24 SIS 2K M8-DB MI1=(2001.2)

kA et loleliolzol A FA4 AlolE 9%
PYF 1% 4 7o

2 8 0 o AU g 2

|

-] o}

2 AN BUA 3O dolemol ol $A4 FEE BHAIIL, BY STAYE BESE $YE QAL 2AEY ZzEEL
AV AFAY ALY o1& 71D SUA A2 J10E oA 2 dolsnolzd Ak ey FT/ME AL ANE AE
8o EAAHel o o4 1 ANE 27N 4@ W UE EFANE] 1 ANE 238 £ UASS el AN HY 238 AAFOSA
EQARES IINDE Fol7] AR ALY Roltk BFY olekd FFAWE A ARSI Gt ANANE A F O ene
F¥elth & ERANE e Bt doleol 2ol ©r) EdAAS Jloluae ALANES Sglch ¥ mzmae B4y B3I Y
(XALMLS)& 7122 sgoh, 42 P4 oo uet deleimol 28 A% UG ¥ 43 FHDLMLSILZ wet 279 $414
ASE FAol DEUT, MY Tzegel A4 AW Az FALA,

FINE : OlEH HIVIW, MY HO, SUE TR FF g, Cel 2ot HOlEHoIA

A Two-way Donation Locking Protocol for Concurrency Control in
Multilevel Secure Database

Hee-Wan Kim'- Hae-Kyung Rhee'! - Ung-Mo Kim*''!

ABSTRACT

In this paper, we present an advanced transaction scheduling protocol to improve the degree of concurrency and satisfy the security
requirements for multilevel secure database. We adapted two-phase locking protocol, namely traditional syntax-oriented senalizability notions,
to multilevel secure database. Altruistic locking, as an advanced protocol, has attempted to reduce delay effect associated with lock release
moment by use of the idea of donation. An improved form of altruism has also been deployed for extended altruistic locking (XAL). This is
in a way that scope of data to be early released is enlarged to include even data initially not intended to be donated. We also adapted XAL
to multilevel secure database and we first of all investigated limitations inherent in both altruistic schemes from the perspective of alleviating
starvation occasions for transactions in particular of short-lived nature for multilevel secure database. Our protocol is based on extended altruistic
locking for multilevel secure database (XAL/MLS), but a new method, namely two~way donation locking for multilevel secure database
(2DL/MLS), is additionally used in order to satisfy security requirements and concurrency. The efficiency of the proposed protocol was verified
by experimental results.

Key word : Altruistic Locking, Concurrency Control, Two-way Donation Locking, Multilevel Secure Database

1. Introduction

A Multilevel secure database is a secure system which
is shared by users from more than one clearance levels and
contains data of more than one sensitivity levels {1]. When
the database scheduler use the scheduling protocol to
multilevel secure database, it must satisfy both the con-
currency and the security requirements at the same time.

A data item’s correctness is guaranteed by standard

2 AL U T AFYHLY 2s
2 A Bentoj gu ANy 24
ANe A7 Bt Wl AR AFE Y 2e
1S 12000 129 7Y, AAER 20019 19 159

transaction scheduling schemes like two-phase locking
(2PL)[6] for the context of concurrent execution envi-
ronment. We adapted two-phase locking protocol to mul-
tilevel secure database. But when short-lived transactions
are normally mixed with long-lived ones, degree of
concurrency might be hampered by selfishness associated
with lock retention. In 2PL, lazy release of lock could
aggravate fate of misfortune for long-lived ones in that they
are more vulnerable to get involved in deadlock situations.
And short-lived transactions suffer from starvation or
livelock affected by long-lived ones. To reduce the degree
of livelock, the idea of altruism has been suggested in the

