BAXE 2ZENH TR AT BHLASE PO HEIS 853

ARG L=EHo] AFAE T
FAHEAZT T2 Y3

g M2 ey S

2 %

2o AAAY 2ZEoiAgdME 44 R RS dd & EARES S Ho Feh2 ALARAY 2A2AZT
ZE AT T AAAY LZEdold g dHY A& R ATY7Yel AHHT . B eRAME FH2AFTEY 7 B
¥ AYAHQ o2 E ATYoeA FA=AFTRY AT Bae B LU olHF B T UEE FAch TR B =R
Ae AAAYE 22Edole] Aol N F8 EFe] He FU2AFTRE YUAAZ YUz P8 PoRd FRLAFTZE A48t
3, fele FA2AFTZE Yad Y= AP 98 dndF5E ALY EH2AETRE FuNFo 2N SY2A TR
A% R A%AAT & A2 A o|FA AERENE FEIHA Bt 5 glon, F4A SR2ART2INEH APOHEY 4AE 2
2 FAREY ¢ e gudid duo Mz FY2ARTZE 7Y 4 Uk dend Y2AFTRE FYaATTRE AT
AAA G L2EdolE AFH22 W TAXNINAY Aolgdd o)A 7|28 AT T F4E 9L FYEG

Flattening Class Hierarchy for Reorganization of Object-Oriented Software

Suk-Hyung Hwang'- Hae-Sool Yang!'- Jung-Ho Park'

ABSTRACT

In the object-oriented software development, redesigning of classes and reorganizing of class hierarchy structures should be necessary to
reduce many of the headaches of object-oriented software design and maintenance. To support this task, in this paper, we propose a theoretical
foundation for class hierarchy reorganizations that is relatively complete, correct, formal and easy to understand and use. We introduce the
flattened class hierarchy that characterizes the class hierarchy structures in object-oriented software evolution. And we also present an algorithm
which transforms a given class hierarchy into the normalized form. The flattened class hierarchy heips us map the inheritance and aggregation
paths in a class hierarchy to paths in an object hierarchy that is an instance of the class hierarchy. By applying the algorithm into a given
class hierarchy, we can make a new, object-preserved, and flattened class hierérchy that is the cornerstone for reorganization of class hierarchy
structure and plays an important role as a bridge on the incremental evolutionary changes and reuse of object-oriented software to reorganize
class hierarchies.

IIHE : AMXIY L2ZEENH0{(Object-Oriented Software), N4 (Reorganization), BAAMBTE(Class Hierarchy), WEHE(Flattening)

1. Introduction

Object orientation has a great success in several computer
science domains as knowledge representation, databases and
software engineering. This success is due to the proximity
between the computer representation and the real world, as
well as to the facility to develop and maintain object~oriented
software systems. The particularity of object-oriented soft-
ware systems is that they are built under the class hierarchy

t FA39: AEYYE FFEHALYY I
t FU4: sA0YE WANAEYHY 25
EEAF 20019 7€ 6%, AR 1 20019 99 269

notion. A class is an aggrégation of data and methods(or
procedures) acting on these data. One of the most important
concept is inheritance, which organizes classes into a
hierarchy, that is a partial order corresponding more or less
to a real world classiﬁcation. ‘The problematic point is that
such class hierarchies are not so easy to build, and the
object-oriented software community is very interested by
all methodologies and tools that could help object-oriented
designers and programmers in this task.

Furthermore, building and maintaining the class hierarchy
has been recognized as an important but one of the most
difficult activities of object-oriented design. Object oriented

84 BEXCIEH=2XI D MB-DA H6z=(2001.12)

software designers try to reorganize existing class hiera-
rchies with minimal modifications so that the class hie-
rarchies can be refined and reused easily to imiprove and/or
evolve its design and new requirements [1]. Numerous
attempts [2-14] have been made by researchers to show the
algorithms and heuristics to produce and reorganize “good”
and “reusable” class hierarchy organizations :

1). Casais {2-5] introduces global and incremental class
hierarchy reorganization algorithm to restructure in-
heritance hierarchies to avoid explicit rejection of inhe-
rited properties, but his work emphasizes rather the
reorganization of the class hierarchy of a particular ob-
ject-oriented language than the maintenance of the
class hierarchy according to change requests of the
users.

