MR S2ZEMU JHE YHES HAXE DI 401

AANA Y LZEHo] A WY 2 ARG mdg .
OMOS(Object-oriented software development Method
for Object-oriented software System)

} N e
2 o

ARA G 2de F23 wdo] vig) REAY, AAEA, FARFY, §34 5o 4AE AF U oY olf2 AAY LT EHO MY
YHES R A2d el PEsA HeHn glck 2u A gAY 2ZENo] AL BYPES 5 LzEd A2de A
3 Rdyg A48 ¥ HYE O e 724 9 AAY AAE 7Nz da . £ =RdAME AR 2Zeo] A WiEs
A g oz wdad OMOS(Object-oriented software development Method for Object-oriented software System)& A4 #th. OMOSo]
Ae g AEEs 4dY g5 A4 24y gn, Ay ATy 225 Azt Asggos wdy Ho) AZEGC] g o

HES] AAAFH 229 EE e AAEA, F34, Y, KRR o4 F9 FdE AFE

An Object-Oriented Modeling of Object-Oriented Software Development
Methods : OMOS(Object-oriented software development Method for
Object-oriented software System)

Sungwoon Choi'

ABSTRACT

Object-oriented software development methods are used to develop object-oriented software systems. Object-oriented systems are believed
to have better modularity, reusability, maintainability, and extensibility than systems modeled in conventional methods. Current object-oriented
software development methods, however, are modeled in terms of procedural, functional, and structural models. Theses models cause problems
such as tight coupling among activities, and uncontrolled access to global artifacts. In this paper, we introduce OMOS {Object-oriented software
development Method for Object-oriented software System), an object-oriented modeling of object-oriented software development methods.
Artifacts and their related activities are modeled as classes and objects. Development lifecycles are modeled as interactions among the objects.
By modeling the software development method in an object-oriented way, OMOS achieves better reusability, flexibility, extensibility, and
maintainability.

FINE : ANKY LDENO0 AlAM(Object-oriented software system), AMXIS 2ZESO A WER(object-oriented software

development method), WA%7| 2WF(lifecycle modeling), XIAKRH (reusability). fei4(flexibility)

1. Introduction

A software development method is a planned procedure
by which a specified goal is approached. Software devel-
opment methods consist of activities, artifacts, and pro-
cesses. Activities are certain phases in software devel-
opment and define the functionality that should be performed
by a developer. Artifacts are results of related activities and

3 AT AR R Be

A LR
EEAT 20019 4% 169, AR 20019 79 3¢

a3
4

defined based on either formal models or informal docu-
ments. A process is a group of activities to achieve a goal
of software development. Waterfall, incremental and evolu-
tionary processes are typical processes [1-3].
Conventional development methods such as Method/1 [9]
and IEM (Information Engineering Method) [10] develop
software systems based on functional, procedural, and struc-
tural models. Object-oriented development methods develop
object-oriented systems, however object-oriented develop-
ment methods themselves are defined by procedural, struc-

402 322SR D H8-D H4z5(20018)

tural, and functional models. In those methods, activities and
artifacts are not properly modularized and encapsulated :
Shared artifacts can be -accessed randomly and coupled
tightly by their related activities. These make hard to reuse
activities and artifacts of the conventional methods in
different system developments. Life-cycle reuse is a harder
issue. Procedural sequencing of tightly coupled activities
makes it almost impossible to find reuse patterns of the
development lifecycle [13].

In this paper, we present OMOS (Object-oriented soft-
ware development Method for Object-oriented software Sys-
tem), an object-oriented modeling of object-oriented soft-
ware development method. Object-Oriented modeling of ob-
ject-oriented software development methods encapsulates
activities and artifacts as classes. Life-cycle modeling is
defined as interactions among the objects. By properly
modularizing activities and artifacts and generically defining
life-cycle process, we can achieve reusability for many
different problem domains.

This paper is organized as follows : In section 2, we clas-
sify conventional software development methods based on
1) paradigms applied to target software, and 2) paradigms
used for defining software development methods. Section 3
presents OMOS, an object-oriented design of object-ori-
ented software development methods. In section 4, we
illustrate OMOS in detail with an example. We conclude in
Section 5 with summaries and future research directions.

2. Object-Oriented Software Development Method

Most traditional software development methods develop
systems based on procedural, functional and structural
paradigms, such as structured analysis and design technique
[4], structured analysis and structured design (SASD) {5-61.
Structural models distinguish functions from data, where
functions have behavior that transforms information con-
tained in data. In an object-oriented paradigm, a world is
viewed as a set of objects interacting with each other and
an object encapsulates data with its related functions. Object—
oriented software development method is a development
method for object-oriented systems. Object-oriented models
provide better modularity, reusability, maintainability, and
extensibility than structural models [7-8].