CICEAl ot HIOIEAHIOIA0IM SAIA HOIE ATH st 7|18 A3 7L 25

literature. Altruistic locking (4], AL for short, is basically
an extension to 2PL in the sense that several transactions
may hold locks on an object simultaneously under certain
conditions. Such conditions are signaled by an operation
donate. Like yet another primitive unlock, donate is used to
inform the scheduler that further access to a certain data
item is no longer required by a transaction entity of that
donation. The basic philosophy behind AL is to allow
long-lived transactions to release their locks early, once it
has determined a set of data to which the locks protect will
no longer be accessed. Extended altruistic locking [4), XAL
for short, attempted to expand the scope of donation in a
way that data to be early disengaged is augmented by extra
data originally not conceived to be rendered. Our protocol
is based on extended altruistic locking (XAL) but a new
method, namely two-way donation locking for multilevel
secure database (2DL/MLS), is additionally used in order to
satisfy security requirements and concurrency in multilevel
secure database.

2. Related Work

2.1 Multileve! Secure Database

Each data item in multilevel secure database is labeled
with its security classification and each user is assigned a
clearance level. In example, we will use the following
hierarchical levels ordered as follows :

Top Secret = Secret = Confidential > Unclassified

We applied the security models using Bell and LaPadula
model {1] to multilevel secure database. Information is
allowed to flow from an object(subject) with security
classification level /; to a subject (object) with classification
level level [only if 5>,

The BLP model requires that the system satisfy the
following properties[2].

Simple Security Condition

A subject may have read access to an object only if the
subject’s classification level dominates the object’'s sen-
sitivity level.

*-Property (Star Property)

A subject may have write access to an object only if the
object’s sensitivity level dominates the subject’s clas-
sification level.

We used ts, s, ¢ and u to denote the hierarchical level for

subject(transaction) and object(data item) orderly in this
paper.

2.2 Altruistic Locking

A transaction consists of database accesses and con-
currency control operation, such as Lock and Unlock. It is
well known that schedules of well-formed two-phase trans-
actions that observe this rule are correct[3]. 2PL protocols
ensure that these conditions are met, they produce se-
rializable schedules. AL is a modification to 2PL under
certain conditions. AL provides a third concurrency control
operation, called Donate, along with Lock and Unlock.
Donate operation is used to inform the scheduler that access
to an object is no longer required by the locking transaction.
Donate and Lock operations need not be two-phase, ie.,
when Donate is used, the donating transaction is free to
continue to acquire new locks. Several rules control the use
of the Donate operation by well-formed transactions. Trans-
actions can only donate objects which they currently have
locked. However, they may not access any object that they
have donated. A donate operation is not a substitution for
unlock operation. A well-organized transactions must unlock
every object that it locks, regardless of whether it donated
any of those objects. Transactions are never required to
donate any objects ; donations are always optional. Donate
operations are beneficial since they can permit other trans-
actions to lock the donated object before it is unlocked.

2.3 Applying Extended Altruistic Locking to MLS

While the donation of wake is rigid in AL in terms of
fixedness of its size, a dynamic way of forming a wake could
be devised given that serializability is never violated. This
was realized in XAL by simply letting data originally not
intended to bestow to be dynamically included in a wake
predefined. The rule is that wake expansion comes true only
after a short transaction has already accessed data in its
predefined wake list. So, the presumption made for XAL is
that a short transaction still restlessly wishes to access data
of its wake-dependent long transaction even after it has
done with data in its wake list. The assumption could be
called data-in-wake-list-first/other-data-later access fa-
shion. XAL therefore performs inevitably badly if others-
first wake-later access paradigm is in fact to be observed.
Example 1 shows this.

Example 1(Delay Effect Caused by Donation Extension) :
Suppose that TI(R, ts) attempts to access data items, A(ts),
B(s), Ci¢) and D(u), orderly in multilevel secure database.

