A W V(8 HEAE 23 E-SARME 0I8TH 244

2 W H s d A
2 o

2 drdMe 434 FIAEY A Aste £ 2 8(domain orientation) MY & £YUst] AEUESS AFrd BE 74
e S AR AA Al TA] A'e] A48 7)E Axde] AZVEE gges A9 EHY Yol e 4 FEded JEdg
9 T2 fAE vlugezs PEUES Rt PUS ANGAL AL sl AXJIEE V5Hs REEn 11 P2F dhojoln
Hoz ATHoRM HEAES YA o FRENY o[4S Y & Avh £ E-SARM duelEe olgalo Ade 7 A% B
HES 19 A $ R AFEIESO $M&H (priority order)Z ATHOEA HEWUE YAIE A4S ¥AE 5 U2 sy

Design Pattern Based Component Classification
and Retrieval using E-SARM

GuiJung Kim" - JungSoo Han' - Younglae Song™"

ABSTRACT

This paper proposes a method to classify and retrieve components in repository using the idea of domain orientation for the successful reuse
of components.A design pattern was applied to existing systems and a component classification method is suggested here to compare the struc-
tural similarity between each component in relevant domain and criterion patterns. Classifying reusable components by their functionality and
then depicting their structures with a diagram can increase component reusability and portability between platforms. Efficiency of component
reuse can be raised because the most appropriate component to query and similar candidate components are provided in priority by use of-SARM
algorithm,

FINE : HEYE THAIZ(Component Reuse), &A IHEI(Design Pattern). Clustering, (Spreading Activation), BHEHE M
(Component Retrieval), Z2XHE ®R(Component Classification)

1133

ol &% A

LM 8

Various methodologies of component based development
as techniques to cut down cost of production and main-
tenance of software are being suggested and studies on
compatible component development are being done at many
research institutes. Several components’ development and
success should be based on a domain-oriented component,
and integration and reuse of a component should be done
on a stabilized domain. For infrastructure in an integrated
environment, exact component retrieval is necessary for
customizing [1]. This paper aims at developing CBSE
(Component-Based Software Engineering) ; a component
retrieval and reuse system that makes it possible to assem-
ble components and reuse them from other application for

4
Nk
e Ea

h.

AU HFE ey g
o Holhela A REAGE 4

g A AAAAEEHR aF

12004 59 69, AALEE 1 20049 749 209

quick system construction and cost reduction.

There already exist component retrieval studies such as
retrieval by signature matching [2], retrieval by sampling
behavior [3], retrieval by specification matching [4] and so
on. An architecture based component retrieval study [5] has
enhanced recall rate, but is imperfect because of its pre-
cision and retrieval time.

In this paper, we classified components by constructing
them in repository using a clustering algorithm after classi-
fying them to domain introducing the idea of domain ori-
entation for successful reuse of components. The clustering
algorithm compares the structure with each component in
an appropriate domain setting up design pattern as criterion
object. Components developed by applying patterns from
existing systems are increasing because the design time
and communication between developers can be decreased
if design pattern is applied at the component design stage
[6, 71. Therefore, this paper proposes a method to classify

1134 EM2IE2=FX D M11-DHH H5z=(2004.10)

components by comparing their structural similarity in ex-
isting systems, to which a design pattern was applied, with
a criterion pattern. It also suggests a component extraction
technique for linkages between each classified component
and criterion pattern, and enhances Spreading Activation
Algorithm [8]. It raises the precision which is presented
with problem from existing research and hence faster and
more efficient component retrieval is made possible by
shortening the long retrieval time - a disadvantage of the
Spreading Activation Algorithm. So component reuse be-
comes simpler because users can choose components more
easily and get specific usage information. Components re-
trieved in this way are reusable, considering the only logic
of certain domain, for they can be reused regardless of
platform. The remainder of this paper is as follows. In
Section 2, we review related previous work. Section 3
showes component classification and retrieval method.
Section 4 decribes system repository construction in detail.
Performance evaluation is experimental results are de-
scribed in Section 5. Finally, we give conclusions and some
remarks for future work in Section 6.

