LZEC MIAT BIHE AT HAE HIHULIN IS A7 409

AZESO] AFE HUE ¢§ HAE
2ol 3 A

TEE AN AR

2 24

2T EHo] JHAEE LZEHO] A2 v FAE EHOR H2Y e §Ud 2ZEdo HISE Wrle] A H2E HEys)
ARE olg3t Wyol H2 ARHD itk ¥ =ES A2 8 Yehd HAE H$PAS o8t 2ZEHY VIAE YYRLES
E3e] o]gg 27 FRE ERE U A4 EAYE =dstn 44 B3NS AEU clio], A2 HEA 5o AEE H849
€ 4937] A% BAE Add

A Study on Test Coverage for Software Reliability Evaluation
Joong-Yang Park' - Jae-Heong Park'" - Soo-Jin Park'!

ABSTRACT

Recently a new approach to evaluation of software reliability, one of important attributes of a software system, during testing has been
devised. This approach utilizes test coverage information. The coverage-based software reliability growth models recently appeared in the
literature are first reviewed and classified into two classes. Inherent problems of each of the two classes are then discussed and their validity
is empirically investigated. In addition, a new mean value function in coverage and a heuristic procedure for selecting the best coverage are
proposed.

JINE : HBYUY 4TFWS(Coverage growth function), WEXB+(Mean value function), AZEHN AT NBBW(Software

reliability growth model), EAAN(Testing)

1. Introduction

In recent years there is growing use of computer systems.
Software is an integral part of most critical computer systems.
Production of a software system is one of the most complex
and unpredictable activities. Failures of a software system
can cause severe consequences in terms of human life,
environment impact, or economical losses. Therefore, quality
of software systems has become a major challenge in
software development.

An important quality attribute of a software system is the
degree to which it can be relied upon to perform its intended
function. One of quantifible measures is software reliability.
Software reliability measurement and management in the
software development process are essential to produce relia-

1435 4:2339%0 4 - FAPRYY FARRRAT aF
33 43308 FReA%y s
& 3 4 330%a iy A4Aue
=EAF 120019 49 249, 4A1EE 20019 64 13Y

ble software systems efficiently and effectively. Thus,
evaluation, prediction, and improvement of software reliability
have been of concern to both developers -and users of
software systems. Significant effort has been devoted to
develop methods to deliver reliable software systems.
Methods proposed include well controlled software develop-
ment pratices such as the cleanroom approach, verification
and testing.

The cleanroom approach and software verification are the
static methods for software reliability measurement and
management. The static methods are based on the software
size, complexity and other static parameters. They can be
used even before the software is tested. The dynamic
methods are based on the software failure data, which is
collected from software testing. The dynamic methods are
used when the software has been tested for a while and some
failure data have been collected. They evaluate software
reliability during the software testing phase by predicting the

410 I2MeI=pl=EX D Me-DH M4=(20018)

general trend of the software reliability improvement. :

There are at least two kinds of uncertainty in testing. First,
we can not predict when a failure will occur as a result of
executing a test case. Second, we do not know what effect
fixing a fault will have on the software's reliability. Thus
statistical approach is usually adopted to deal with the
uncertainties. Statistical methods developed for estimating
software reliability are called software reliability models. The
current software reliability models are usually classified into
two classes, namely input domain models and time domain
models.

Input domain models are based on statistical testing. The
models advocate that a software system should be tested
using test cases generated randomly according to the opera-
tional profile of the software. Then reliability of the software
system is estimated by computing the ratio of frequency of
successful executions to the total number of executions.
Unfortunately, the number of test cases required to obtain
an accurate estimate is generally too large to be acceptable
in practice.

Time domain models or software reliability growth models
(SRGMs) are the models concerned with the: relationship
between the cumulative number of faults detected by soft-
ware testing or the time interval between software failures
and the time span of the software testing. Generally the time
is measured by the execution time or the number of test cases
executed and testing is carried out in accordance with the
operational profile. A number of SRGMs have been developed
for the last two decades [4,5, 17, 22, 24].

The existing SRGMs use only a part of the information
that can be collected during testing, namely the operational
profile, the times between successive failures or the cumula-
tive number of faults detected. Other information such as
code complexity and test coverage are not taken into account
even if they are known to heavily affect reliability. As
mentioned in Horgan et al. [8], Varadan [25] and Wood [28],
there is a new approach to the reliability estimation. The new
approach is indicative of a general trend to improve the
accuracy of reliability estimates through the use of various
test coverage measures.

The use of test coverage in reliability estimation rests on
the assumption that there is a strong correlation between test
coverage and reliability. Several researches [1-3, 6-8, 14, 15,
20, 21] have proposed SRGMs that account for test coverage.
Such SRGMs are referred to as coverage-based SRGMs.

The main purpose of this paper is to study some problems
related to the current coverage-based SRGMs. All the

subseguent sections are subject to the following assumptions
on software testing and test coverage.

1. The software system is tested by a functional testing
method.

2 The operational profile of the software system is esti-
mated and given.

3. A coverage tool like ATAC is used during testing. Thus
test coverages as well as failure times are collected.

Section 2 reviews and discusses theoretical and practical
problems inherent in coverage-based SRGMs. The rest of
this paper is then devoted to the mean value function in
coverage. Validity of the available mean value functions is
empirically examined by analyzing 5 real test data sets in
Section 3. Then a new mean value function is proposed and
its applicability is investigated. Finally concluding remarks
are presented in Section 4.