2% S=mFERXelE =2X H8-DA M1=(2001.2)

Note that data items, E(ts), F(s), I(ts), and J(s) shall not
be accessed by TI(R, ts) at all. Presume that TI(R, ts) has
already locked and successfully donated A(ts), B(s) and
Clc). TI(R, ts) now is supposed in the stage of accessing
D(u). Suppose also that there are three more transactions
concurrently in execution along with TI(R, ts) : T2AW, s)
wishing for B(s) and E(ts), T} R, s) wishing for E(ts) and
F(s), and T4W, c) wishing for F(s) and J(s)(Figure 1).

Tiw.es) : Data item previously used
and donated by Ti(R, ts)
: Data item currently used
Tar.s) by Ti(R, ts)
D) : Data item which is yet to
be used by Ti(R, ts)
Tar.s) : Data item which shall never
be used by Ti(R, ts)
Tan.c)

(Figure 1) Four Transactions Competing for Same Data
Donated

In case XAL/MLS, If T2(W, 5) initially requests EX(ts) first
rather than B(s), TXW, s) can certainly acquire E(ts) but
it fails for B(s) because wake relationship cannot honor
E(ts) as a member of the wake list. Once this sort of wake
dependency is detected, T2(W, s) can be allowed to access
B(s) only after it is finally released by TI(R, ts). TAW, s)
in this case is therefore blocked. 73R, s) must then be
blocked for E(ts) to be released by T2AW, s). THW, c) as
well must be blocked for F(s) to be released by T3(R, s),
forging a chain of blockage. End of Example 1.

To resolve this sort of chained delay, others-first
wake-later approach could be made viable in a way of
including others, not honored before, to a wake list. This
enhancement is one of substances, made in our proposed
protocol, which could be considered as backward donation,
compared to XAL, which is based on forward donation. One
other major substance of our proposed protocol is to let more
than one long transaction donate while serializability is
preserved in multilevel secure database. The notion of
two-way donation locking with muitilevel secure database
is thus developed in our protocol. Qur protocol allows more
donation than one long transaction, but for the sake of
presentation simplicity, degree of donation is limited to two
in this paper.

3. Proposed Protocol

3.1 Assumptions

To describe wake expansion rule in detail, simplifications
were made mainly with regard to transaction management
principle.

® (Transaction Operation) : All transactions have
either read or write operation to their data items.
@ (Security Policy) : A transaction and its data items
follow MAC policy by the Bell and LaPadula model.
@ (Donation Privilege) : Only long-lived transactions are
privileged to use donate operation.

@ (Commit Policy) : A long-lived transaction eventually
commits.

® (Deadlock Handling) : If a transaction happens to fall into
deadlock situation, that transaction will be eliminated by
using a certain deadlock timeout scheme.

In this paper, the multiplicity is rendered to the case of
two to measure the effect of donation variety. Two- way
donation locking protocol with Multilevel Secure Database,
Z2DL/MLS for short, can be pseudo-coded as follows
(Algorithm Wake Expansion).

Algorithm{Wake Expansion Rule of 2DL/MLS)
Input’LT1; LT2 ST
/* ST:short trans; LT1, LT2long trans */
BEGIN
FOREACH LockRequest
IF(LockRequest.ST.data = Lock)
THEN
/* Locks being requested by ST already granted to long trans other
than LTI and LT2 */
Reply:=ScheduleWait(LockRequest);
ELSE IF(LockRequest.ST.data = Donated) THEN
/* Locks being requested by ST donated by long trans other than
LTl and LT2 #/
FOREACH (ST.wake LT1 OR L.T2)
IF(ST.wake = LT1) THEN
/% Donation conducted by LT1? #/
IF(ST.data LT1.marking-set) THEN
/* Data being requested by ST to be later accessed by LT1 ? */
Reply:=ScheduleWait(LockRequest)
ELSE
Reply:=SecurityCheck(LockRequest)
ENDIF
ELSE
IF(ST.data LT2 markSing-set) THEN
/* Data being requested by ST to be later accessed by LT2 ? #/
Reply := ScheduleWait(LockRequest)
ELSE
Reply = SecurityCheck(LockRequest)
ENDIF
ENDIF
ENDFOR