2. Related Work

2.1 Design Pattern based Component

Design pattern involves a “reusable solution” to problems
made at the time of system design. Applying a design pat-
tern to the component design is beneficial as it reduces de-
sign time and communication between developers, So com-
ponents developed by application of patterns from existing
systems are increasing. Distributing components in busi-
ness is the applicable part of a design pattern created by
use of techniques to realize commercially useful compo-
nents. This makes it possible to register and retrieve com-
ponents that design pattern users require [6], encapsulates
access to database and gives an interface to lower complex
transactions [7]. Like this, pattern based component sys-
tems are gradually increasing and several researches on re-
usable component extraction are being processed, but a
study on efficient retrieval methods related to pattern in-
formation is incomplete. In this paper, we classify and re-
trieve components by using the structural information of
patterns in the component system. Methods of definition,
classification and expression have been studied by Gamma
[9], Buschmann [10], Tich [11] et al. Classification by
Gamma is the method used mostly for the purpose of pat-
tern application, so we classified components on the basis
of Gamma’s design pattern structure in this paper.

2.2 Domain Architecture Oriented Development

For activation of CBSD (Component-Based Software
Development), it's important to develop the components
efficiently. Both bottom-up and top-down ways should be
harmonized to stop an unbalance between overproduction
of components in the interest-high field and underpro-
duction on the contrary. We need to use them after analyz-
ing the domain and the scope of the existing system. Next,
we construct the domain architecture on the basis of the
analysis results [12]. Discrimination and classification of
existing components are necessary for developing new
components without applying similar components. If there
are suitable components by application domain, large-scale
reuse at this level of architecture can be possible [13].

2.3 Existing Component Retrieval

Component retrieval studies that already exist include :
retrieval by signature matching [2], retrieval by sampling
behavior [3], retrieval by specification matching [4] etc.
Retrieval by signature matching is the method used to re-
trieve components by use of their signature information
such as parameter type of function or interface. There are
two types ; one is the exact matching method which re-
trieves the component that perfectly matches it's function’s
type with it’'s query’s type, and the other is the relaxed
matching method which retrieves similar components.

Retrieval by sampling behavior is attained by inferring
the result after executing the routine in repository that has
an interfacecompatible with interface specification. This
method focuses on retrieval automation.

Comparing component specification and checking the
possibility of replacement with another component achieve
retrieval by specification matching. According to criteria to
evaluate specification, there are two methods ; the pre/post
matching method which compares the previous and post
condition of each component and the predicate matching
method which retrieves a component using relation of pred-
icate inclusion.

Architecture based component retrieval [5] enhances the
recall rate by making it possible to retrieve architecture
corresponding with demands from developers in regards to
the structural aspect of the component, but it's imperfect

because of poor retrieval time and precision.

24 SARM

SARM (Spreading Activation Retrieval Method) {8] re-
trieves similar components including query function be-
tween components and queries, and is a method that can

find more accurate and wide ranging components. Calculat—
ing their activation values according to link information
connected between each query and components retrieves
components for reusability. This retrieval process specifies
the base activation value 1.0 to query and the activation
value of the positive number is calculated by accumulating
its connection strength ; an activation value of 0 or a neg-
ative number is not passed. Each node accumulates its own
activation value, which is inputted in the method. Inputted
activation values areregulated by input data (fan-in), the
step decay rate,and parameters. The computational proce-
dure is circulated and the activation value becomes so sta-
ble that there is almost no change. Components can then
be linked directly and similar components are retrieved.

The SARM system stabilizes the activation value, or ex-
ecutes the maximum cycle number that the user sets.
However, as SARM measuressimilarity degree by repeat-
ing calculations using an activation value, its retrieval time
is prolonged. More components increase, as the calculation
process of the activation valueincreases geometrically,
hence there are many retrieval difficulties.

3. Component Classification and Retrieval

3.1 Component Classification

Component classification is processed in two steps. The
first step aims at analyzing the domain of the existing sys-
tem and classifying each component by application. The
second step is the process of clustering by each design pat-
tern applied to designing component-classified domain.