2. Related Works

A new trend for modeling reliability is to utilize test
coverage measures. This trend is based on the assumption
that the more a software system is covered, the more likely
reliable is the software system. The coverage-based SRGMs
are thus considered as an alternative to the traditional
black-box SRGMs that do not account for the structure of
the software system. Several coverage-based SRGMs have
appeared in the literature [1-3,6-8, 14, 15,20, 21]. These
coverage-based SRGMs can be classified into the coverage
growth-based NHPP models and the useful testing -effort
-based SRGMs. We next review the two classes of coverage
-based SRGMs and then discuss their problems.

2.1 Coverage Growth-Based NHPP Modeis

2.1.1 Piwowarski, Ohba and Caruso Model

Piwowarski, Ohba and Caruso [21] proposed a SRGM
taking account of test coverage. This model is derived under
the following assumptions :

1. New faults are detected only when new coverage units
are covered ;

2. Faults are distributed uniformly over all the coverage
units ;

3. The coverage rate is proportional to the number of
uncovered coverage units.

These assumptions. lead us to the simultaneous differential

equations :
L) = ¢(N-n()} and Lm(y =84 1), @D

where ¢ is the testing time, ¢ is the coverage rate per
coverage unit, m(¢) is the cumulative number of faults
detected up to time ¢, M is the initial total number of faults
in the software system, n(¢) is the cumulative number of
coverage units covered up to time ¢, and N is the total
number of coverage units in the software system. Note also
that M/N denotes the fault density per coverage unit.

By solving the simultaneous differential equations with
conditions #(0) =0, m(0) =0 and m(w) = M, we have

n(t)=N(1—-e %), (22)
m(t)=M(Q1—-e %), 2.3

It is not difficult to verify that m(¢) of equation (2.3) is
isomorphic to the Goel-Okumoto NHPP model. This model
being considered as a variant of NHPP model, we can regard
m(t) as the mean value function denoting the expected
number of faults detected up to time ¢

If we let c(¢) = n(¢)/N, then from equation (2.2) we have

c(t)y=1—-e* (2.4)

which describes the growth behavior of test coverage during
testing. Henceforth, we call c(¢) the coverage growth
function. Expressing m(#) in terms of c¢(¢), we obtain

m{c) = Mc. (25)

We thus have two different expressions for the mean value
function, m(¢) and m(c). They will be called the mean value
function in time and the mean value function in coverage,
respectively. Piwowarski, Ohba and Caruso model is a
coverage-based NHPP SRGMs with the linear mean value
function in coverage and the exponential coverage growth
function.

2.1.2 Logarithmic Poisson Model

The logarithmic Poisson model is based on the logarithmic
Poisson execution time SRGM of Musa and Okumoto [18]
whose superior predictability over other SRGMs of the same
complexity has been found to be statistically significant by
Malaiya, Karunanithi and Verma [16]. The logarithmic
Poisson execution time model is an NHPP model whose mean
value function in time is given as

m(t) = Bn(l+ A1), 26)

LZEN MBT HIHE 2T HAE NZEAN CHE HT 411

where 8, and 8, are parameters. Malaiya et al. [14, 15]
assume that the coverage growth may also be logarithmic
if the mean value function in time is described by equation

(26). That is, for some appropriate parameters 8, and 7,

o)=L+ Bo. @7

We can solve equation (2.7) for ¢ and substitute it into
equation (2.6) to obtain

m(c)=Bln(1+7(e™—1)), (28

where 7 = 8,/ B, and 72=N/ By

The coverage-based NHPP SRGM characterized by
equations (2.7) and (2.8) is referred to as the logarithmic
Poission model. The logarithmic Poission model has been
studied further by Malaiya and his colleagues [9-13].

2.1.3 Enhanced NHPP Model

Philip et al. [20] first introduced the enhanced NHPP model,
which was further studied by Gokhale et al. [6, 7). This model
is derived under the following assumptions :

1. New faults are detected only when new coverage units
are covered ;

2. Faults are uniformly distributed over all the coverage
units ;

3. When a coverage unit is covered at time ¢ any fault
present at the coverage unit is detected with probability
calt);

4. Repairs are effected instantly and without introduction
of new faults.

Comparing these assumptions with those for Piwowarski,
Ohba and Caruso model, we can find that there is no specific
assumption about coverage growth behavior and that imper-
fect fault detection is allowed.

The following differential equation is derived from the
above assumptions.

Loty =Me,(DL (). 29

Therefore, by integrating both side of the differential
equation, the mean value function is obtained as

m(t) =M, D (D) dr. 2.10)

Simply assuming that c,(t) is a constant e, we have

412 ZEMESE =X D H8-DH M4z(2001.8)

m(t) = ac(t), .11

where a = Ma is the total number of faults expected to be
detected eventually. As in Piwowarski, Ohba and Caruso
model, the mean value function in coverage of the enhanced
NHPP model is also obtained as a simple linear function
through the origin, ie,

m(c) = ac. (212

The enhanced NHPP model does not specify the coverage
growth function. Application of the enhanced NHPP model
thus requires determination of an appropriate coverage
growth function. Gokhale et al. [6, 7] present a method for
empirically estimating the coverage growth function from the
test data. Philip et al. [20] show that the coverage growth
functions for the Goel-Okumoto model, the generalized
Goel-Okumoto model and the s-shaped SRGM are respec-
tively given as

clt)=1—e"%, 213
c(t)=1—e %, (2.14)
c(B)=1-(1+&)e ® (2.15)

where ¢ in equation (2.13) is the coverage rate per coverage
unit, £and 7 in equation (2.14) are parameters reflecting the
quality of testing with respect to coverage growth, and ¢
in equation (2.15) is the fault removal rate. The above
coverage growth functions have been obtained by
interpreting the current NHPP models with respect to the
enhanced NHPP model. Nontheless, the above coverage
growth functions comply with the empirical results on the
relation between coverage and testing time. Ramsey and
Basili [23] experimented with different permutations of the
same test set and collected data relating the number of tests
to statement coverage growth. A variety of models were
attempted to fit the data. The best fit was obtained using
the Goel and Okumoto’'s exponential model. This result
justifies the coverage growth function of equation (2.13),
which is a special case of equation (2.14). Even though no
empirical justification for equation (2.15) has been studied,
we can select the best one for the test data on hand from
the available coverage growth functions,

22 Useful Testing Effort-Based SRGMs

A lot of development resources are consumed by software
development projects. During the software testing phases,
software reliability is highly related to the testing effort, i.e,

the amount of development resources spent on detecting and
correcting software faults. Most of the existing SRGMs
measure testing effort in ‘calendar time, CPU-time spent in
executing the software under test, the man power spent
during the testing phase, and the number of test cases
executed and use it as the time domain.