CIEtAl £0F HIOIEHIOIANM SAIE HOE 218 ays 718 &8 7Y 27

ELSE
Reply := SecurityCheck(LockRequest)
ENDIF
IF(Reply = Abort) THEN
/* Lock request of ST aborted */
Abort Transaction(Transactionid):
Send(Abort);
Return();
ENDIF
ENDFOR
END
SecurityCheck(TRAN, DATA, GUBUN)
/+ TRAN:transaction to be transferred : DATA'data item to be transferred +/
BEGIN
IF(TRANR = True} THEN /* Simple-property (Read Option) */
IF(TRANevel Datalevel) THEN /+ Transaction’s level check */
IF(GUBUN = Lock) THEN
Reply := SchedulelLock(LockRequest)
ELSE
Reply := ScheduleDonated(LockRequest)
ENDIF
ELSE /* No read up */
Reply := DiscardData(LockRequest)
ENDIF
ELSE /* *-property(Write Option) */
IF(TRAN Jevel Datalevel) THEN /* transaction level check */
IF(GUBUN = Lock) THEN
Reply := Schedulelock(LockRequest)
ELSE
Reply := ScheduleDonated(LockRequest)
ENDIF
ELSE /* No write down */
Reply := DiscardData(LockRequest)
ENDIF
ENDIF
END

3.2 Operation Instance of 2DL/MLS

In case donated data items are used under XAL/MLS, it
is allowed to request data items which are donated by only
one transaction. Under 2DL/MLS, in contrast, short-lived
transactions are treated to be given more freedom in
accessing donated objects by eliminating the single-donation
constraint. Short-lived transactions can access objects
donated by two different long-lived transactions in mul-
tilevel secure database.

2DL/MLS permits short-lived transactions request data
items which have been donated by two different long-lived
transactions. A way to conduct a two-way donation is
shown, in Example 2, with two separate long transactions
and a single short transaction.

Example 2(Allowing Proceeding of Short Transaction
with Two Concurrent Long Ones in Multilevel Secure
Database) : Suppose that TI(R, ts), a long transaction with

Read/Top-secret secure level, attempts to access data items,

A(ts), B(s), (c), D(u) and E(ts), orderly in multilevel
secure database. Presume that TI(R, ts) has already locked
and successfully donated A(ts) and B(s). TI{R, ts) now is
supposed in the stage of accessing (Xc¢). Suppose also that
there are two more concurrent transactions in execution
along with TI(R, ts) : T2(W, s), long transaction, wishing
for data items, F(s), G(c), H(u), I(ts) and J(s), in an orderly
manner and T3(R, c¢), short with low level, wishing for B(s),
G(c) and K(u) similarly. Presume that T2(W, s) has already
locked and successfully donated F(s) and skipped G(c) due
to *-property in BLP model T2(W, s) now is supposed in
the stage of accessing H(u) (Figure 2).

Legend-
TR ts) Cw© : Data item previously used and
2 donated by Ti(R, t=) and T2 (W, &)
Dtw)
Es) : Data item currently used by
Ti(R, ts) or T2{W, s)
Tacr.c)
: Data item which is yet to be
Glo) used by TR, ts) or T2(W, s)
Tar.e Hu) : Data item which shall never be
Ltts) used by Ti(R, ts) or T2(W, s)

Js

(Figure 2) Execution of T3 with Two Concurrent Long-Lived
Transactions

If we apply XAL/MLS for these transactions, a lock
request for B(s) by T3(R, c) would be allowed to be granted
but a lock request G(c¢) would not because G{¢) has already
been donated by another long-lived transaction. Only after
T2(W, s) commits, ((c) can be tossed to TXR, c).

In case 2ZDL/MLS, T3(R, ¢) could fortunately be allowed
to access without any delay. This is made possible by simply
including the wake of T2(W, s) into the wake of TI(R, ts).
End of Example 2.