2). Johnson and Opdyke [6] suggest the high-level refac-
toring techniques for class hierarchy over the object-
oriented frameworks. They study class restructuring
of classes related by composition and inheritance. The-
ir transformation set includes the creation of an abs-
tract superclass, subclassing, and refactoring to cap-
ture aggregations and components. Their refactorings
specifically apply to source code that performs progra-
ms transformations, but not for designs in early ana-
lysis and design phases.

3). Tokuda and Batory [7] provide a refactoring approach
based on three kinds of design evolution : database
schema transformations, design pattern microarchitec-
tures, and hot-spot meta patterns. However, such
refactorings are usually manipulate portions of the
system below the method level that references to pro-
gram elements that are being changed.

4). Bergstein [8] considers the object equivalence rela-
tionship between class hierarchies, and suggests a list
of the object preserving primitive transformations to
reorganize inheritance hierarchy structures. However,
the order of the transformation operations is not consi-
dered, which is the case in this work.

5). Snelting et. al {9-11] present a new method for ana-
lyzing and reenginerring class hierarchies using “con-
cept lattice”. Their mathod is semantically well-foun-
ded in formal concept analysis(19] : the new class
hierarchy is a minimal and maximally factorized con-
cept lattice (also called, Galois lattice) that reflects the
access and subtype relationships between variables,
objects and class members. The method is primarily
intended as tool for finding imperfections in the design

of class hierarchies, and can be used as the basis for
tools that largely automate the process of reengin-
etring such hierarchies.

6). Godin and Mili et al [12, 13] propose a formal method
that organizes a set of classes into a lattice structure
called “Galois Lattice”. Such a class hierarchy based
on the galois lattice has several advantages for embo~
dying protocol conformance, and supporting an incre-
mental updating algorithm, with applications for class
hierarchy maintenance.

7). Schmitt and Conrad [14] provide an approach to trans-
form object-oriented class hierarchies into a “normal-
ized” form based on the concept lattice. The theory of
formal concept analysis can be adapted to transform
a schema into an object-oriented normal form.. Star-
ting with an extensional analysis, which is needed to
provide certain information about relationships betwe-
en existing classes, They apply the frarnework of for-
mal concept analysis to derive a “normalized” class
hierarchy.

Based on the above related researches, we argue that,
according to our investigations for object oriented software
reorganization [15, 16], redesigning of classes and reorgani-
zing of class hierarchy structures should be necessary to
reduce many of the headaches of object oriented software
maintenance. To achieve this goal, we propose a theoretical
foundation for class hierarchy reorganizations that is relati-
vely complete, correct, formal, and easy to understand and
use. A

In this paper, based on the previous our work, we propose
the flattened class hierarchy that characterizes “normalized
form” of class hierarchy structures and it plays an important
role as a bridge between class hierarchies during object-
oriented software evolution. And, we also present an algo-
rithm, which is helpful to transform a given class hierarchy
into the flattened form. The flattened class hierarchy helps
us map the inheritance and aggregation paths in a class hie-
rarchy to paths in an object hierarchy which is an instance
of the class hierarchy. And this also helps us find all sub-
classes of a given class hierarchy quickly. By applying the
algorithm to the existing class hierarchies, we can make the
new object-equivalent hierarchies which are the cornerstone
for evolutionary changes of object-oriented software. The
rest of this paper formally introduces class hierarchy and
its flattened form. An algorithm for flattening a given class
hierarchy is presented with its properties.

2. Definitions for Class Hierarchy Structure

The model of the class hierarchy used in this paper is
called the class graph. The class graphs express object-
oriented class hierarchies as mathematical graph structures
which described classes and the relationships between them.
In this section, class graph and some related definitions are
introduced.