3.1.1 Domain Classification

The component software developmentprocess uses an
assembly process to put together components and develop
them. This study focuses on an assembly process for reuse
of components from an existing system. In order to max-
imize reuse of components, it's important to separate suit-
able components to the quality of application domain, then
extract components appropriate to demands and assemble
them. For this work, it's necessary to classify the domain
used in the existing system by application. We use the
method to analyze commonality and variability, suggested
in MARMIII {14]. We can find inter-reference relations be-
tween Use case model and class by use of class diagram,
sequence diagram and Use case diagram acquired by re-
verse engineering from the existing system code. Domain
information includingthe domain’s quality can be extracted
and managed. After that, components included in each do-

A WE 7% BEHE 2RE E-SARME O18E ZAM 1135

main are classified again by comparing structural agree-
ments with design patterns.

washg
Aoefa

e 4 < f o
@

a8

Business Web App. Distributed s—? g

Domain Domain Environment Domain g 5
s

uoHESYISSE|D)
wauodwo)

(Figure 1) Component Classification

In this paper, we put a limit on components developed
by applying design pattern. Developers who reuse compo-
nents redesign classified domain and its components into
a module that can be implemented in the most independent
way. Components with design pattern attributes can dimin-
ish errors. Large-scale reuse at domain levels as well as
components can be possible if there were components hav-
ing various pattern functions in each domain. (Figure 1)
shows the process of component classification.

3.1.2 Design pattern Structure Based Clustering

Structure based clustering is the step of clustering by
using the structure of components between classes. We set
a structural and behavioral pattern of Gamma that is pres-
ently most used as the criterion pattern and exempt pat—
terns that don’t provide a pattern structure. The clustering
algorithm is an algorithm, which joins similar components
to a category when their structures agree with the criterion
patterns. Structures of patterns and components are ex-
pressed with relation between classes in the class diagram
of UML. To compare structure, one pattern and component

are transformed into a group of order pairs.
P=R,(i,/)(ij)ER, ieC, jelC 1<k<n (1)

P is the order pair of pattern and component, R is the
relation of class, and C is class. Proxy pattern in (Figure
2) can be expressed with order pair, P = {G(2, 1), S(3,2)}.
In each order pair, an alphabet letter means relation of class
diagram and numbers mean two classes. <Table 1> shows
abbreviated words to express the relationship of the class

diagram. The components in (Figure 3) can be transformed

1136 SEMeiE2=EX D M11-DF M53(2004.10)

into order pairs - S(1,2), G(1,3), G(4,3), S5, 4), G(6,5),
G(7,5). The diagrams show that the structure of proxy pat-
tern is included in the component. In this component, the
algorithm to locate proxy pattern is completed by compar-

ing order pairs of two objects.

<<Stereotype>>

the components order pair first, it's necessary to transform
the class expressed by numbers. (Figure 4) shows the order
pair transformation algorithm.

Initial Step P1 = { R1=(1, j1) | a—il, b—jl }
Step2<k<n
Pl ={ Rk(ik, jk) | if ikk=il, ik—a, ji-—>x
if jk=1il, k—x, ji—a
if jk=jl, kk—x, ji—b

Subject
(abstract)

if ik=jl, ik—b, ji—>x }

*Requsst(){abstract}

T

(Figure 4) Component/Pattern order pair transform algorithm

\,/ . - . .
o i | <<Stereatype>> 3 Transformation should be done to prevent bringing dif-
realSubject Y .
“Request() “Request() ferent results whenever the order of order pairs change
H (because it's possible that the class number is optional) and
1
Request(){ it compares regardless if the order changes. The trans-

;ealSUbjem'req”eﬂo; formation proceeding changes the first order pair into any

Proxy Pattern letters. Here, the first class expressed in the order pair is

changed into ‘@’ and the second order pair is changed into

P={G(21), S(32}

(Figure 2) Proxy Pattern's order pair

‘b’. In the remaining order pair, the same number with one
of the first class in the first order pair is changed into ‘a’
and the same number with one of the second class is
changed into 'b’. A class coupling with the class changed

(Table 1> Class Relationship in the order pair is expressed with ‘X’ because there’s no