Wong et al. {27] empirically show that the block coverage
of a test set is more highly correlated to fault detection
effectiveness than the size of the test set is. Wong [26] further
shows that when the size of a test set is reduced while the
coverage is kept fixed, there is little or no reduction in fault
detection effectiveness. These two results lead us to believe
that test cases that do not increase test coverage are likely
to be ineffective in detecting faults. Chen et al. [1] and Horgan
et al. [8] suggest a new approach for incorporating coverage
information in estimating software reliability. They begin by
the notion of useful testing effort. A testing effort is said
to be useful if and only if it increases some type of test
coverage. Similarly, a testing effort is useless if it does not
increase any type of test coverage. It is worthy of note that
this definition of usefulness does not specify which coverage
should be increased for a testing effort to be useful. The
testing effort in the current SRGMs is then replaced with
the useful testing effort. The resulting models are called the
useful testing effort-based SRGMs, which are simple to use
and retain the basic structure of the existing SRGMs:

Let t,and =, be the cumulative testing effort and cumula-
tive number of test cases at which the kth failure occurs.
Denote by e; the testing effort spent by the jth test case.
Then the cumulative testing effort spent up to kth failure

is computed as Z} e; Chen et al. [1] propose that the cumu-
&

lative testing effort in SRGMs be replaced with the cumula-
tive useful testing effort

;1 pie;, where py={ g & @S usell (355
Here, p; is called the compression ratio.

It has been shown empirically that a useless test case may
indeed reveal faults. This implieé that what we consider as
a test case amounting to useless effort may indeed be a useful
test case that, when run on the software system, reveal some
faults. Thus the notion of useful testing effort has been
extended by Chen et al. [2, 3] so that a testing effort is said
to be useful if and only if it increases some type of test
coverage or it reveals some faults. It is not difficult to apply

this extended notion of useful testing effort. Instead of the

binary compression ratio given in equation (2.16), they

suggest the following compression ratio :

1 if e; is useful

2 2 2
= Aeitbheidch 2.17)
[J J J . .
Aol) 73 Otherwise
eitALcit+Aeijncy

where c; is the cumulative coverage attained up to the jth

test case,

if j=1
Ae;={ “ ! (218)
e,-—’e,'_l if]22,
and
C if j=1
fc= C;j~ Cj-q if /22 and c;i— C,‘_|=f=0 (2.19)

Aci if /=22 and C,'—Cj-l=0

2.3 Reliability Function of a Software System
The reliability of a software system can be assessed by
computing the reliability function

R (s|t) = Pr(no failure occurs in (#, £+ s] | the software has
been tested up to #). (2.20)

Its specific formula depends on the SRGMs used. However,
it should be noted that the times ¢ and s in the above
reliability function are generally the testing effort, i.e., the
execution time or the number of test runs.

Let us first discuss the useful testing effort-based SRGMs
with respect to the reliability function. These SRGMs describe
a fault detection phenomenon in terms of the useful testing
effort. One major drawback of the useful testing effort-based
SRGMs is that the above reliability function can not be
computed. In order to estimate R (s|¢) from the fitted SRGM,
we should know the useful testing efforts corresponding to
the testing efforts ¢ and (¢ +s). The useful testing effort
for testing effort ¢ can be obtained by using the test data
up to ¢ However, the useful testing effort for testing effort
(t+ s) can not be computed. This is because there is no
information for determining whether each of test cases
between ¢and (#+s) is useful or not. This indicates that
a systematic method for relating the testing effort to the
useful testing effort is necessary. Without such a method,
it would be impossible to estimate R(si¢) by means of a
useful testing effort-based SRGM.

SZEAN MET HIHE HT BHIAE NEYAG S 217 413

We next discuss the coverage growth-based NHPP
SRGMs. In order to completely implement the coverage
growth-based NHPP models, we need to estimate from the
test data both the coverage growth function ¢(¢) and the
mean value function in coverage m(c). The reliability
function is computed as

R(sih=e m (c()— m (¢ (H—s))' 221

where m(c)and c¢(¢) are the estimates of m(c) and c(¢).
It is clear that R(s|#) relies directly on the specific coverage
growth function and mean value function in coverage.
Generally, the best ones are chosen among the available
coverage growth functions and mean value functions in
coverage. Until now only four coverage growth functions and
two mean value functions in coverage have been proposed.
However, their applicability to real test data sets has not been
fully studied.

Suppose now that we are primarily interested in the
residual number of faults or the fault density of a software
system, not the reliability function. In this case, we do not
need to estimate the relation between the useful testing effort
and the testing effort when a useful testing effort-based
SRGM is adopted. When a coverage growth-based SRGM
is employed, only the mean value function in coverage needs
to be estimated but the coverage growth function do not.
Most of the existing SRGMs include a parameter represent-
ing the initial total number of faults. Especially, in case of
the NHPP SRGMs, the mean value function includes such
a parameter. In addition, size of the software system is known
at the beginning of testing. Once the parameter is estimated,
the residual number of faults is computed as an estimate of
the initial total number of faults minus the number of detected
faults. The fauit density is then computed by dividing the
residual number of faults by the size of the software system.