A class graph is a directed graph whose nodes represent
the abstract and concrete classes of the domain being mo-
deled, and whose edges represent the “is-a” and “part-of”
relationships among the classes. It focuses only on “is-a”
and “part-of” relations between classes. Those two kinds
of relations are sufficient to define the structure of objects.
The level of abstraction of the “is-a” and “part-of” relations
is useful for several tasks, for example, planning an im-
plementation or querying the objects defined by the class
graph. One notably absent relation is the “use” relation be-
tween class operations. The “use” relationships between cla-
sses describe important design information. However, class
graphs are a useful design abstraction which can be debug-
ged independently and mathematically captures some of the
structural knowledge of object-oriented designs. Only in
later design phases, other information, such as operations
and method calls and overridings, etc., are augmented with
class graphs. We tumn now to some definitions which are
essential to discussion of class hierarchy structures. The
formal definition of the class graph is as following :

Definition 1 (Class Graph)

Class graphs are directed labeled graphs G=(V,L, E)

such that _

o V=VCUVA VCNVA=2 ie,VCand VA repre-
sent the concrete and abstract classes(vertices), res-
pectively.

® L : afinite set of labels which denote the component's
name of the classes.

e E=EIUEC EINEC=2,EICVXV,ECcV X
L X'V ie, edges are composed of inheritance edges
(without labels) EI and component edges(labeled by
L) EC.

(Figure 1) (a) shows a graphical representation of a class
graph called Dish. The vertices drawn as hexagonand re-
ctangle correspond to abstract and concrete classes, respec-
tively. The double-shafted arrows called inheritance edges,
stand for ‘kind-of ’ or ‘is-a’ relationships. The single-shafted
arrows with a label ! called component edges, stand for
‘has-a’ or ‘part-of ' relationships.

ARAE 2TEACO MTYE 2T BHL2HE T BED 85

(b)
{Figure 1) Class Graph Dish(a) and an Object Graph(b)

We shall use the (reflexive) notion of a superclass : given
a class graph G=(V, L, E), we say that u € V is a super-
class of v € V if there is a (possibly empty) path of inhe-
ritance edges from u to v. In other words, for every u, v
€ V, the inheritance relation = on V X Vis defined by (u=
v) iff (4, v) € EI. The collection of all superclasses of a
class v is called the ancestry of v. The associated compo-
nents of a given class v, denoted by ASC(v), is the set of
all component edges outgoing from its ancestry.

Not every class graph is meaningful. We say a class graph
is legal if the following two independent conditions are
satisfied :

(1) Cycle-Free Inheritance Condition : a class can not
inherit from itself.

(2) Unique Labels Condition : for each v € V, the labels
of all component edges outgoing from v and/or the
ancestry of v are distinct. That is, Multiple inheritance
conflicts of the components are disallowed.

Thereore, no conflicts for the components of the classes
are occurred as overridings on an inheritance path. Unless
stated otherwise, a class graph hereafter, means a legal class
graph. Next, we define object graphs, which describes the
structures of a group of objects created from the class
graphs.

Definition 2. (Object Graph)
An object graph O = (V’, L’, E’) is an instance of a class
graph G = (V, L, E) if the following conditions are satisfied
® Yo € V’'[Class(o) € VC1, where the function Class
maps objects to classes(Class : V' = V).

856 FEMcIEBH=8A D HM8-DA H6=(2001.12)

® YopgeV,I€Llo !, p)ol q €E=(p=q)
LslL
ie., for each object o €E V', the edges outgoing
from o have distinct labels.
e Vo1 0) € ETv, I, u) € ASC(Cass(0) [v € Class (0)
A u € Class(o’) 1]
ie, for each edge (0,1,0') € E’, Class{(o) has
anassociated component edge (v, [, u) such that
v and u are the superclass of Class(0) and Class
(0"), respectively.

An object graph is a finite directed graph. Each node
represents an object, and the function Class maps each node
to its class. Each edge is labeled by an element of L. The
edge (u, [, v) indicates that the object u has a component
object v named by /. We shall assume that object graphs
are acyclic. (Figure 1) (b) shows an object graph of the class
graph(a).