Relationship Symbol important meaning in comparison even though it is ex-
Association S pressed with any number.
Generalization G
Aggregation E P=G(1,3), G(43), G6b), G(75), S(1,2), S(54)
Composition D = P=G{a,b), G(x,b), G(6,5), G(7,5), S(a, x), S(5,4)
Dependency C
Realization R Like above, class G (1,3) of the first order pair is trans-
formed into (a, b), 1 into ‘a’ and 3 into ‘b’. Also in other
classes, 1 and 3 is changed into ‘a’ and ‘b’, and class cou-
Class1 Class2 pling with order pair (a, b) is changed into ‘x’ because
1 . there’s no relation in comparing with any other class.
Class3
// Transformation algorithms of Basic Pattern
Pf = {Pfl, Pf2, Pf3, ---, Pfk)}
,———4 // pattern order pair comparison
Ifi=0;1<n;i++)
Class4
2 Classs // Transformation algorithms of Component
N N Pf = {Pal, Pa2, Pa3, -, pak}}
AN // if pattern structure is contained in component structure, save
5 [] and exit
ass6 Class7 Pf C Pa
// if structure is Not the Same, change order pair
Pal — Pan, Pak — Pa(k-1)
EndIf

P={S(12), G(13), G (4,3), S (54), G (6,5), G(7,5)}

(Figure 5) Structure comparison algorithm
(Figure 3) Component’s order pair

In the algorithm of (Figure 5), Pf is the criterion pattern

In order to compare the foundation pattern expressed by and Pa istransformation. In order to compare components

using the criterion pattern, a user transforms the criterion
pattern and the components with the transformation algo-
rithm and then compares to see if these two objects are
the same. To find a pattern related with a criterion pattern
among some order pairs showing relation of component,
these order pairs are transformed in order.

After this transformation proceeding, if order pairs sat-
isfy conditional formula (2) below, component, Pa is clus-
tered into the criterion pattern, Pf. If an order pair doesn’t
satisfy a conditional formula (2) even after transformation
of all other order pairs, the component is compared to other.

P, C P,)

(Figure 6) shows a concrete diagramming of comparison
proceedings of the proxy pattern and components.The
proxy pattern is composed of one association relation and
one inheritance relation. Proxy pattern, G{(1,3) is trans-
formed to Gla, b) to search for association relations and in-
heritance relations of the same pattern among components.
In other order pairs, 1 is transformed into a, 3 into b. After
transformation, the order pair of the proxy pattern becomes
(a, b), S(x,b). A component is compared through trans-
formation proceedings and has 4 association relations.
Among these relations, to find the one with the proxy pat-
tern’s structure, one of them will be compared to the order
pair transformed from the proxy pattern through trans-
formation proceeding If there are order pairs having struc—
tures of (a, b), S(x,b), a user pattern is clustered to the
group of proxy pattern. Otherwise, the proxy pattern and
the component can't be called the same structure pattern
and comparing will be continued over again.

6(2.1) Glab)
S(3.2) I - |)]

Proxy Pattemn

G(1,3) G(1.3)
G(3.4) G(3,4)
G(a,b) G(x,b)
G(x.b) Gla.b)
$(1.2) S(1.2)
$(b.x) S(b.x)
Component (a) (b) (€) ()

(Figure 6) Component comparison process

Components clustered by a criterion pattern give linkage
with a relevant criterion pattern. They also give linkage
to all related criterion patterns even when a component has
more than one pattern structure. It even efficiently retrieves
candidate components using linkage at the time of the com-
ponent retrieval.

A IE 708 HEHUE FRC E-SARME 0|83 HM 137

3.2 Component Retrieval using E-SARM

SARM (Spreading Activation Retrieval Method) is the
method used to find more precise and inclusive component
by searching for similar components with a query function
between components and query. Reusable components are
retrieved by calculating the activation value according to
each link connected between queries and components. The
purpose of repeating the process of calculating the activa-
tion value is to retrieve similar components with the exact
activation value. This method is time-consuming because
each query language and activation value of ¢components
are affected by other languages and activation values of
other components. So, in this study, we solve this dis-
advantage of SARM and introduce it into component re-
trieval. We reduced retrieval time by decreasing the calcu-
lation times,which is possible by removing components that
have the least number of linkage information. Link in-
formation means the linkage given between components
clustered by the criterion pattern at the component classi-
fication and criterion patterns. Namely, E-SARM (En-
hanced Spreading Activation Retrieval Method) [15] nar-
rows down the extension scope of retrieval and retrieves
much more related candidate components by removing the
link information of the criterion pattern or of the component
and then exempting it from operation, after the circulation
process is repeated at fixed times.

