [16]. Therefore, the attacker
cannol inject false data after revoking compromised keys.

6. Security in the Aggregation Phase

In this section we discuss various attack scenarios that
an adversary attempts to inject false id, data, MAC, etc.
during the aggregation phase and how our protocol can
cope with them.

As illustrated in (Fig. 4), a compromised node A
fabricates an aggregation message (containing an abnormal
value) from one of its children to himself. Note that such
a message is valid, because the attacker knows the
AMACs of its children. Then, it may or may not choose
to send an abnormal aggregation message to its parent.

Case a. If node A sends a normal value to its parent,
then it is simply framing one of its children but there is
still no false data injection. That is, it aims to induce the
children of the victim to send attestation messages and
therefore drain the energy of the children.

Case b. If node A sends an abnormal value to its
parent, then it is trying to inject a false data while
framing one of its children. In this case, children rl, r2
and r3 of node v send an attestation message to the BS.

<R;=16, agg=38> |

<':R=5_ agg=5>
Ay
<R=3, agg=3> <R=4, agg=14>
b) attestation phase

(Fig. 3) A suspicious node and leaf nodes in the attestation tree. The solid edges representing data values sent to a parent.
The dashed lines are monitoring by external non-contributing nodes. The dotted edges representing data values sent to the BS

310 FEMEIER=2X C H1g-C Msz=2011. 10)

The BS will then consider the victim as the attacker if
the victim is on the lowest level of the attestation tree.
In other words, node A aims to inject a false data while
framing the victim. However, the BS can distinguish
attestation messages that are generated by a fake
aggregation message, because such attestation messages
cannot contain the valid BMAC (MAC type B) of the
victim (pBMAC, BMAC of a parent) where a BMAC is a
Message Authentication Code between a node and the
BS.

In Case b, the attacker is detected because it is on the
lowest level of the attestation tree (this is because
attestation messages from the children of the victim are
found to be invalid).

In Case a, the BS only knows 1) the children of the
framed node, and 2) the fact that the attacker is within
the transmission range of the victim's children. In other
words, the BS cannot locate the attacker. However this
attack that drains the energy of child nodes is out of the
scope in this paper. A viable alternative to avoid this
type of attack is to introduce a group key that is shared
by a parent and its children (as many other schemes
have done). However, this would substantially increase
the complexity of the protocol.

7. Security in the Attestation Phase

In this section we discuss various attack scenarios that
an adversary may attempt during the attestation phase,
and how our proposed protocol can cope with them.

7.1 False information in the attestation message

An attacker might include an abnormal data value in
the aggregation message but include a normal data value
in the attestation message in order to fool the BS.
However, an aftestation message contains the data value
of its parent (pagg) as well as its own data value (agg)
<Table 4>. If the attacker lies, the many attestation
messages of its children will prove him as a liar
(monitoring by children and decision by majority).

Also, an attacker might include a false pid and an
abnormal value in data in order to frame an innocent
node. However, the BS will not regard the framed node
as an attacker unless a minimum number of messages
had implicated him (decision by majority).

7.2 Not sending an aftestation message
An attacker might choose not to send the attestation
message because it cannot successfully report false

1) [op [id-v]pid-gp | agg - Cascaand b | AMAC | BMAC |

2) [op [id-v] pid-a | agg - abnormal [AMAC [BMAC"|

k)] |op ’ id ipid--\-l R lagg lpagg—ahnotmnll CMAC [pBMAC‘ ;

(Fig. 4) Examples of sending fake aggregation messages.
Node A is the attacker and v is the victim. The dashed edge
Is fake aggregation message. The dotted edges are
attestation messages. BMAC' is invalid

information during the attestation phase. However, the BS
will still discover its information, because the attestation
messages sent by its children include this <Table 4>

8. Security in the Testification Phase

In this section we discuss how an adversary attempts
to drop a message and how our algorithm detects such
attempts.

8.1 Not reporting a missing aggregation value

The attacker who did not send its reading value may
not report to the BS, for the obvious reason that it wants
to avoid detection. That is, the attacker does nol send an
absence message (Case 1 in Fig. 5) including DMAC
(MAC type D). The resulting testification tree would
actually be a path unless there are multiple attackers.