3. Mean Value Functions in Coverage

The mean value function in coverage growth-based NHPP
model is the function that expresses the relation between the
coverage and the expected number of faults detected during
testing. It is used for modeling the fault detection phenomenon
during testing. Only two types of the mean value function
in coverage have appeared in the literature. The two types
are given by equations (2.8) and (2.12), which are respectively
called the logarithmic mean value function in coverage and
linear mean value function in coverage. This section will
examine empirically the validity of these mean value

414 BEM2UBZ=FX D HE-DT M4z2(2001.8)

functions in coverage. Then a new mean value function will
be developed and applied to the real test data sets. Finally
a heuristic procedure for selecting the best coverage measure
is also proposed.

3.1 Real Test Data Sets

This subsection describes and presents five real test data
sets that will be used in this paper. The five test data sets
will be respectively referred to as DS1, DS2, DS3, DS4 and
DS5. The testing effort, equivalently the testing time, is
measured by the number of test cases exercised. And four
coverage measures, block coverage, branch coverage, p-use
coverage and c-use coverage, are recorded.

The first data set DS1 was collected experimentally by
Pasquini et al. [26] from a 6,100 line C program by applying
20,000 test cases. The measurements of the number of test
cases, the number of detected faults, and the four coverage

for handling special situations or -error conditions. It is also
possible that they represent dead code of some form. For the
20,000 test cases, these were the coverage values obtained :
block coverage : 82%, branch coverage : 70%, and p-use
coverage - 67%. This is to be expected since p-use coverage
is the most rigorous coverage measure and block coverage
is the least. Complete branch coverage guarantees complete
block coverage and complete p-use coverage guarantees
complete branch coverage. This comment also holds for other
data sets.

The next three test data sets, DS2, DS3 and DS4, are from
a NASA supported project implementing sensor management

(Table 2> Vouk Data Sets

(1) DS2

Curmulative) Cumulative Block Branch p-use c-use
Number of | Number of Co Co Co Co

Test C Detected Faults | Coverage verage verage verage

measures are reproduced in <Table 1>. The coverage 1 0 04574 | 03702 | 01987 | 05052
measures were collected using the ATAC tool. The first 1,240 3 1 03507 | 04748 | 03134 | 06018
‘ ; 10 2 06517 | 057% | 04137 | 06443
test cases revealed 28 faults. Another 18,760 test cases did 2 3 07060 | 06380 | 0450 | 06540
not find any additional faults, even though at least five more 30 3 07628 | 06921 | 04815 | 06616
not covered by the first 1,240 test cases were very hard to ;3 g gg g:;g ggg g:g
reach. They perhaps belong to sections of the code intended 5 6 08000 | 07380 | 05220 | 06830
100 6 08682 | 08169 | 05971 | 0.7349
(Table 15 Pasquini, Crespo and Martella Data Set (DS1) — d T L
Camilative | Cummlative 3% 8 08853 | 08410 | 06152 | 0.7670
Number of | Number of Block | Branch | c-use | puse 7% 9 08853 | 08410 | 06152 | 07670
Test Cases | Detected Faults| C0/¢728¢ | Coverage | Coverage | Coverage 11% 9 09597 | 09376 | 06829 | 022%8
1 1 0.34 020 026 023
2 2 042 028 034 030 (2) DS3
3 3 048 033 040 034 G ive] Cumulative
4 4 054 034 044 036 mm?hof Numhernof Block | Branch | puse | cuse
5 = 0% 037) 037 Test Cases| Detected Faults Coverage | Coverage | Coverage | Coverage
6 6 056 039 049 0.39 10 2 07331 | 07080 | 0632 | 07820
7 7 057 0.40 049 0.39 15 3 07700 | 07380 | 06550 | 08100
8 8 058 041 050 040 30 4 08563 | 08285 | 07102 | 08982
9 9 058 042 050 041 50 5 08300 | 0850 | 07400 | 09080
11 10 059 044 051 042 100 5 09208 | 09160 | 08131 | 09319
12 11 059 044 051 043 155 6 09300 | 09210 | 08280 | 0930
13 12 059 045 052 044 300 7 093% | 09343 | 08691 | 09438
14 13 060 045 052 044 79% 7 09355 | 09343 | 08691 | 09438
15 14 060 046 054 045
17 15 062 046 056 045 (3) DS4
18 16 064 048 058 046 G A Po—
) 17 069 052 060 049 Nﬁgu:fe Nusmber of Block | Branch | pruse | cuse
2% 18 070 053 062 050 Test Cases| Detected Faults | Coverage | Coverage | Coverage | Coverage
% 19 071 056 066 052 3 2 05993 | 05666 | 04439 | 0.7083
% 20 071 055 065 053 4 3 06130 | 05700 | 0450 | 07200
32 21 072 058 066 055 10 4 06939 | 06415 | 05164 | 07831
71 2 074 060 066 056 2 5 07780 | 07200 | 05710 | 08330
91 3 076 064 070 062 0 6 08561 | 07901 | 0628 | 08763
126 P 077 066 072 064 4 7 03700 | 08100 | 06510 | 08810
186 % 078 066 072 064 100 7 08217 | 08868 | 073% | 09118
43 % 079 067 072 066 114 8 09240 | 0800 | 07470 | 091%
&9 27 080 068 073 066 160 9 09350 | 09040 | 07720 | 09150
1240 3 080 068 . 073 066 300 9 09595 | 09387 | 08459 | 09229
20000 2 082 070 074 067 7% 9 0950 | 09387 | 08459 | 09229

in the inertial navigation system. The three data sets are
presented in <Table 2>. They were obtained by testing three
separate implementations of the sensor management system.
Each implementation is about 5,000 lines of code. In the first
implementation, 1,196 test cases found 9 faults. For the other
two implementations, 796 test cases revealed 7 and 9 faults
respectively. The number of test cases executed and four
coverage measures were collected at each fault detection
during testing. However, <Table 2> includes a few additional
values on these measures observed at some other testing
times.