Based on applied paradigms to target software system and
method itself, we can categorize four different kinds of soft-
ware development methods as shown in <table 1>. (1)

object-oriented software development method for object-
oriented software systems (OMOS), @ object-oriented soft-
ware development method for structural software system
(OMSS), (3) structural software development method for
object-oriented software system (SMOS), and (4) structural
software development method for structural software sys-
tem (SMSS).

(Table 1> Modeling Paradigm vs. Method Modeling Paradigm

Target Software System Structural
Methodbodel Pamafigns | Obiject-Oriented /Procedural
odModeling .
Paradigm /Functional
Object-oriented Object-oriented
Method for Method
Object-Oriented Object-oriented for Structural
software System software System
(OMOS) (OMSS)
Structural Method | Structural Method
Structural for Object-oriented for Structural
/Procedural
/Functional software software System
System(SMOS) (SMSS)

Structural software development method(SMSS) supports
a structural way of development for structural modeling of
software systems. Elements of the development methods as
well as the target systems are modeled based on a structural
paradigm. Activities and artifacts are compared to functions
and data respectively. A Lifecycle-process is modeled as
control flow or functional mapping among the activities
modeled as functions. Conventional development methods
such as Method/I and IEM (Information Engineering Me-
thod) are examples of developing systems based on func-
tional, procedural, and structural models [9-10].

Software development methods for object-oriented sys-
tems (SMOS) can be also considered as structural if the
development methods are not modeled as an object-oriented
way. In current object~oriented methods, target systems are
modeled in -an object-oriented way, but not the methods
themselves. Activities (functions or operations) and related
artifacts (data or attributes) are separately modeled. Shared
artifacts can be accessed randomly and coupled tightly by
their related activities. Also, life-cycle processes are
sequenced procedurally. Procedural sequencing of tightly
coupled activities makes it almost impossible to find reuse
patterns of the development lifecycle. Current object-orien-
ted methods, thus, cannot gain benefits of object-oriented
modeling, such as, better modularity, reusability, maintain-
ability, and extensibility. Most of object-oriented methods
such as OMT(Object Modeling Technique) [11], OOA/DA
(Object-Oriented Analysis and Design with Application)

[12], OOSE (Object-Oriented Software Engineering)[13],
Navigator{14], RUP(Rational Unified Process) [15-16] can be
classified as this category.

Object-oriented modeling of object-oriented software de~
velopment method (OMOS) encapsulates activities and arti—
facts as classes. Life-cycle modeling is defined as inter-
actions among the objects. <Table 2> shows the relation-
ships between SMOS and OMOS.

(Table 2> SMOS vs. OMOS

Structural Method for Object~oriented Method for
Object-oriented software System | Object-oriented software

(SMOS) System (OMOS)
Artifact

T Model Object
Activity

Lifecycle process Interactions among objects

Process tailoring is the activity of creating a process
description by elaborating, adapting, and/or completing the
details of process elements or other incomplete specifications
of a process. Specific business needs for a project will us-
ually be addressed during process tailoring. [20] Advantages
of OMOS in the process tailoring can be summarized as
follows :

(1) Reuse of both objects and processes for software devel~
opment : OMOS provides encapsulation of software devel-
opment process. An object-oriented software development
method is defined in terms of objects {activities and arti-
facts) and interactions among the objects (process model).
Operations of an object are defined in a single syntactic unit
and hidden from the users of the object. The only operations
visible are those provided in the object interface. The process
tailoring in OMOS can be easily performed in the object-
oriented fashion : we examine objects and the interfaces of
the objects to configure where to perform process tailoring.

(2) Flexible application of development processes : Exten-
sibility and portability are other difficult things to attain in
software development methods. There are no distinctions
between specifications and implementation of activities in
the structured software development methods. Object-orien-
ted models provide clear distinction between these two parts.
In OMOS, an abstract software development method can be
defined. Based on that, elaborating, adapting, and/or com-
pleting the details of process elements or other incomplete
specifications of a process can be done by properly setting
object attributes, and overriding object operations. There-

AAE 2TERNN Y YHE HAXE LY 403

fore, various versions of a development method can be easily
specialized depending on a problem domain.