According to the testification algorithm (in Table 5),
the BS builds a testification tree, which consists of nodes
p and gp in Case 1. Subsequently, the BS chases down
the testification tree, finds the last suspicious node (it
would be node a in Case 1 as indicated by p), and asks
the children of the suspicious node to send the
aggregation message of the suspicious node (which they
snooped during the aggregation phase).

The BS then can verify the AMAC and BMAC of the
aggregation message.

In this case, the children either did not observe an
aggregation message sent by the suspicious node, or have
snooped on aggregation messages that contain an invalid
MAC. In either case, the BS knows that the attacker is
dropping a message. In other words, the children testify
against the attacker.

Fo 8N HIERIZ0AM Compromised Agaregatordl CHEE 213t ZLIE{E 718 AJF0 HIOIE wg 2253 311

(Fig. 5) Examples of the testification process, Case 1 shows
testification of this dropping data attack. Case 2 shows
testification of framing a child. 1), 2) and 3) represent an
absence message, a query of the BS and a testification
message respectively

8.2 Framing a child

The attacker may choose to send an absence message,
this time framing one or more of its children (Case 2 in
Fig. 5). The resulting testification tree contains nodes a,
p and gp. Again, the children of the last suspicious node
(the framed node v) are asked to send the aggregation
message of v. Those messages contain a valid MAC, so
the BS kncws that the parent of v is lying and hence
the real attacker. In other words, the children testify for
node v,

9. Communication Overhead

In this section we analyze the communication overhead
during 1) construction of the tree and 2) an aggregation
session. We estimate the communication overhead as the
number of hops traveled by all messages.

In summary, the communication overhead for building
an aggregation tree takes O(nv/n), but this may not be
a serious ccncern, because it is not necessary to build the
aggregation tree often.

More importantly, the communication overhead of the
entire aggregation session (including aggregation,
attestation end testification phase) remains O(n).

We assume that the number of hops (or the path
length) betvieen any two nodes is, where n is the total
number of sensor nodes uniformly deployed in two

dimensional space [2].

* Overhead in the tree construction phase

In the aggregation tree algorithm, steps 1 b), 2 a), 2
b), 3 a), 3 1), and 3 ¢) each take O(n). In step 3 b) we
assume the number of neighbors is a constant.

In the aggregation graph algorithm, steps 1, 2, 3 a),

and 3 b) each take O(n). In step 3 a) we assume a
threshold value is constant. Therefore the overhead in the
tree construction phase is Oln).

* Overhead in the tree post-processing phase

Since a distance from a node to the BS is O(v/n),
therefore a communication overhead of information sent
by a node via intermediate nodes to the BS takes O
(v/n). The information sent by a node denotes its node's
type (illustrated in Fig. 1) and the list of its primary and
secondary parents. Since there are n sensor nodes in the
network, therefore total communication cost in sending
the information is O(nv/n).

* Overhead in the query dissemination and aggregation
phase
A query dissemination message can be flooded to all
nodes with O(n) number of hops. The aggregation phase
requires (O(n) number of hops because a node sends an
aggregation message.

* Overhead in the attestation phase

The number of messages generated in the attestation
phase depends on the number of attackers and their
location. In this section we consider a simple case where
there is only one attacker.

As we mentioned in Section 4.5, if the abnormality of
a data value is high enough, then all the nodes (and their
siblings) on the path from the abnormal node to the BS
would send attestation messages. The total number of
hops traveled by all the attestation messages can be
estimated by equation (1), where d is the maximum node
degree (the minimum number of children per node) and pl
is the path length (the level of the attestation tree). Each
attestation message is unicast and takes the shortest path
to the BS, as explained in Section 4.5.

COSI;.;M; = d X (1 + 2 + 3 e p})

= dxﬁi

=1
O(pf)
Oln) (1)

I

"

The attestation phase thus takes O(n) number of hops.