The last test data set DS5 was obtained from Dr. Mathur
in Purdue university through personal communication. The
data, shown in <Table 3>, was collected by testing a
software system with 22 injected faults. 109 test cases were
applied to the software system and 17 of the 22 injected faults
were discovered. In some test cases, one test case detected
more than one fault.

(Table 3) Mathur Data Set (DS5)

Cumulative | Curmulative Block Branch puse c-use
Number of | Number of Coverage | Coverage | Coverage | Coverage
Test Cases| Detected Faults
3 6 048 0.33 0.34 0.40
12 7 0.59 0.44 043 051
14 9 0.60 045 0.4 052
16 11 0.60 046 045 052
24 12 0.70 053 0.50 0.62
67 14 0.73 0.60 0.56 0.66
100 15 0.77 065 063 0.72
101 16 0.77 0.65 0.63 0.72
109 17 0.78 0.66 0.64 0.72

32 Examination of the Existing Mean Value Functions in
Coverage
We begin by presenting the figures that show the relation

-+ fHtied mich = 2-beta 1-chaipha (branch coveragel
~-eme il mic) + a-beiar{)-chaloha (p-use caveraga)
==ne $ed mici = a-Deta-{1-creipha (c-use coveragel

0.10 030 050 070 080
[o}

(Figure 1) Plots of the number of detected faults against the
coverage and the fitted mean value functions (DS1)

STEAC BT HIHE 2T HIAE HZYQI0) CHSE 47 415

between the number of detected faults and the coverage. The
number of detected faults is depicted against the coverage
in (Figures 1- 5) for the five test data sets. First, we can
find that the relation does not much depend on which of the

four coverages is considered. Whatever coverage is chosen,

et Gt Mic) = a-betarl t-cYgipha (biack covasage}
s 00 HC) = Dot 1-cY WL Xanch cowriige)
~. fited mic) = a-beel 1-Craha O-use Cowrags

4=~ fifloe mic) = a-bpla-t1-cr'aicha (-ise .coverage)

000 020 040 0680 0.80 1.00
c

(Figure 2) Plots of the number of detected faults against the
coverage and the fitted mean value functions (DS2)

number of detected faults

- 190 ci = &-batar | -cVaiphe (tlock coverags)
Hind mich a-beiart1-cPalplip (Eranch coverspe)
00 MiCh » 3-biela{1-oVaIoha. (p-ee ooverage)

158 mich = a-beta«t)-Chuohe (c-use Coveraga)

0.30 0.40 050 060 070 080 030 1.00
C

(Figure 3) Plots of the number of detected faults against the
coverage and the fitted mean value functions (DS3)

e M) = bt 1PeEte Dock coverngel
6 - Flod mici - a-beta{1-cYaicha fhandh coverage!
e B0 A = pebal1-CY ot Dridie coRROE?

== led mici = -beld1-cY S (C-use coverage!

020 040 0 . om 100
coverage

(Figure 4) Plots of the number of detected faults against the

coverage and the fitted mean value functions (DS4)

416 BEAM2ISS=82X D Ms-DT X4z(2001.8)

similar -aspects of the relation are derived. For example,
(Figures 1- 3) indicate a nonlinear relation, while (Figures
4 and 5) indicate a linear relation.

= S i = a-vmtar{1-chakol (c-vee cobgal

0.10 020 030 040 050 0.60 070 080
C

(Figure 5) Plots of the number of detected faults against the
coverage and the fitted mean value functions (DS5)

Furthermore, the relation seems to be well approximated
by a linear function at the later phase of testing, that is, when
coverage is roughly higher than about 0.5.

Malaiya et al. [14, 15] have shown that the logarithmic
mean value function in coverage approximates well the
relation between the number of detected faults and the test
coverage for DS1-DS4. No further empirical validation
seems to be necessary. However, the logarithmic mean value
function in coverage lacks theoretical basis, i.e., it is based
on the intuition that coverage growth is likely to be described
by the logarithmic Poisson model if the number of faults
detected follow the logarithmic Poisson execution time SRGM.
Since there is no theoretical justification for this logarithmic
mean value function in coverage, it is not easy to modify
and refine the logarithmic mean value function in coverage
for the cases where its performance is not good enough. For
example, what if the number of detected faults does not
follow the logarthmic Poisson execution time SRGM?