33 Correctness of 2DL/MLS

In this section, we will show that 2DL/MLS satisfy both
serialization and security requirement. To do so, we will
make use of the serializability theorem [3], the definition of
Crest Before [4] and a lemma used in proving the correctness
of AL [4]. The serializability theorem states that a history
H is serializable iff its serialization graph is acyclic, and the
definition of Crest Before state that for two transactions, say
Ti uTj if Ti unloaks some data items before Tj locks some
data items.

28 ShREENZiEe =2 M8-DT M1=(2001.2)

We use oi{x], pilx] or ailx] to denote the execution of either
read or write operation issued by a transaction T, on a data
itern x. Reads and writes of data items are denoted by nlx]
and wi[x], respectively. Locking operation is also represented
by ollx], phlx], qllx]), rli{x] or wh(x]. Unlock and donate
operations are denoted by wilx] and dilx], respectively. H
represents a history which may be produced by 2DL/MLS
and O(H) is a history obtained by deleting all operations of
aborted transactions from H. The characteristics of histories
which may be produced by 2DL/MLS are as follows.

Property 1(Two-Phase Property) : If oli{x] and uly] are
in O(H), olix] < ulyl.

Property 2(Lock Property) : If alx] is in O(H), olilx] <
olx] < uilxl.

Property 3(Donate Property) : If olilx] and dilx] is in
O(H), olx] < dfx].

Property 4(Unlock Property) : If di[x] and uilx] is in O(H),
dilx] < ulx].

Property 5(Security Property) : If level(T) level(r(x])) in
OH), rlilx] < uilx], i level(T:) level(wilx]) in
O(H), wilx} < ulx].

Property 6(Indebtedness Property) : If T; is indebted to
T; for every ojlx] in O(H), either o[x] is in the
wake of Ti or there exists wly] in O(H) such that
uly]l < olx].

Lemma 1(Altruism) : If p{x] and glx] (i*j) are con-
flicting operations in O(H) and qi(x] < qlx], then ufx] <
dlilx] or dilx] < qlilx].

Proof : A data item must be locked before and unlocked after
it is accessed by Property 1. In Wake Expansion Rule of
2DI/MLS, a conflict lock on the data item, say g, is allowed
only when no transaction locks a or the transactions which
hold locks on a has donated it. Thus, the history, O(H),
satisfies Lemma 1. End of Lemma 1.

Lemma 2(Complexity-In-Wake) : If T, = T is in se-
rialization graph, then either T1 — ,T2 or T} — 4T
Proof : T\ — T2 in serialization graph means that there exist
conflicting operations, say pi[x] and q[x], in H such that
pilx] < qelx]. There are only two cases that may occur for
this by Lemma 1. One is that there is pi[x] < dilx] < qlx]
< qlx] in O(H), i.e, T2 accesses the data items donated by T.
A transaction T: has to access only wake of another
transaction T , once T2 makes conflict locks on the data
items donated by Ti. T: must be completely in the wake
of T: if T2 has accessed any of the wake of Ti. This is

ensured by the first else if condition in algorithm. Even if
T2 has already accessed any data items which do not belong
to the wake of T1, such data items would be included into
the wake of T, as long as T does not access any of such
data items at all for its execution. If the data items locked
by T» will be accessed by T, the access of T2 to the data
items donated by T is not allowed by the second foreach
condition. Thus, Th — T2 corresponds to T1 - ¢T+ in the case
that pilx] < dilx] < glalx] < qux] in H, or in the case that
plx] < wix] < glfx] < q2x] in O(H) by Lemma 1. Thus,
T: — Tz corresponds to Ti — ,T2 in the case.
End of Lemma 2.

Lemma 3(Correctness of AL) : Consider a path Ty — -
Ta-1 = T in O(H). Either T, — T, or there exists some
Ti on the path such that T — T

Proof : We will use induction on the path length n. By
Lemma 2, the lemma is true for n = 2. Assume the lemma
is true for paths of length n-1, and consider a path of length
n. By the inductive hypothesis, there are two cases :

@ There is a T; between T, and Ty-1 such that T; — Tk
The lemma is also true for paths of length n.