* Overhead in the testification phase

In the testification algorithm, step 2) takes 142+ .. + pl
= Oln), where pl is the path length of the testification
tree. Step 4) takes d *vn = O(\/n) where d is the

312 dEXeE=2A C W M5=(2011. 10)

node degree (the number of leaf nodes of the suspicious
node). The overall cost of the testification phase is thus
O(n).

10. Simulation Results and Comparison with
Existing Work

In this section we present our simulation results that
provide the following information,

1. An example of an aggregation tree and an

attestation tree

2. The properties of the aggregation tree

3. The communication overhead in the attestation phase

4. The energy consumption

5. Comparison with related work

Below are our assumptions for the simulation in
Section 10.1, 10.2 and 10.3.

¢ The BS is at coordinate (0,0) while sensor nodes are
randomly deployed in a square area (1,000 - 18000
nodes)

¢ The minimum number of children is 3, 5, 7, 9 and 11

® The adversary node is far from the BS, in order to
compute the worst case communication overhead

* Fach communication overhead is averaged based on
100 experiments

10.1 An Example of an aggregation tree and an attestation

tree

(Fig, 6) shows the result of the aggregation tree after
the aggregation tree algorithm <Table 1> and the
aggregation graph algorithm <Table 2> are applied. After
stages 1) and 2) of the aggregation tree algorithm, the
tree is basically the same as a shortest-path spanning
tree such as ENCAST ([15), except nodes who cannot find
a minimum number of children remain as external nodes.
As a result, nodes whose level is lower than such
external nodes are unconnected (orphans).

However, after stage 3) of the aggregation tree
algorithm, practically all the orphans are adopted by some
internal nodes, unless they are not in the transmission
range of any of the internal nodes. After the aggregation
graph algorithm, the aggregation tree is augmented with
more edges among external nodes (shown in dotted line).
However, the two nodes, connected by such an edge, do
not exchange data (such a node only monitors the other
node). Therefore, although the aggregation graph appears
to be dense, the communication overhead does not
increase,

The thick edges show an attestation tree. In identifying
a compromised node, the most suspicious node is a
parent of leaf nodes of the attestation tree. The dashed
line shows an example of an actual shortest path which a
reporting node sends the attestation message to the BS.
As explained in Section 44, a reporting node who
suspects its primary parent chooses an alternate shortest
path to the BS by sending the message to one of the
nodes in its parent list. If leaf nodes parent in the
attestation tree has either an inconsistent value, which its
children snooped, or an outlier aggregate, then this parent
is a compromised aggregator.

10.2 Properties of the aggregation tree

(1) Connectivity of the aggregation tree

According to the aggregation tree algorithm (Section
4.1), nodes who cannot find the minimum number of
children will be external nodes. As a result, nodes whose
level is lower than such nodes are unconnected (orphans).
In general, the connectivity is higher if the minimum
number of children is less than the average number of
neighbors. In our experiment, orphans are practically
nonexistent if the average number of neighbors is twice
as large as the minimum number of children (or more).
For example, when the minimum number of children is 11
we need more than 20 neighbors in order to avoid
orphans.

(Fig. 6) The final aggregation tree (graph). The dotted lines
among external nodes denote secondary parent-children
relationships. An attestation tree is shown as thick edges.
The dashed edges show an example of a path, along which
an attestation message is routed to the BS

FM MM HEAZF0M Compromised Aggregatordil CHEE I8 ZLIHE 7|8t A|lR0f GIOIE ¥E Z2E3 313

(2) Percentage of non-aggregating nodes

A node is not allowed to provide data during
aggregation if it cannot find a minimum number of
children (who monitor him), because we cannot believe
its data. In general, it is more likely to have a minimum
number of children (and hence will be a data-providing
node) if it has more neighbors or a lower number of
monitoring nodes (children) is required.

(Fig. 7) shows the result of our simulation. The result
shows that with the neighbor size of 40, the percentage of
non-aggregating nodes is well below 10 for all of the
node degrees (minimum number of children) we tested.
For a node degree such as 5 or less, even 20 neighbors
suffice. Ths result clearly shows that the number of
non-aggregating nodes is negligible. For all the cases of
the minimum number of children, our simulation shows
that 95% of total nodes can participate in the data
transmissiont when the number of neighboring nodes is 50.