(3) Self-documentation of development experience and easy
maintenance - Objects are easier to be managed indepen-
dently than function and data pair. In OMOS, all elements
are objects : related process artifacts and activities are
documented and stored in a single object unit for better
comprehensibility. Iterative and evolutionary lifecycle mo-
dels can be modeled by maintaining objects and their inter-
actions.

In the next section, we present OMOS, an object-oriented
method of object-oriented software systems.

3. OMOS : Object-oriented software development
Method for Object-oriented software System

OMOS is an object-oriented method for object-oriented
system. OMOS is defined in terms of model-objects and life-
cycle events. Model-objects encapsulate artifacts and their
related activities. Life cycle processes can be modeled as
life-cycle events that represent interactions among model-
objects.

OMOS develops model-objects and life-cycle events throu-
gh two phases : object modeling, and interaction modeling.
In the subseguent sections, we will explain each of the two
phases.

3.1 Object-Modeling of OMOS

Object--modeling phase of OMOS identifies classes and
their relationships that constitute software development me-
thods. All artifacts of the software development methods, for
example, deliverables, are encapsulated as classes, while re-
lated tasks and activities are defined as operations of the
class. Classes are organized into the class view according
to their relationships : association, generalization, and vari-
ous kinds of dependency, such as realization and usage.

OMOS develops classes and their relationships with the
following evolutionary path : 1) finding classes, 2) defining
class attributes and class relationships, and 3) defining class
operations.

A use-case driven approach is performed to find out
classes that constitute the object-oriented software devel-
opment methods [17-19]. In OMOS, an actor is responsible
to define schedules, activities and processes of the Object-
Oriented software development, especially, in the phases of

404 BEXEI=P=FEX D He-DA M4z (2001.8)

Requirement Capture, Design and Analysis. (Figure 1) shows
the use-case diagram of OMOS object modeling. Five
packages are developed to pack the classes : specification
package (SpecificationModel), use-case modeling package
(UseCaseModel), interaction model package (Interaction-
Model), class model package (ClassModel), and state model
package (StateModel). SpecificationModel packs classes that
are used to define requirements specifications, common ter-
ms and glossary. UseCaseModel packs use-case classes,
actors, and relationships. ClassModel, InteractionModel, and
StateModel include classes that constitute class diagrams,
sequence diagrams, and state diagrams, respectively.

<> 1>
as Modeling

Requirement Capture

<<yses>> > Q
/J ’.\ -. Ciass Modeling

Analysis <<Uses>>

Methodologist
.,,/—>
<<uses>> Interaction Modeling
State Modeking
(Figure 1) Use-Case Modeling of Object-Oriented Development
Method

OMOS defines class attributes and relationships among
the classes by analyzing static structures of the classes. For
example, an Actor class of UseCaseModel idealizes a user
of a system, i.e. OMOS methodologist. Actor attributes cha-
racterize a OMOS methodologist, such as ActorName and
ActorDescription. Deliverables are identified and properly
encapsulated as classes. For example, requirement speci-
fications, glossary and terms are deliverables of the Require-
ment Capture phase, thus encapsulated as classes. Classes
are organized according to their relationships. For example,
RequirementSpec are related to Actor, UseCase class with
the association relationship, since well-defined requirements
specifications are guidelines for actors, use cases and classes
of the modeled system. Refer to Section 4 for more detailed
explanations on class relationships.

Class operations are defined by software developiment acti-
vities of RUP(Rational Unified Process) [15-16]. RUP is
composed of requirermnents capture, analysis & design, imple-
mentation and test phase. Each phase is further refined by

activities. OMOS models each task and activity of RUP with
class operations. <Table 3> shows part of RUP tasks and
the corresponding OMOS class operations.

Refer to Section 4 for detailed explanations on class ope—
rations.

{Table 3) OMOS class operations in Reguirement Capture
Phase (selection)

RUP Activity RUP Task OMOS class | OMOS operation
Requirement Find
Spec CommonTerms()
Find Describe
Capture a common terms Term Terms()
. Add
vocabulary
Glossary Terms()
Evaluate Evaluate
your results Glossary Glossary()
Find actors | RERSrement | pingactor()
) Requirement Find Use
Find use cases Spec Casel)
and Use Cases ; Spec .
cases interact Interaction()
Evaluate
Evaluate UseCase Use Case()
your results Evaluate
Actor Actor()

32 Life-Cycle Modeling of OMOS

Lifecycie modeling of OMOS defines the order and man-
ner in which the activities of the software lifecycle are exe-
cuted. The lifecycle modeling has two components : 1) con-
tent, and 2) time. The content component identifies tasks
and activities that comprise the software lifecycle. The time
component defines the time-related components, such as,
prototypes, architectural baselines, and the software release
{1-3]. Lifecycle modeling of OMOS is a process of capturing
time-dependent behaviors of OMOS objects. In the lifecycle
modeling of OMOS, we use RUP to identify tasks and
activities that comprise the software lifecycle. The time
component of OMOS is defined by the sequences of activities
among the OMOS objects, the flow of control across the
objects, and the interactions between the objects.