® Ti— ¢Ta1 — Tn and Th-1 conflicts on at least one object,
X. Since Thais completely in the wake of T, we must
have dilx] < gly-1[x] in O(H). By Property 1, T, must
lock x. By Property 4, Ti must unlock x. Either uifx] <
olnlx] or oli{x] < wi[x]. In the first case, we have that
Ti1— Ty, 1e, Tn is the Tk of the lemma. In the second
case, Tn is indebted to Ti. By Property 6, Tn is com-
pletely in the wake of T\(T; —4Tw) or T; = Tw

Theorem 1(Serializability of 2DL/MLS) : If O(H) is
acyclic, O(H) is serializable and satisfies security rules.

Proof : Assume that there exists a cyclic Ty — ** Tq-1 = Ta
in serialization graph. By Lemma 3, T} — 4Ty, or T1 — T\
By Property 3, only Ty~ ,Ti is possible. By Property 5, T;
in H satisfies security property. Since Ti is prohibited to lock
any more data items once Ti unlocks any one, Ti cannot
be T.. Again, by applying Lemma 3 to the same cycle T
— Ti1— - Ti , we get Ti — (Ti.for the same reason and
thus we get T1—,Ti T« in all. Since the relation . is
transitive, T1 — Tk is satisfied. Thus, Tk cannot be any of
T: and T If we are allowed to continue to apply Lemma
3 to the given cycle n-3 times more in this manner, we will
get a path T1—,Tiww =Tk 2 v = Tm containing all
transactions, i.e., Ti through T.. If we apply Lemma 3 to

CIEtAl £2F CIOIEHIOIA0IM SAIE HMOE RIS ags 7|18 35 A% 29

the given cycle starting from Tw one more time, we are
enforced to get a cycle T1 = Ti =Tk = o> 2T —=uTh
and we get a contradiction of violating Property 1 or Lemma
3. Thus seralization graph is acyclic and by the seria-
lizability theorem O(H) is serializable and satisfies security
rules. End of Theorem 1.

4. Performance Evaluation

4.1 Simulation Model

4.1.1 Queuing System Model

The simulation model, in (Figure 3), consists of subcom-
ponents in charge of fate of a transaction from time of
inception to time of retreat : transaction generator (TG),
transaction manager(TM), scheduler (SCH), data mana-
ger(DM), database(DB).

TG generates user transactions one after another and
sends their operations to TM one at a time in a way of

interleaving. TM receives transactions from terminals and -

passes them SCH queue.

Transaction Generator

Operation commit.abort,
requests Acknowiedge
Operation ts Transaction Manager
SCH queue Commit.sbort Commit,abort
m

DM queue

(Figure 3) Simulation Model

DM analyzes an operation from SCH to determine which
data item the operation is intended to access, and then sends
the operation to the disk where the requested data item is
stored. Whenever an operation is completed at the server,
it sends to TM the message informing that the requested
operation has been completed successfully.

This simulation model has been implemented using
Schene [5] discrete-event simulation(DEVS) language. In
DEVS formalism one must specify basic models from which
larger ones are built, and describe how these models are
connected together in hierarchical fashion[7].

4.1.2 Experimental Methodology
<Table 1> summarizes the model parameters and shows

the range of parameter values used in our experiments.
Values for parameters were chosen by reflecting real world
computing practices.

(Table 1) Parameters Setting for Simulation

Parameters Values
db_size 100
num_cpus 2
num_disks 4
short_tran_size 2,3 4
long_tran_size 56,78 9
tran_creation_time 2 units
sim_leng 100, 300, 500, 700, 900, 1100, 1300, 1500

To see performance tradeoff between 2PL/MLS and
2DL/MLS, average transaction length represented by
number of operation in transaction were treated to vary. The
shortest one is assumed to access 20 percent of the entire
database, while it is 80 percent for the longest one.