10.3 Comrmnunication overhead in the attestation phase

The results of our simulation (see Fig. 8) show that
the communication overhead is linear with respect to the
number of nodes, as analyzed in Section 4.4. Generally
speaking, with a given number of nodes, the stronger the
radio range (hence the higher the number of neighbors),
the lower the number of hops it takes to send a message
to the ES. Our
expectation.

simulation result confirms this

10.4 Enerqy consumption

We divide this section into two sections. First, we
measure erergy overhead when a false data injection
attack occirs. Second, we compare wasted energy
between our work and related work [14].

To messure energy consumption, we use ns-2
simulator [16] and energy models [17]. The energy
required in sending a message of a node is s. (§+8 xd),
where s is the message size, § = 50 nJ/b is a
distance-incependent term, & = 100 pJ/b/m is the
coefficient :or a distance-dependent term, q = 2 is the
exponent for the distance-dependent term, and d = 15 m
is the transmission distance. The energy required in
receiving a message of a node is sxy, where y = 50 nJ/b
is a coefficient independent of transmission distance.

The initial energy budget at each sensor node is set at
50 J. Let op, id, agg and MAC be 2, 16, 32 and 64 bits,
Therefore, aggregation and attestation data of our work
are 194 and 226 bits. Aggregation and attestation data of
work [14] are 152 and 136 bits, respectively. We simulate

z

Minimum number of children

3 ———

Mimimum number of children = 5 —e—

50 Minimum number of children = 7 —e—
Minimum number of children = 9 —e—

Minimum number of children = 1] —a—

£
=

R
=

20 +)

Percentage of external non-contributing nodes

10 20 10 40 50 60 0 20 90
The number of neighbors

(Fig. 7) Percentage of monitoring-only nodes

s Neighbathood sizes — 40 —— i) T
12000 Neighborhood sizes -~ 6 —8—
- Neighborhood sizes — R —%—
:p:. 10000 Averagg slop - (bR
=
K]
2 BODO Average stop = 1046
5
2
e HO00
El
g
= 4000 Averge slop = 0.36
]
Z2
=
£ 2000
=
=
0

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
'he number of nodes

(Fig. 8) Communication overhead when the minimum number
of children is 11, Note that we excluded the case of 20
neighbors in order to avoid unconnected nodes

over ten topologies where 100 sensor nodes are randomly
deploved in an area of 50 x 50m’ and the locations of a
compromised node are variously changed in order to find
an average energy in detecting the attack.

* Energy overhead

We measure the energy overhead when there is a false
data injection attack. Average energy consumption of all
sensor nodes that send aggregation data is 438m] and
average energy consumption of sensor nodes that send
attestation messages to the BS is 102m]. Therefore, an
average energy overhead is 23.3% increase when there is
a false data injection attack.

» Wasted energy between our work and related work [14]
In this section, we simulate and compare wasted
energy between our work and work [14] when a single
compromised node keeps injecting false data in a
network.
et B denote an accumulation of wasted energy.

314 FSEMElER=EX ¢ M18-CE MS=(2011. 10)

(Table 6) Accumulation of wasted energy

The number of false data B (mJ)
injection attacks O work Work [14]
1 506 2938
2 5406 5876
3 5406 8814
k(k>3 5406 293.8xk

Wasted energy consists of 1) energy of sensor nodes
which send false data, 2) energy of sensor nodes which
send attestation messages to the BS and 3) energy of
sensor nodes which forward flooding messages of the BS
to announce the ID of a compromised node.

Except work [14], we cannot find information about the
packet size of aggregation data. Therefore, in this section
we only compare our work and work [14].