3. Transforming the Class Graph into the Flattened
Form

During an object-oriented analysis and design phases,
software developers try to evolve existing components with
minimal modifications and reorganizations on the class hie~
rarchy so that components can be improved, refined and re-
used easily. For that purpose, we had proposed some primi-
tive transformations for reorganizing a class hierarchy. The
transformed hierarchies play an important role on the evolu-
tion of object-oriented softwares in design phases [15,16].

On the other hand, Johnson and Foote [17] claim that in
general, it is better to inherit from an abstract class than
from a concrete class. The reason is that abstract classes
generally do not have to provide their own data represen—
tation, and so future concrete subclasses can use their own
representation without the danger of conflicts. In addition,
in his paper, Hursch presents and evaluates a simple gui-
deline for the design of object-oriented applications, called
the abstract superclass rule [18). The abstract superclass
rule can simplify object-oriented design and programming
in a number ways.

Summarizing, we has the following properties : no abst~
ract class has common parts, and all superclass must be abs-
tract. The above two ideas lead to the following definition.

Definition 3. A class graph G=(V, L, E) is flattened if
1) Ve€Elle=(uv) EEI®ucVA) Vie=(ylv) €
ECeuesev0o)l,

2 Vu, »EEIvEVC]

Tile first condition says that all edges outgoing from ab-
stract classes are inheritance edges and all edges outgoing
from concrete classes are component edges. This properity
helps us 3map the part-of relationships in a class graph G
to those in an object graph of G. The second condition deno-
tes that all inheritance edges are incoming into concrete cla-
sses. Note that no generality is lost by the assumption that
class graphs are flattened, as the following theorem asserts.

Theorem 1. Let be the set of class graphs.

vee J[Ilee 5|
2 = Flatten (G) A\ Object (G) = Object(2)]]

where Flatten(G) and Object(G) are the flattened form
and the object graph of class graph G, respectively.

Informally, a class hierarchy has an object-preserved, fla-
ttened form. That is, a class graph could be transformed into
a flattened form without changing the set of objects which
classes define. For example, during the evolution of object-
oriented database designs, this means that the database does
not need to be repopulated.

[Proof] The above theorem is proven by the following tran-
sformation algorithm.
1) For each concrete class v € VC with an outgoing in-
heritance edge (v, u) € EI,

(1) Add a new abstract vertex v’ into V,

(2) Replace all edges incoming into v with end at v’.

(3) Replace all inheritance edges outgoing from v with
originate at v’.

(4) Add a new inheritance edge (v', v) into EIL

2) For each v € V(C,

(1) Add edges so that the set of edges outgoing from
v is exactly the associated components of v.

(2) Delete all component edges outgoing from abstract
classes.

3) For each v € VA,

(1) Find all u € VC which is reachable from v via in-
heritance edges and add an inheritance edge (v, u)
if it does not exist already.

(2) Delete all inheritance edges leading to abstract
classes.

Informally, Step 1 decouples the sub-classing role from
concrete classes by introducing an additional abstract class
when needed. Step 2 unfolds inherited component edges by
pushing then down the subclass hierarchy. This can be done
efficiently by traversing the inheritance edges in a top~down

Food | calorie

Vegetable Meat

SauceType

[Potato | [Bean | | Beet | [Pork |
(a)

SauceType

¥ calarie

(c)

AR 2ZEJCS HTHE AT SHANES TEO HES 857

o

[N
Vegetable Meat SauceType
Potato Bean | | Beef Pork
(b

)

(d)

(Figure 2) An Example for Flattening the Class Graph

fashion, starting with nodes with no inheritance edges in-
coming into them, and “collecting” component edges as we
go down. Step 3 can be viewed as taking the transitive (non-
reflexive) closure of the inheritance relation. This step can
be done in parallel with Step 2. Following the above algo-
rithm, (figure 2) (g, b, ¢, d) shows a sequence of flattening
a class graph as an example.