OMOS defines lifecycles of UseCaseModel, ClassModel,
InteractionModel, and StateModel package identified in the
Object-Modeling.

Use Case Modeling is a process to define the lifecycle
of activities related to use case diagramming. The lifecycle
model of UseCaseModel is defined by the interactions among
the UseCaseModel classes. All the RUP activities for the
use-case diagramming in the requirements capture phase
are described by the sequence of message exchanges among

the UseCaseModel classes. (lass Modeling is the process
that defines time-series interactions among ClassModel
classes. The contents of the class modeling are defined by
the activities in RUP, especially class diagramming activities
in the analysis and design phase. Interaction Modeling de-
fines the interactions among InteractionModel classes. The
contents of the interaction modeling are defined by the
activities in RUP, especially interaction diagramming acti-
vities in the analysis and design phase. State modeling is
the process that defines the interactions among the State-
Diagram classes. The contents of the state modeling are
defined by the activities in RUP, especially state diagram-

HANE 2TEH0 ML YHEO HNRE DAY 405

4. Example

In this section, we present detailed descriptions on OMOS
with an example of UseCaseModel. As we discussed in
Section 3.1, UseCaseModel is a package that contains use-
cases and actors for modeling object-oriented software de-
velopment. Four classes are identified in UseCaseModel and
correspond to the Requirement phase of RUP : Actor, Use-
Case, Association, and Generalization. <Table 5> shows clas-
ses and their attributes that characterize UseCaseModel.

(Table 5) UseCaseModel : Classes and Attributes (selection)

K L K . Class Description Attributes
ming activities in the analysis and design phase. <Table 4>
. . . . A Idealize users responsible to interact | ActorName
summarizes OMOS lifecycle modeling discussed so far. ctor with systems and external users. | Acoec oo
. . UseCaseName
Table 4> OMOS lifecycle modeling —
UseCaseDescription
OMOS Lifecycle RUP OMOS ;
RUP Phase Modeling Activities M s UseCase | Describe how actors use use-cases | FlowOfEvent
Use-case . SpecialRequi t
Require- | Use Case . > 1 UseCaseModel
ments Modeling gét?vgﬁl; MMING Messages UseCaseType
Associa- | Describe how actors are associated AssociationName
. gl I a s § ClassModel tion with use-cases
Class ¢ acu'gvitia; ¢ Messages Generali- | Describe generalization relationships | p oo,
zation between actors and use-cases ype
. . Interactio :
Analysis / iqntqractxon diagramming glteract!onMod
activities ® Class operations are defined based upon the RUP tasks
S t a t ¢ CE -
State Modeling | diagramming ; 2: S:ge eIgdodel and actlhvmes related. tf)-use cases and actors. <Table 6>
activities summarizes RUP activities and tasks that are encapsulated
Table 6> RUP activities and tasks for OMOS UseCaseModel package
RUP Activity RUP Task OMOS Classes OMOS Messages
! RequirementSpec FindActor()
Find actors
Actor Actor()
. uirementS) FindUseCase()
Find actors Find use Req pec ny
and use cases UseCase UseCase()
Describe how actors and use cases interact RequirementSpec DescribeActorAndUseCaselnteraction()
Package use cases and actors Association Association()
Prioritize Use Prioritize use cases and scenarios UseCase PrioritizeUseCases()
Cases Evaluate your results UseCase EvaluateUseCase()
Detail the flow of events of the use case UseCase StructureFlowOfEvent()
Structure the flow of events of the use case UseCase StructureFlowOfEvent()
g:tail a Use Tlustrate relationships with actors and other use cases | Association Association()
Se
Describe the special requirements of the use case UseCase DescribeSpecialRequirement()
. L. ComplementUseCaseDescription(),
Describe communication protocols UseCase DistributeUseCaseBehavior ToObject()
Evaluate your results UseCase EvaluateUseCase()
Establish include-relationships between use cases Generalization, UseCase | Generalization()
Structure the Establish extends-relationships between use cases Generalization, UseCase | Generalization()
Use-Case Establish generalizations between use cases Generalization, UseCase | Generalization()
Model Establish generalizations between Actors Generalization, Actor Generalization() '
Evaluate your results Generalization EvaluateRelationship()