Since the packet size of aggregation and attestation
data of our work are longer than that of work [14],
energy consumption of our work is 46% higher during
the first false data injection attack. However, after a
compromised node is found, it will be ignored by other
nodes and cannot participate in data ftransmission.
Therefore, sensor nodes do not waste their energy to
send false data in the next aggregation session. Wasted
energy will be 5406m] as illustrated in <Table 6>.
Wasted Energy of work [14] will increase as a linear
function because their sensor nodes waste their energy to
send false data. Energy consumption of work [14] is

higher than that of our work at the 2™ round of false
data injection where a false data injection is occurring
every aggregation session.

10.5 Comparison with existing work

<Table 7> compares the communication overhead,
limitations and the percentage of the average number of
contributing nodes per total nodes for each scheme. The
communication overhead of the proposed scheme in an
aggregation session is the same as or better than the
overhead of other schemes. But unlike other schemes, our
work can identify the adversary node as well. While
many existing schemes assume centralized aggregation,
assumes hierarchical aggregation and
therefore scales well with a large number of sensor
nodes. In [8], [13] and [14] their aggregation message
requires encryption and decryption between a sender and
a receiver. This increases a computation cost of sensors.

our scheme

Unlike their schemes, our scheme avoids using encryption
and decryption where an aggregation message is only
plaintext. Our solution is more simple and lightweight
than them because we wuse merely a minimal
cryptographic technique that is a MAC. In terms of a
computation cost occurred by encryption, our current
solution is as efficient as the solution [5] and more
efficient than the solutions [8], [13] and [14]. In terms of
contributing nodes that can participate in an aggregated
value, our proposed protocol has more the number of
contributing nodes than that of the solutions [1] and [10].
(Fig. 7) shows that even though only 95% of total

(Table 7> Comparison of security aspects, communication overhead and the number of contributing nodes

Communication overhead The percentage of
Secerity L the avg. num. of
Approaches St Limitation(s) Biilding Detecting contributing nodes
a tree an attack per total nodes
Madden[71 No use No security N/A Oln) 100
Przydated[10] Ha;&gee Internal nodes do not sense data N/A o), I< n 50
Yang(14] E“ﬁ’ém“ Caninot, ideiitity’ attacker N/A Otn) 100
Boonsongsrikul(1] MAC Eacemgl toles fo 1t pestivip e N/A Oln) Less than 50
aggregated values
Encryption Cannot identify attacker and needs :
Vul10] MAC chsster keys N/A Oln) 100
Mlaih(8] E"E"g"" Long aggregation messages N/A On In(n)) 100
Da Silva[5] MAC No security for monitoring nodes N/A o) 100
QOur work MAC Require our specific aggregation tree Oln) 9%

2M M HERZNAM Compromised Agaregatorlil CHE S I8t BLIE{R 718t AIF0 CIOIH HE 22

number of nodes participates in data transmission, our
proposed protocol detects the attacks and also identifies
the location of the attacker.

11. Conclusion

We proposed a protocol for detecting false data
injection that uses minimal eryptographic techniques. Our
proposed protocol can also find the attacker, whereas to
our best knowledge no other schemes can. Our proposed
scheme can also handle other kinds of attacks during
data aggregation, including framing other nodes and
dropping an aggregation message.

In our protocol, the communication overhead of the
entire aggregation session (aggregation, attestation, and
testification phase) remains Oln), which is better than or
equal to other work. However, the communication
overhead of building a tree is. Unfortunately we cannot
compare the communication overhead in construction of
an aggregation tree of our protocol because the related
work does not provide a communication overhead in
building the aggregation tree or assumes that the
aggregation tree already exists.

There is a limitation in the proposed protocol. We can
currently pinpoint the attacker for all of the attack types
we analyzed, except the framing attack (Section 6 Case
a), which leaves the possibility of a attack that can drain
the battery of the victim's children. We plan to study this
issue in ow" future work.

References

[1] A. Boonsongsrikul and et al, "Securing Data Aggregation
against False Data Injection attacks in Wireless Sensor
Networks,” ICACT 2010, pp.29-34, 2010.

[2] H. Chan and A. Perrig, “PIKE: Peer Intermediaries for Key
Establishment in Sensor Network,” IEEE INFOCOM 2005,
pp.524-535, 2005.