For the bound on the size of the flattened class graph, note
first that only Step 1 may change the number of vertices
by at most doubling it. Next, note that since Step 2 and 3
do not change the connectivity structure of the graph, we
can deal with each connected component separately. Consi-
der such a component with n vertices. Since it is connected,
there are at least n-J vertices in the component before Step
2 and 3. Since these steps do not introduce vertices or parallel
edges, they may introduce at most O(#?) new edges. We
may therefore conclude that the number of vertices in the
Flatten(G), flattened form of G, is at most doubled and the
number of edges is at most squared.

4. Discussion

There is no one right way to model the real world objects ;
some choices will be better for some aspects of the problem,
other choices better for other aspects. Probably no single
choice will be best for all aspects. Moreover, software deve-
lopers working with an object oriented system are frequently
led to modify extensive or even to reprogram existing cla-
sses so that they fully suit their needs. Considering the life
cycle of software products, it is necessary to evolve the soft-

ware to accommodate the improvements of its design and
new requirements in the rapidly changing business environ-
ment. In the case of object-oriented software, evolution often
requires changes to the underlying class hierarchy struct-
ures of the software in terms of classes, inheritance and ag-
gregation relationships between classes, and so on.

It is certainly impossible to find a general algorithm that
could completely automate, generally speaking, class inser-
tion and/or hierarchy reorganization ; firstly, because of the
difficulty in expressing criteria to define a “good” and “reus-
able” class hierarchy independently of a context, and secon-
dly, because the construction rules are often very informal
and empirical. Nerverthless, a lot of different works describe
algorithms and heuristics for class insertion or class hiera-
rchy construction and reorganization [2-14]. We now give
the comparison with the related works.

4.1 Comparison with related works

Those related works [2-14]) can be studied from two
viewpoints : the strategy used to reorganize hierarchies, the
features of the underlying class hierarchy models.

4.1.1 Strategies
To build a class hierarchy, different strategies was consi-
dered :

e Global and Incremental algorithms are proposed by
Casais [2-5]. Global algorithms builds in a single step

1) Especially, problems analogous to the flattening class hierarchies in this
paper appear in [14) : the normalization of class hierarchies for the schema
evolution of object-oriented database.

858 EANZIBF=EX D Me-DT H6=(2001.12)

the whole hierarchy from the binary relation Class-
Property. Incremental algorithms insert a new class
into an already existing hierarchy one after the other.
An inheritance hierarchy is restructured when a class
is added which has no class from which it can inherit
the features that it requires without inheriting un-
wanted features, which have to be explicitly rejected.
The algorithm removes explicitly rejected features
from a hierarchy by creating new abstract classes and
moving features up the hierarchy into these new cla-
sses.

e Refactorings are behavior-preserving program trans-
formations that automate design evolution in object-
oriented applications [6]. That is, refactoring is the
process of changing a software system in such a way
that it does not alter the external behavior of the code
yet improves its internal structure. Refactoring appro-
ach for evolving object-oriented designs is proposed
by Tokuda [7]. In [7], three kinds of design evolution
are provided : database schema transformations, desi—
gn pattern microarchitectures, and hot-spot meta pat-
terns. Such refactorings are only based on the class
structure of an application, they will produce numerous
methods and classes for improving the design after it
has been coded. The proposed refactorings are beha-
vior-preserving due to good engineering and not be-
cause of any mathematical guarantee.

e The Toolbox approach, proposed by Bersteinf8], is

~ based on a set of local operations allowing users to
modify a class hierarchy. He has presented a list of
class transformations for improving class hierarchies
but the order of the operations is not considered.

® Some techniques for constructing class hierarchies as
concept lattices using the methods of formal concept
analysis are introduced in [9-14]. Using formal concept
analysis [19], the software designer may begin system
class hierarchy design with the construction of a con-
cept lattice representing top-level entities of the sys-
tem created from the description of these entities.
Using formal concept analysis provides useful methods
for turning a natural language description into a well
defined class hierarchy, and for finding design probl-
ems in a class hierarchy by analyzing the usage of the
hierarchy by a set of applications.