The number of CPUs and disks, num_cpus and num_disks,
are set to 2 and 4, respectively. The idea behind this status
of balance by 1-to-2 ratio has been consulted from(6].

4.2 Simulation Results and Interpretations

4.2.1 Effect of Security Requirement Level

This experiment has been revealed that 2DL/MLS
satisfied the security requirement by Bell and LaPadula
model. We have counted the processing ratio data item
which satisfy the security requirement against total ones.
Each transaction has Read/Write option, four clearance level,
and data items which they process. Each data items have
four sensitivity levels. If the transaction satisfy the security
requirement which it wish to process the data item, it
process the data item the next time slice. Otherwise, the
transaction discards the data item, and it remains the current
time slice of operating system. In this experimental, the
entire processing ratio was 61.4 percent. So this model
satisfies the security requirement by BLP model.

4.2.2 Effect of Multiprogramming Level

This experiment shows that 2ZDL/MLS generally appears
to outperform ZPL/MLS in terms of average waiting time.
The best throughput performance is also exhibited by
2DL/MLS and the worst average waiting time is portrayed
by XAL/MLS.

Performance gain of 2ZDL/MLS against 2PL/MLS is from
103 to 113 percent increment in terms of throughput. And
2DL/MLS outperforms 2PL/MLS from 99 to 78 percent
decrease of performance at transaction waiting time except

30 sFFEMeiEs =2X M8-DA M1%=(2001.2)

long transaction size is 7. This is because ZDL/MLS has
the 2PL/MLS plus the donation of data items of long

transaction.

Timeout>30,average length of transaction:8, int.arm.time:5

0.04
——2PL/MLS
= XAL/MLS
i 20L/MLS

0.035 ZaN

Throughput

0.03 _.\./l /

0.025 1 L 2 2 s

Size of long transaction

(Figure 4) Throughputs

Timeout>30,average iength of transaction:6, int.am.time:5

15
——2PLNLS
~W=XAL/MLS
~d20L/MLS
12
Lol
£
2
g
9
6) 1) L 1
4 5 6 7 8 9

Size of long transaction

(Figure 5) Average Waiting Time

4.2.3 Effect of Timeout

At a higher range of timeout, 2DL/MLS shows a higher
throughput and a medium transaction waiting time for three
schemes. Throughputs of 2PL/MLS and XAL/MLS show
the same value from timeout size 10 through 35.

Average length of transaction:6, average length of long
transactions:6, int.arr.time:5

20
——2PL/MLS
gl XAL/MLS
w20 /MLS
16 $-
. /
=
212 /
%
2
8

10 15 20 25 30 35
Size of timeout

(Figure 6) Throughputs with Longer Timeout

Throughput of 2DL/MLS outperforms XAL/MLS and
2PL/MLS when timeout size is 15, 30 or 35. We can
observe that average waiting time curve of 2PL/ MLS
rapidly increase from 30 to 35 in (Figure 10). As 2DL/MLS’s
result, this phenomenon again shows us higher throughput
gives lower average waiting time.

2DL/MLS performs better than 2PL/MLS between 100
percent and 120 percent of performance at transaction
throughput. If the timeout size is far extended beyond a
certain point, say 30, the average waiting time curve of
2PL/MLS increase than other two schemes. 2DL/MLS
outperforms 2PL/MLS with 82.55 percent of performance
at transaction waiting time when the timeout size is 35.

Average length of transaction:6, average length
of long transactions:6, int.arr.time:5

0.07

——2PL/MLS
=& XAL/MLS
g 2DL/MLS

0.05

Throughput

0.03

0.01 L L L N s
10 15 20 25 30 35
Size of timeout

(Figure 7) Average Waiting Time with Longer Timeout

Overall behaviors have been revealed that as the size of
timeout increases, ZDL/MLS generally outperforms in terms
of throughput and waiting time. This shows a possibility
that performance gain of 2P1/MLS against 2DIL/MLS could
be deteriorated sharply if the timeout size is far extended
beyond a certain point, say 30.