406 BEXeiES=A D Me-DH M43 (2001.8)

into UseCaseModel operations. For example, a task of find- ships among classes as in-a class diagram of (Figure 2).
ing actors is encapsulated in RequirementSpec as a class (Figure 2) shows static structure of object-oriented soft-
operation of FindActor(). ware development methods related to use case modeling.
Static structures of the classes are modeled as relation- The main constitients are classes and their relationships.

{) b VeeCare

} seCaneName (char
neCanelnsoription : sring
lowofEvent : setof suig
pegieRequirement : sting

RequiremeniSpec
from Spaciication) uwu sTwe (chat = {prim a1y, setondsn}
equitem ent:setofating Qu-ﬂ:nll(u;ocou same :char)
WenphdeFlowoEvent()
SRequirem entSpec() WBtrotu mFiow Ok vens ()
WFindCommonTerms() WDascrbeSpecislRequirem ent()
SeindAcior) SCompiamentiseCanslias cription()
QFindUseCase() SDistAbutedUs wCaseBehaviorToObfectl)
0 b UseCasaln ton() SEvamawUseCasel)
SRS .| SRefipeFlowDIEvans()
R :nbwu.oC-nDu cription ()
U, DS . sablishUseCeseTypa(usecase_name :char,usecase_type :chay)
Acll:v e Wame " u”"klloch!lon - SDescrbeinmisctionBewsenOblecs()
snlnmu\n:nhu i gy
w0 sacripton :stiing Mupmun(nmuomu 1Aglar; uucluw'mo ch-u) P
b sOne :Ciass, CleasTwo :Cinss) L 1/
“WActoactor_n Wpunuumunu o

Generaiizption
[@pisistionType - char+ (Usws Kiinnd. Gamerniianion)

SGenersiization(UseCaseOne : UseCone, chuohu UseCase, relation_itype :char)
NG enersiizssion(aclorA_nam ¢ ; Acles, am e Actor)
SGeneratizaton{ciassA_name : Cluns, cunl Rame ;Ciais)

I

[UseCase Modeling) S
IS

~

Find UssCuses O

and Actors 1: FindActor() l l

Aclnr doesn’ exist

-1
p: FinduseCase(char}

repest 3,.4,5,6 until
UsaCase dossntt
oxist

|
| 2: Actor(char) | b
|
1

4: UneCab(char)
: { |
|5 DevcribeAsuirAndUTeCanalnte "’]
[i

|

s An}chlonu\ctov U-ucr.c)

» s

[Dascibe e 7:packageusscase)
Use-Case Modei [l

P
| l
|
I
y
|

i
tizelUseCanen{)

I

o . |
l:';.:zﬂé'::nl _____._.\' I
|

¥

Dllcﬂthlovlel!vInl

repest 10, 11, 12, 18
for all UseCase

|

l

11:Suuburetiow Ot venas)1; t
| |

1

1

12:0 lcnbosﬂtnulloquiunlom() |

\

!

J

[| g
" o

|

|

!

|

3; EvsluateUseCuse(

Use-Cass Model

repsat 14, 15 untit
UseRelationship doesnt

Sicwieine D, 7
|
exist Ji

| |
1 , l

1J G b 4l ath llcrltlt‘ u " se. c l
| | I . "ol
} l

(Figure 3) UseCaseModel : Sequence Diagram

List of attributes and operations are shown in.the sep-
arate compartments : deliverables and other Mﬂm
characterize each class are encapsulated as ciasﬁes and
their attributes, while tasks and activities of classes are
encapsulated as class operations. (Figure 2) is static ‘be-
cause it does not describe the time dependent behavior
of the system, which is described in (Figure 3).

(Figure 3) shows the flows of messages across many
objects of UseCaseModel, therefore provides dynamic view
of object-oriented software development methods related to
use case modeling. Sequences of message exchanges among
UseCaseModel classes are described in the form of sequence

diagram.
5. Conclusions

In this paper, we have presented OMOS, an object-orien-
ted method for object-oriented software system. OMOS is
defined in terms of model-objects and life-cycle events.
Model-objects encapsulate artifacts and their related activi-
ties. Life cycle processes can be modeled as /ife-cycle events
that represent interactions among model-objects. Advan-
tages of OMOS are 1) reuse of both objects and processes
for software development, 2) flexible application of develo-
pment processes, and 3) documentation of development ex-
periences and easy maintenance.