We now investigate validity of the linear mean value
function. So far, this model has never been applied to real
test data sets. We pointed that, some nonlinear model seems
to be appropriate for DS1 - DS3 and that DS4 and DS5 seems
to support a linear mean value function. The linear mean
value function is thus fitted to DS4 and DS5 and the results
for the block coverage are presented in (Figure 6). Apparently
the linear mean value function in coverage does not perform
well even for DS4 and DS5. This is mainly because the linear
mean value function in coverage is forced to pass through
the origin. The figures do not include the trivial observation

that the coverage is zero when no test case is executed. That
is, the plots in the figures are not connected with the origin.
The plots suggest existence of a certain relationship between
the number of detected faults and the coverage when the
coverage c is greater than or equal to c¢;, where ¢ is the
coverage attained by execution of the first test case. No faults
can be found before execution of the first test case, ie,
m(c)=0 for 0 <{c¢;. We should focus on a non-trivial
relation between the number of detected faults and the
coverage for c=c,. The test cases are selected randomly
according to the operational profile. The test coverage
attained by the first test case, c), is also random. Therefore,
the mean value function m(c) is considered to be defined for
c=c¢", where ¢ is the expected value of c¢,. Thus, the linear
mean value function with intercept, m(c)=ac+ 4 is
suggested as an alternative to m(c) = a For the sake of
reference, the results obtained by fitting m(c) = ac+ b to
DS4 and DS5 are also shown in (Figure 6). (Figure 6)
strongly indicates that the linear mean value function in
coverage with intercept works much better than the linear
mean value function in coverage without intercept. Malaiya
et al. [14, 15] also suggest m(c) = ac+ b as an approx-
imation to the logarithmic mean value function in coverage
when c is large enough.

000 010 020 03 040 050 080 070 080 0% 100
block coverage

(F:gure 6). Mean value functions m(c)= ac and m(c) ac+b
fitted to DS4 aﬂd DS5

33 A New Mean Value Function in Coverage
We first restate the common assumptions for Piwowarski,
Ohba and Caruso model and the enhanced NHPP models.

1. New faults are detected only when new coverage units
are covered.

2. Faults are distributed uniformly over all the coverage
units.

It has been shown empirically that the covered coverage
units can contain faults. In this case, the fault density of the
covered coverage units is generally much lower than that of
the uncovered coverage units. The first assumption postulates
that the fault density of the covered coverage units is
negligible. The second assumption implies that each and
every coverage unit has an equal fault density. This uniform
fault density assumption is just a simplification of reality,
since generally different coverage units have different fault
densities. Even though the uniform fault density assumption
holds approximately, it seems to be more reasonable to adjust
the fault density as the testing proceeds.

We now generalize the second assumption so that the fault
density of the uncovered coverage units is adjusted. If the
first assumption remains unchanged, all the remaining faults
would exist in the uncovered coverage units, We can adjust
the fault density by applying the uniform density assumption
to the remaining faults and the uncovered coverage units.
That is, we suppose that the fault detection phenomenon is
subject to the following two assumptions :

1. New faults are detected only when new coverage units
are covered.

2. Remaining faults are distributed uniformly over all the
uncovered coverage units.

H the coverage growth is governed by c(¢), the above
assumptions lead us to the following differential equation :

a=m(#) d (4 3.1)

d ooy
™D =T w

where a is the total number of fault expected to be detected
eventually and e is the failure occurrence rate per fauit.
Solving this differential equation, we obtain the mean value
function in coverage as

m(c)=a—B(1—c)". (32

The suggested mean value function given by equation (3.2)

is flexible to some extent. The suggested mean value function
becomes the linear mean value function with intercept when
a=1. Therefore, the linear mean value function with or
without intercept is a special case of the suggested model.
The shape of the suggested mean value function is determined
by the value of 2 The shape is convex when 0< a<1 and
concave when a> 1.

3.4 Application to Real Test Data Sets
The new mean value function proposed in the previous

STEAN MET HIHE AT HIAE HNIHRIO CHSH 17 417

subsection was applied and fitted to the test data sets DS1
- DS5. The fitting was performed by using the nonlinear least
squares procedure of the SAS system. Estimation results are
summarized in <Table 4>. SSE and 7SS in <Table 4>
respectively denote the residual sum of squares and the total
sum of squares. One simple method for evaluating goodness
of fit is to compute SSE/TSS, which can be interpreted as

(Table 4> Least Square Estimates of Parameters in the Sug-
gested Mean Value Function in Coverage Fitted to

DS1-DS5
(1) DS1
coverage measure
parameter block branch p-use c-use
coverage | coverage coverage coverage
a 45.0004 60.6242 46,9881 47.0045
beta 74.99% 73.5680 673136 68.9970
alpha 0.9000 0.6886 1.1366 0.9340
SSE 149.2063 62.7831 763115 131.8749
TSS 2002.9655
(2) DS2
coverage measure
parameter block branch p-use c-use
coverage coverage coverage coverage
a 13.2402 13.1650 20,2980 21.879%0
beta 19.0368 18.1492 24.8682 350258
alpha 0.5206 0.6057 0.6740 0.6092
SSE 86320 85064 10.1194 10.2940
TSS 110.0000
(3) DS3
coverage measure
parameter block branch p-use c-use
coverage coverage coverage coverage
a 18.0000 17.0000 17.68%2 16.7522
beta 20.6000 19.0000 19.9063 204638
alpha 0.2099 021% 0.2064 0.2333
SSE 1.9261 1.9346 2.1617 2.4439
TSS 46.9000
4) DS4
coverage measure
parameter black branch p-use c-use
coverage | coverage | coverage | coverage
a 10.734 100336 10.233%6 14.60680
beta 16.0849 17.3302 183184 24.9001
alpha 06847 0.9842 1.5006 05841
SSE 2828 2.3409 2.1089 75300
TSS 101.2308
(5) DS5
parameter block branch p-use c-use
coverage coverage coverage | coverage
a 34.6027 2848% 24.7924 27.689%0
beta 42.6246 346134 $.2314 35.1072
alpha 0.5557 0.9644 1.4020 0.8632
SSE 10.9143 9.8560 10.3703 11.2875
TSS 302.0000

418 ZEXM2IES =X D X8-DA X45(2001.8)

the proportion of 7SS not explained by the model. The
smaller SSE/TSS is, the better is goodness of fit. We can
say that the proposed model performs well for all the data
sets with respect to SSE/TSS. For visual inspection of
goodness of fit, the estimated mean value functions: are
overlaid in (Figures 1- 5). Figure 1 reveals some discrepancy
between the actual and estimated number of detected faults
for the early phase of testing. To be coservative, we exclude
DS1 from the forthcoming discussion in this subsection.
Judging from <Table 4> and (Figures 2-5), we conclude that
the suggested mean value function in coverage is an adequate
model for other four data sets.