Because of the differences in the purposes of each appro-
ach and the class hierarchy models used in [2-14], no one
can be considered better than another among all of these

strategies. However, for instance, we can argue that algori-
thms based on the concept analysis are more adapted for
class hierarchy construction when the given data is the
relation Class-Property, or when reorganizing an unsatis—
factory hierarchy from scratch, while incremental algorithms
and toolboxes fit evolution better. Meanwhile, our approach
can be helpful to reorganize the existing class hierarchy into
the object-preserved or the object-extended hierarchies in
the reorganization framework for the object-oriented soft-
ware evolution and reuse [15, 16].

4.1.2 Underlying class hierarchy models

The underlying model used to represent class hierarchies
is more or less restrictive. Casais [2-5} uses a informal class
hierarchy model that does not impose any constraints on the
inheritance hierarchy ; this seems powerful at first sight but
there is no formal characterization of the results produced
by the algorithm. Class hierarchies in refactoring approaches
[6, 7] are represented by the UML class diagrams with some
descriptions. However, most refactorings have to manipilate
portions of the system below the method level. These are
usually references to program elements that are being chan-
ged. Another unique class hierarchy model, called class dic-
tionary, is introduced in [8], but, there is a strong constraint
on the class dictionary in which only leaves can represent
instanciable classes, and the class hierarchies being produc-
ed using some heuristics.

On the other hand, a second set of approaches [9-14] use
implicitly, or explicitly with further adaptations for the For-
mal Concept Analysis (FCA) to encode class hierarchies.
FCA is a data analysis technique based on ordered lattice
theory(called, Galois Lattice) [19]. That is, FCA is the
process of describing the world in terms of a number of
objects and a number of attributes which may be possessed
by those objects. It provides graph-based visualisations of
tabular data and has successfullt been applied to a number
of fields including Text Data Mining, Psychology, Social
Science and Software Engineering. Unfortunately, the se-
cond set of approaches [9-14] restrict the class hierarchies
to tree-like structures. As a consequence, they have some
organization problems which can not be sloves by the Galois
lattice techniques without adaptations not very satisfactory.

Our approach is based on the class graph that uses and
preserves an underlying class hierarchies as mathematical
graph structures, and thus produces formally well charac-
terized results. Furthermore, our algorithm for flattening
class hierarchy may change the number of classes by at most
doubling it and O(n?) new edges are introduced. Compared

with the related approach [14]2), we can conclude that our
algorithm is more effective than the Schmitt's approach[14].

Origical Class Hierarchies Target Class Hierarchies

A
-/
~ A

Flattened Class Hierarchies

Flatten(G) Evolutionary

Changes

1}
P~

(Figure 3) Flattening class hierarchies on object oriented
software evolution

In addition, Hwang etc. 15,16] propose the reorganization
framework for the object oriented software evolution and
reuse, It is defined the equivalence and extension relation-
ships between class hierarchy structures, and a set of primi-
tive reorganizational transformations that is useful for the
evolutionary changes of object oriented softwares. From the
previous works [15, 16], in the evolution of object oriented
softwares, we can found that a class hierarchy should be
transformed into a flattened form without changing the set
of objects which classes define. To formulate the flattening
class hierarchy, we propose the algorithm(called Flatten). for
flattening class hierarchy in this paper(figure 3). In the
flattening algorithm, Flatten, each component defined in
each class of original class hierarchy G is going down to
its descendants by the depth first traversaling, and finally,
all the immediate and inherited components of each class are
distributed among the instantable descendants in the target
class hierarchy G’. As a consequence, flattening class hiera-
rchy helps us make intermediate class hierarchy structure
that is the cornerstone for evolutionary changes and reorga-
nization of object-oriented class hierarchies.