[3] H. Chan, A. Permig, and D. Song, “Random key predistribution
schemes: far sensor networks,” Proc. of [EEE Symposium on
Security and Privacy, May, 2003.

[4] H. Chan, V. Gligor, A. Perrig, and G. Muralidharan, “On the
distribution and revocation of cryptographic keys in sensor
networks,” IEEE Transactions on Dependable and Secure
Computing, Vol.2, No.3, pp.233-247, July-Sept., 2005.

[5] Da Silva and et al, “Decentralized Intrusion Detection in
Wireless Sensor Networks,” Q2SWinet ‘05, pp.16-23, 2005.

[6] W. R. Heinzelman and et al., “Energy efficient communication
protocol for wireless microsensor networks,” Proc. of the

Mkt

31

o

33rd Hawaii Int. Conf. on System Sciences, pp.3005-3014,
2000

[7] S. Madden and et al., “TAG: aTiny AGgregation service for
ad-hoe sensor networks,” OSDI'0Z2, 2002, pp.1-16, 2002.

[8] E. Mlaih and et al., “Secure Hop-by-Hop Aggregation of
End-to-End Concealed Data in Wireless Sensor Networks,”
[EEE INFOCOM, pp.1-6, 2008.

[9] A. Perrig, R. and et al,, "SPINS: security protocols for sensor
networks,” ACM SIGMOBILE, pp.189-199, 2001.

[10] B. Przydatek and et al,, "SIA: Secure information Aggregation
in Sensor Networks,” SenSys' 03, pp.255-265, 2003.

[11] J. R. Taylor, An Introduction to Error Analysis. 2" edition.
Sausolito, Califormia: University Science Books. 1997,

[12] The Network Simulator—ns-2 [Online], Available:
http://www.ist.eduw/nsnanyns/

[13] H. Vu and et al., “THIS: THreshold security for Information
aggregation in Sensor networks,” ITNG'07, pp.89-95, 2007,

[14] Y. Yang and et al, “SDAP: A Secure Hop-by-Hop Data
Aggregation Protocol for Sensor Networks,” MobiHoc'06, pp.
356-367, 2006.

[15] S. Zou and et al, “ENCAST: EnergyCritical Node Aware
Spanning Tree for Sensor Networks,” CNSR, pp.249-254,
2005.

[16] L. Eschenauer and V. D. Gligor, “A key-management scheme
for distributed sensor networks,” in CCS '02: Proc. of the
9th ACM conference on Computer and Communications
Security, pp.41-47, 2002,

Boonsongsrikul, Anuparp
e-mail : anuparp@ajou.ac.kr
199841 Mahanakorn 7]t %t
AT T
20029 Kasetsart #zba-8f3H(AjAh
2007 ~& A olFulgtw
BRFA T wpaA
Aol A WESZ, o =E YESZ, VANET,

IC B4 F

o Z 4
e-mail : kvungsuk.lhee@gmail.com
1991 aefufsha Aof AEgaH(gkat)
199341 “raf s A 8w

business computing &34 A}
19961 B 2Edieti 3 3FE T4 AL
20068 A 2hfdl gt 7 3FE g e (whAl)
200541 ~ 20100 ofFo) 8han A B FE FEYE S
Aok AR N ES 2R F

316 H=EME|ISS=2X C M18-CH H5=(2011. 10)

=

e-mail : sparky @ajou.ac.kr

19743 M -Zof il &-88hal(aal)

19761 §+3-3}8H1(KAIST) A 4ks}a
(42H)

3 ‘ 198214 Institut National Polytechnique
B de Grenoble #48tab(u}A})

197613 ~ 1977 =3} eh7| A AKIST) 94

1977 ~19784 KIET (ETRD 179

1978 ~1982y1 Eadx e eg IMAG G5-8/84H4

198244 ~ 198440 KIET (HETRD A#/49 74

198441 ~ 19854 ©]5 [BM &4 gl

19851 ~1992' ETRI 97919/ A 74l

1992 ~@ A olF st HREFMNE g

FEok: At = gAY, 27t AFE/A R A2,

A AFE P2 5