Irrespective of the mean value function in coverage chosen
for analysis, we still need to determine which coverage is
the best for estimating the mean value function when several
coverages are collected during testing. A heuristic procedure
for dealing with this problem is now presented.

1. Classify the coverages into groups with respect to
the estimates of the most important parameter such
as a

2. If goodness of fit of the groups are considerably different,
we choose the group with higher goodness of fit.

3. If goodness of fit of the groups are not considerably
different, we choose the group containing more rigorous
coverages.

4. If there are more than one coverage in the chosen group,
we choose the most rigorous coverage.

Let us examplify the procedureby using <Table 4>. First
consider DS2. Use of block and branch coverage produces
estimates of a similar to each other. So does use of p-use
and c-use coverages. Considering four estimates of a, we
can divide four coverages into two groups. One group
consists of block and branch coverages ; the other group,
p-use and c-use coverages. Since estimates of a for the two
groups are somewhat significantly different, we have to
decide which group is better for reliability evaluation and
testing management. For DS2, difference between SSEs of
the two groups are less than 1.79% of 7SS, which is almost
negligible. Since p-use coverage is more rigorous than block
and branch coverages, we choose the group with p-use and
c-use coverage. However, there is no subsume relations
between p-use and c-use coverages, we may use the esti~
mates obtained by using either p-use coverage or c-use
coverage.

Next we consider DS3. Four coverages provide us with
estimates close to one another and show equivalent goodness
of fit. Thus we do not have to apply the heuristic procedure.
Any of the four coverages can be used for estimating the
mean value function.

For DS4, we can constitute two groups of coverages. One
group consists of block, branch and p-use coverages and the
other group consists of c-use coverage. Difference between
SSE:s of the two groups ranges from 4.66% of 7SS to 5.36%
of TSS. It seems reasonable to choose the group with three
coverages. Furthermore, since p—use coverage is known to
be more strict than block and branch coverages, the
estimates corresponding to p-use coverage is perferable.
Similarly, we may use the estimates obtained by using either
p-use coverage or c-use coverage for DS5. Since DS5 was
collected from testing of software system with 22 injected
faults, we can say that p-use coverage gives the best
estimates.

4.conclwhgaemafks

There is a new trend for the estimation of software
reliability. The new' approach takes into account the
structural coverage obtained during testing. This paper is
concerned with the coverage-based SRGMs, SRGMs incor-
porating test coverage. The followings are the summary of
this paper.

1. Implementation of the useful testing effort-based SRGMs
requires a study on the relation between the testing
effort and the useful testing effort.

2. The coverage growth~based NHPP models are charac-
terized by the mean value function in coverage and the
coverage growth function.

3. The linear mean value function in coverage is to be
modified to include the intercept term.

4. The mean value function in coverage newly suggested
in this paper works well.

5. A heuristic procedure for selecting the most appropriate
coverage is suggested.

The last three results were verified by investigating real
test data sets.

Since tools for collecting coverage information are availa-
ble, the coverage-based SRGMs have emerged as a new
technique for evaluating software reliability. It should be

standard to gather coverage values during tas;mg More
efforts should be devoted to development of new cavarage~
based SRGMs and improvement of the existihg coverage-
based SRGMs. Especially, for the coverage growth-based
NHPP models, more effective mean value :functions in
coverage and coverage growth functions are tobe developed.
The useful testing effort-based SRGMs have not been
applied to real test data sets. This is mainly because relation
between the testing effort and the useful testing effort is
required for practical application and no such study has been
published yet. Future research should be directed to devel-
opment of models relating the useful testing effort to the
testing effort.

Bibliograph

[1] M. H. Chen, J. R. Horgan, A. P. Mathur, and V. J. Rego,
“A Time/Structure Based Model for Estimating Software
Reliability Estimation,” Technical Report SERC-TR-117-P,
Purdue University, Dec. 1992.

{2] M. H. Chen, M. R. Lyu and W. E. Wong, “An Empirical
Study of the Correlation Between Code Coverage and
Reliability Estimation,” Proceedings of the 3rd IEEE Inter-
national Symposium on Software Metrics, Berlin, Germany,
March 1996.

{31 M. H. Chen, M. R. Lyu and W. E. Wong, “Incorporating
Code Coverage in the Reliability Estimation for Fault-
Tolerant Software,” Proceedings of the 16th IEEE Sympo-
sium on Reliable Distributed System, pp.45-52, Durham,
NC, Oct. 1997.

[4] A.L.Goel, “Software Reliability Model : Assumptions, Limi-
tations, and Applicability,” IEEE Transactions on Software
Engineering, Vol.SE-11, No.12, pp.1411-1423, 1985.

[5] S. S. Gokhale, P. N. Marinos, and K. S. Trivedi, “Important
Milestones in Software Reliability Modeling,” Commu-
nications in Reliability, Maintainability and Serviceability,
1996.

[6] S. S. Gokhale, T. Philip, P. N. Marinos, and K. S. Trivedi,
“Non-Homogeneous Markov Software Reliability Model
with Imperfect Repair,” Technical Report TR-96/12, CACC
Duke University, 1996.

[7] S. S. Gokhale, T. Philip, P. N. Marinos, and K. S. Trivedi,
“Unification of Finite Failure Non-Homogeneous Poisson
Process Modets Through Test Coverage,” Technical Report
TR-96/36, CACC Duke University, 1996.