5. Conclusion

Class hierarchies are at the heart of object-oriented pro-
grams, object knowledge-bases and object-oriented data-
bases, and they are a cornerstone of frameworks i.e. of adap-
table and reusable object-oriented architectures. Any kind
of method for building, reorganizing or maintaining class

2) By (14, the normalized class hierarchy can have at most 2" classes(n is
the minimum of the number of objects and attributes). In order to derive
all concepts from a context each subset of objects or attributes must be
considered. Therefore, the complexity to compute the normalized class

hierarchy is O(2").

HMAXE AZEQNS HTHE AT FHLASE 729 WES 859

hierarchies can thus be of interest and can have applications
in several important research areas of object technology :

® Organization of object-oriented frameworks : automa-
tic reorganization is able to bring to the new factori-
zation classes and abstract classes.

e Adaptation of legacy object—oriented systems : nume-
rous object-oriented systems, thus numerous class
hierarchies, have been developed in the past years, au-
tomatic reorganization can help to adapt or reuse them,

» by reorganizing poorly designed systems built
either by nonspecialists, or too rapidly, or without
any concern for generalization,

« by reorganizing huge systems built by different
designers or programmers at different time periods,

+ by merging class hierarchies : the final hierarchy
could be computed by reclassifying classes from the
different class hierarchies

In this paper, we proposed the flattened class hierarchy
which characterizes the class hierarchy structures in object
oriented software evolution. And, we also presented a flat-
tenning algorithm which transforms a given class hierarchy
into the flattened form. The flattened class hierar¢hy plays
an important role as a bridge bewteen class hierarchies
during object oriented software evolutions.

Flattened class graph has some trade-offs. In a flattened
class graph, the common components are distributed into all
the descendant concrete classes. This makes much more
additional abstract classes and component edges in a flat-
tened graph than in the original class graph. However, it
is easy to understand the whole components and their com-
ponent hierarchies of a class at a glance in a flattened class
graph given. The flattened class hierarchy helps us map the
inheritance and aggregation paths in a class hierarchy to
paths in an object hierarchy which is an instance of the class
hierarchy. Moreover, during object oriented software evolu-
tion and reuse, the flattened form helps us make new class
hierarchies which are the cornerstone for evolutionary chan-
ges and reorganization of class hierarchies.

References

[1] B. Meyer, ‘Object-oriented Software Construction,’ Prentice
Hall, 1988,

{2] Casais, E., “Managing Evolution in Object-Oriented Envi-
ronments : An Algorithmic Approach, Ph.D. thesis,” Unive-
rsity of Geneva, Geneva, Switzerland, 1991.

[3) Casais, E., “An incremental class reorganization approach,”

860 BEXEiET=FX D He-DA H6=(2001.12)

ECOOP'92 Proceedings, 1992.

[4] Casais, E, “Automatic reorganization of object-oriented
hierarchies : a case study,” Object Oriented Systems, Vol.1,
pp.95-115, 1994,

(5] Casais, E., ‘Managing class evolution in object-oriented
systems,’ In O. Nierstrasz and D. Tsichritzis, editors, Ob~
ject-Oriented Software Composition, pp.201-244, Prentice
Hall, 1995.

[6] Jonson, R. E. and Opdyke, W. F. “Refactoring and Aggre-
gation,” ISOTAS'93 Proceedings, 1993.

[7] Lance Tokuda and Don Batory, “Evolving object-oriented
designs with Refactorings,” Journal of Automated Software
Engineering, Vol.8, No.l, pp.89-120, 2001.

[8] Paul L. Berstein, “Object preserving class transformation,”
SIGPLAN Notices, Vol.26, No.11, 1991

[9] Gregor Snelting and Frank Tip, “Reengineering class hie-
rarchies using concept analysis,” In Proc. ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
pp.99-110, Orlando, FL, January 1996.

[10] Gregor Snelting, “Software Reengineering Based on Con-
cept Lattices,” Proceedings of the Conference on Software
Maintenance and Reengineering, 29 February - 3 March,
2000, Zurich, Switzerland. IEEE Computer Society, pp.3-10,
2000.

[11] Gregor Snelting and Frank Tip, ‘Understanding class
hierarchies using concept analysis, ACM Transactions on
Programming Languages and Systems, Vol.22, No.3, pp.
540-582, 2000.