5. Conclusions

In this paper we proposed that the two-way donation
locking for multilevel secure database(2DL/MLS) is a pro-
tocol improving concurrency control and satisfying the
security requirements. 2DL/MLS showed a more satisfying
performance compared to any other scheme methods, and
in multilevel secure database when Long-lived transaction
lead to abort overhead, 2DL/MLS is recommended to improve
the concurrency degree for wireless mobile network envi-
ronment. ZDL/MLS is considered to be a practical solution
to take where short-lived transactions quickly access

CHCEAL 20 HIOIEHIOIANM SAIM MO8 21Tt 2Wd 7|12 A5 74 31

database without any delay by long-lived ones for multilevel
secure database.

Qur protocol in this paper is limited to the BLP model for
multilevel secure database. As part of our future work, we
would like to prevent covert channels by ensuring that
transactions at lower security levels are never delayed by
the actions of a transaction at a higher security level.

References

[1] T.F.Keefe, W. T, Tsai and J. Srivastava, “Multilevel Secure
Database Concurrency Control,” Data Engineering, Pro-
ceedings. Sixth Intermnational Conference on, 1990.

[2] D. E. Bell, and L. J. LaPadula, “Secure Computer Systems :
Unified Exposition and Multics Interpretations,” T echnical
Report MTR-2997, Mitre Corp., March 1976.

[3] P. A. Bernstein, V. Hadzilacos and N. Goodman, “Concurren-
cy Control and Recovery in Database Systems,” Addison-
Wesley, Massachusetts, U.S.A., 1987.

[4] K. Salem, H. Garcia-Molina and J. Shands, “Altruistic Lock-
ing,” ACM Transactions on Database Systems, Vol.19, No.1,
pp.117-169, March 19%4.

[5] H. Bartley, C. Jensen and W. Oxley, “Scheme User’s Guide
and Language Reference Manual,” Texas Instruments,
Texas, US.A., 1988.

[6] R. Agrawal, M.]. Carey and M. Linvy, “Concurrency Control
Performance Modeling : Alternative and Implications,” AC
M Transactions on Database Systems, Vol.12, Nod4, pp.
609-654, December 1987.

[7] Zeigler, B. P., “Object-Oriented Simulation with Hierar-
chical, Modular Models : Intelligent Agents and Endomor-
phic Systems,” Academic press, San Diego, CA, 1990.

25 o

e-mail - hwkim@syu.ac kr

19879 #eistm WA F4
(ol 8HAh)

19959 At adste ey £
(384D

1999 Aaadga A7 Ha € ZHET
S5 sl 42

19963 A Ae 7gH AR RE) HAS

19963 AFoy g AR} 2wy

2014 SRS 2 FE Y3} 205

ok DBRSE FAIAAlo], 24HDB, Mobile Computing

of o &
e-mail : rheehk@dove kyungin-c.ac kr
1979 AdEn A4 383 &4
(F38Ah
19851 W)= 2] o] th 8}t (Urbana-Champaign)
Axeta E(F AL
200008 AT woisty Ap sty £
(F&Huka})
19883 % ¥ AMF YA TN HAANT A AL
1993 ~ A A Aozl HEjm o] g AN 2us
BAFoL: FAA Ao, DB, DBE.H, Mobile Computing

zge

e-mail : umkim@yurim.skku.ac.kr

1981 addan +8a £9(0] &b

19864 Old Dominion University 48t}
EA(FEHHAD

1990d Northwestern University A4MeHa}
EA(FehaAp

19903 ~dA JZadsta d7jHz @ AFH TR wug

A #oF : DBR2L dloleuteld, UDB, F3DB, 5414 Al