[8] J. R. Horgan, A. P. Mathur, A. Pasquini, and V. J. Rego,
“Perils of Software Reliability Modeling,” Technical Report

LZEN BT HIHE FIT HIAE MBYLI0 OIS A7 419

SERC-TR-160-p, Software Engineering Research Center,
Purdue University, 1995..

[9] N. Li and Y. K. Malaiya, “Fault Exposure Ratio Estimation
and Application, “Technical Report CS-96-130, Colorado
State University, 1996.

[10] M. N. Li and Y. K. Malaiya, and J. Denton, “Estimating
the Number of Defects : A simplified Intuitive Approach,
“Proceedings of International Symposium of Software
Engineering, Paderborn, Germany, Nov. 1998,

[111 Y. K Malaiya, “Estimating The Number of Residual
Defects,” Proceedings of the 3rd IEEE Intemational High-
Assurance Systems Engineering Symposium, Washington
DC, pp.98-105, Nov. 1998.

[12] Y. K. Malaiya and J. Denton, “What Do the Software
Reliability Growth Model Parameters Represent?” Proceed-
ings of the 8th International Symposium on Software
Reliability Engineering, Albuquerque, NM, pp.124-135,
Nov. 1997.

[13] Y. K. Malaiya and J. Denton, “Estimating Defect Density
Using Test Coverage,” Technical Report CS-98-104, Colorado
State University, 1998.

[14] Y. K. Malaiya, N. Li, J. Bieman, R. Karcich, and R. Skibbe,
“The Relationship Between Test Coverage and Reliability,”
Proceedings of the 5th International Symposium on Soft-
ware Reliability Engineering, pp.186-195, Monterey, CA,
Nov. 1994.

{15] Y. K. Malaiya, N. Li, J. Bieman, R. Karcich, and R. Skibbe,
“Software Test Coverage and Reliability,” Technical Report
CS-96-128, Colorado State University, 1996.

[16] Y. K. Malaiya, N. Karunanithi, and P. Verma, “Predicta-
bility of Software Reliability Models,” IEEE Transactions
on Reliability, pp.539-546, 1992.

[17] J. D. Musa, A. Iannino, and K. Okumoto, Software Reliabil-
ity : Measurement, Prediction, Application, McGrag-Hill,
1987.

[18] J. D. Musa and K. Okumoto, “A Logarithmic Poisson
Execution Time Model for Software Reliability Mea-
surement,” Proceedings of the 7th International Confer-
ence on Software Engineering, pp.230-238, Orlando,
1984.

[19] A. Pasquini, A. N. Crespo and P. Matrella, “Sensitivity of
Reloability-Growth Models to Operational Profile Errors vs
Testing Accuracy,” IEEE Transactions on Reliability, Vol.
45, No4, pp.531-540, 1996.

[20] T. Philip, P. N. Marinos, K. S. Trivedi, and J. Lala, “A
Multiphase Software Reliability Model : From Testing to
Operational Phase,” Technical Report TR-96-01, CACC
Duke University, 1996.

420 BEHelEs=2X D M8-DH H43(2001.8)

[21] P. Piwowarski, M. Ohba and]. Caruso, “Coverage Mea-
surement Experience During Function Test,” Proceedings
of the 15th International Conference on Software Engineer-
ing, pp.287-300, Bailtimore, MD, May 1993.

[22] C.V. Ramamoorthy and F.B. Bastani, “Software Reliability
-Status and Perspective,” IEEE Transactions on Software
Engineering, Vol.SE-8, No.8, pp.354-371, 1982.

[23] J. Ramsey and V. R. Basili, “Analyzing the Test Process
Using Structural Coverage,” Proceedings of the 8th Inter-
national Conference on Software Engineering, pp.306-312,
Aug. 1985

[24] J. G. Shanthikumar, “Software Reliability Model : A Re-
view,” Microelectronics and Reliability, Vol.23, No.5, pp.903
-943, 1983.

[25] G. S. Varadan, “Trends in Reliability and Test Strategies,”
IEEE Software, Vol.12, No.3, pp.10, 1995.

[26] W. E. Wong, “On Mutation and Data Flow,” PhD Thesis,
Department of Computer Science, Purdue University, W.
Lafayette, IN, Dec. 1993.

{27) W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur,
“Effect of Test Set Size and Block Coverage on the Fault
Detection Effectiveness,” Proceedings of the 5th IEEE
International Symposium on Software Reliability Engi-
neering, pp.230-238, Monterey, CA. Nov. 1994.

[28] A. Wood, “Software Reliability Growth Models : Assump-
tions vs. Reality,” Proceedings of the 8th International
Symposium on Software Reliability Engineering, pp.136
-141, Albuquerque, New Mexico, Nov. 1997.

o5 o
e-mail : parkjy@nongae.gsnu.ackr
1829 aMdsn &85 A (EAD
19849 =3yl AdTEE 4%

AR B
19909 BIHA7|$W HATHSH 38F
| AR
19855 -8 AAARD S FARuLR FAZRGT
24
B4R 2TEdo] Ns, 1A%, NYEA 29, AUAIY 5

oA B

e-mail ! pjh@nongae.gsnu.ac.kr

1978 FE UL FH ALK (AL
1980 S¥ig dishd dAstak(HAh
1988 Fdjet oiehd Mg (kAL
1983 ~ @A) s A Fe Hen a5
Bl 2ZEHO] NAM, NYET A

3} 5

AN
4 4 7

e-mail : lelia@thrunet.com

1990 ATt AAHE A S (AL

1995 A 3dista digy AR A A e}
(AAh

19988 ~ 84 ZAdsa ol AR AL
oA 5)

BAEOL AZES O N, AZES] H2H T