Users can design their own software development me-
thods based on OMOS elements. For example, existing class
attributes and operations of OMOS can be modified and
deleted to define user’s own development method; new attri-
butes and operations can be added for new activities, and
artifacts. Message sequences among objects can be modified
according to new transformations that users use to develop
and maintain the software and the associated products. We
have applied OMOS to two Korean software companies. The
followings were considered in order to reflect the different
characteristics that their projects showed : short-term vs.
medium-term, task-oriented vs. deliverable-oriented, limited
solution (single function) vs. integrated and customized so-
lution, and single location vs. multi~location. We started
from the abstract classes of OMOS, and then complete the
details of the classes by properly setting objects attributes
and overriding objects operations until the companies
satisfied the resulting development method. We found that
the most developers could understand the development
process easily, since the tailored software development
methods were visible and self-explanatory through UML

AAXE L2TEMU HE LHEY AMKE YUY 407

diagrams.

In this paper, we showed object-oriented modeling of the
development process in OMOS. We would like to continue
our efforts to other process models, such as, project
management process, and quality management process, and
configuration management process. Also, we plan to apply
OMOS to various application domains, from small projects
to very large, complex, multi-team projects delivering mill-
ions of lines of code. We believe practices from various
applications would provide valuable feedback to improve
OMOS.

References

(1] Watts S. Humphrey, Introduction to the Personal Sogwrae
Process, SEI series in Software Engineering, Addison
Wesley, 1997.

(2] ISO, “ISO/IES 12207 International Standards Information
Technology Software Life Cycle Processes,” Aug., 1995.

[3]1 C. Mazza, J. Faircolough, et. al., Software Engineering
Standards, Prentice Hall, 1994.

[4] Ross D. T., Applications and Extensions of SADT, IEEE
Computer, April, 1985.

[5] Yourdon E., Modern Structured Analysis, Yourdon Press/
Prentice Hall, 1989,

(6] Yourdon E. Structured Walkthroughs, 4" edition, Engle-
wood Cliffs, Prentice-Hall./Yourdon Press, 1989.

[71 Timothy Budd, An Infroduction to Object-Oriented Pro-
gramming, Addison-Wesley, 1991.

[8] Brad J. Cox, Object Oriented Programming : An Evolu-
tionary Approach, Addison-Weseley, Redaing, MA, 1986.

[9] Arthur Anderson & Co series, “METHOD/1 Overview
School,” 1988,

{10} Martin, J., Information Engineering (3 Volumes), Prentice-
Hall, 1989.

{11] James Rumbaugh, Michael Blaha, William Premerlani,
Frederick Eddy, and William Lorensen, Object-Oriented
Modeling and Design, Prentice-Hall, 1991.

[12] Grady Booch, Object-Oriented Design with Applications,
Redwood City : Benjamin/Cummings, 1991.

(13] Ivar Jacobson, Object-Oriented Software Engineering,
Addison-Wesley, 1995.

[14} Emst & Young Navigator Systems Series, “Accelerated
System Development-Infrastructure Development,” 1995.

[15] Ivar Jacobson, Grady Booch, and Jim Rumbaugh, The
Unified Software Development Process, Addison-Wesley, 1999.

[16] Rational Unified Process Process Manual 50, “Project
Management,” 1999.

408 BEXMEIESI=FX D MB-DA H425(20018)

{17} Grady Booch, Jim Rumbaugh, and Ivar Jacobson, Unified
Modeling Language Users Guide, Addison-Wesley, 1997.
[18} Martin Fowler, UML Distilled : Applying the Standard
Object Modeling Language, Addison-Wesley, 1997.
{19] Jim Rumbaugh, Ivar Jacobson, and Grady Booch, Unified
Modeling Language Manual, Addison-Wesley, 1997. o 193~dA FARNRE HFEFER
{20] Mark P. Ginsberg, and Lauren H. Quinn, Process Tailoring g :
and The Software Capability Maturity Model, CMU/SEI- OMG KSIG 3%
94 -TR-024, Technical Report, Carnegie Mellon University, FZR HHEKIC) 7[&A/E
1995. BHEk: FXVE ZAddNa, ARG LZEH T

5y e

e-mail * choisw@mjuackr

- 19858 EEoFol o) B (A
1988 vl 2 g5 Yo (3 A AD
19921d v|= QS FHoh S m(F A