[12] Robert Godin and Hafedh Mili, “Buliding and Maintaining
Analysis-Level Class Hierrchies Using Galois Lattices,” In
Proceedings of the ACM Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOP
SLA ’93), A. Paepcke (Ed.), Washington, DC, ACM Press,
pp.394-410, 1993.

[13] Robert Godin, Hafedh Mili, Guy W. Mineau, Rokia Mis-
saoui, Amina Arfi, et al., “Design of class hierarchies based
on concept (Galois) lattices,” Theory and Application of
Object Systems (TAPQOS), Vol4, No.2, pp.117-134. 1998.

[14] I. Schmitt, S. Conrad, “Restructuring Object-Oriented Da-
tabase Schemata by Concept Analysis,” T. Polle, T. Ripke,
K.-D. Schewe (eds.), Fundamentals of Information Sys-
tems (Post-Proceedings 7th Int. Workshop on Foundations
of Models and Languages for Data and Objects FoMLa-
DO'98), Kluwer Academic Publishers, Boston, pp.177-185,
1999.

{15] S. Hwang, Y. Tsujino and N. Tokura, “A Reorganization
Framework for Object-Oriented Class Hierarchies, Journal
of Computer Software,” JSSST, Vol.15, No.d, pp.42-61,
1998(in Japanese).

[16] S. Hwang, D. Kim and H. Yang, “A Formal Approach for
the Reorganization of Class Hierarchies for the Extension
of Object-Oriented Applications,” Transactions of KIPS,
Vol.6, No.3, March, 1999,

[17] Ralph E. Johnson and Brian Foote, “Designing reusable
classes,” Journal of Object-Oriented Programming, pp.22-

35, June/July, 1988.

(18} Walter L. Hursch, “Should Superclasses be Abstract?,”
BECOOP'% Proceedings, pp.12-31, July, 1994,

[19] Bernhard Ganter and Rudolf Wille, ‘Formal Concept An-
alysis : Mathematical Foundations, Springer Verlag, 1999.

g M ¥
e-mail : shwang@email. sunmoon.ac.kr
19913 FLdsta AAA S 27)&Y
(o1&}
1943 JE AR iy ZART
B 3H(F 84 Ah
1997 Y& AT S i ART
83 (F shuba})
19979 ~dA MEdST AFEHARYY 2aF
200134 ~AA Fgosta SRy AL
20013 ~@A golslnd Jledrh 2%
2001 ~ 84 YEOGIS-RI Co. LTD. Certified UML Engineer
TR AN FLE a2 A7Y © Aol§, UML,
Design Pattern, Adaptive Programming”]¥, For-
mal Method 5.)

¢ s =
e-mail : hsyang@office.hoseo.ackr
19759 Fojdigta #7387 FQ(EFAD
1978 AZadista A8 48
A AF(HAY
1991 48 oA diE e AE It &
ZEH]F AT (FutAL)
19758 ~1979d £7F4A T AAASE AL
19863 ~1987'3 A& QA7 gt e AYdT+Y
1980\ ~1995'3 Zdistn AzA A8t wy
19959 ~ 8 A $FALZEHJERDTA(NSQ) 4%
20008 ~dA FXHRA G 73
1999~ @A AU PAHERSGE ug
#AEol AZEYOTEH(FS], SWEARFN FAWL &
A7+e], F47A49, 00A/00D/O0P, CASE, SD),
AAAE 7] AHE, AARAY 7)erle

%35

e-mail : jhpark@email. sunmoon.ac kr

19809 Az L APHREEAESAD

1982 Azadittn ZIdEY FRA
et 4 &4 Ah

19873 4 eAptdisty digte ART
A F (T4 D

1990 ¥ eAtdigta digtd FRFHAF(FEHLAD

19963~ A FFPRA 83 FF o)Al

1913 ~EA HAENGE AFHALEY 25

19999 ~dA HEGEE A7HF

ARl EAguEE, 9408, XML, 2ZEHFE