Patten Component

.
LinkageComp

ChattComp
DAOComp

(Figure 7) Class and Query Relationship

(Figure 7) gives an exampleof the relationship between
criterion patterns and components. It shows that a compo-
nent linked to more than two criterion patterns has struc-
tures and qualities of more than two criterion patterns in-
side the component structure. If you input a criterion pat—
tern "Observer, as a query, three components are retrieved.
The criterion pattern, "Observer, is linked directly to com-
ponents, "LinkageComps and "ChattComp., but not linked
directly to the components, "AccessComp; and "DAOComp..
However, it is linked to two components, "AccessComp,
and "DAOComp. through "Observer,(query : criterion pa-
ttern) — "ChattComp.(component) — "lterator.(criterion

1138 FEMeIE3 =X D XM11-DH X5z (2004.10)

pattern) — "DAOComp, (component), and "Observer,{(qu-
ery : criterion pattern) — "ChattComp, (component) — '
Iterator,(criterion pattern) — "AccessComp. (component).
However, "AccessComp, is exempted in this linkage be-
cause it is less referred to in retrieval processes. Each crite-
rion pattern and component calculates an activation value
referring to it's link node. The reason why fLinkageComp,
is a more frequent result than "ChattComp, is because
"LinkageComp, is referred to more than "ChattComp,. The
simulation results of average reference times for existing
SARM and E-SARM show that the number of activation
value calculations dropped by 37.8%. This algorithm stores
component and base patterns in an arrangement of columns
and rows, and calculates and delivers activation values,
which connect with components.

while
Get_Level = Get_Pos[0] / Endl ; /* position of row matrix */
Get_Col = Get_Pos[0] % Endl ; /* position of column matrix */
if(exist component)
for(all component number)
Array[] =each component value(or 1)
else
for(all query number)
Arrayl }= each query value(0 or 1)
for{query or component number)
if(exist relationship and index is Not last_index)
push Current_index in Stack
query_visit_count ++ component_visit_count ++
if(first query)
initialize query_act_value=1.0
else if(a query)
Di(t++1)=)
30’(2‘) + ¢'D,([)(M' D.‘(t)) if lﬁp,(t) > 0
Sp () +dpUND(t)—m) if ¢p(t) <0
8p,= (1—6,)DLt)
else if(a component)
Ti(t+1)=
Sr(B)+ ¢n (M= TL) i $7(H)>0
Sr{t)+drUNT(t)—m) if ¢ (1) <0
8r,= (1-6,)DL8)
else Err(“Not Calculate Activation Value”)
pop(Get_Pos) ;
if(Not MAX_CYCLE)
{ cycle++ ;
if(cycle > MAX_CYCLE) break ; /* MAX_CYCLE =3~5%/
if(cycle is between 2 & 3)
for(all query and components)
if(query_visit_count or component_visit_count
= current_cycle_count)
{ AvgVisit += VisitNum[] ; cnt++ ; }
if(cnt==0) return 0 ;
else AvgVisit /= cnt ;
}
if (visit_count exist)
for(all query and component)
if(VisitNum <= AvgVisit){
for(j=0,j < Endl ; j++) level0_1[}][i%Endl] =0 ;
Cut_component_value = -999.0 ; }
endwhile

(Figure 8) E-SARM algorithm

This algorithm increases the number of references and
initializes the activation valueby 1. Whenever a reference
happens, the activation value for each query and component
is calculated. After comparison with the average of the
number of references, this algorithm removes the lowest
node(s) based to a standard. Removing node about the
number of reference by such a method and the number of
activation value calculations decrease, hence the speed im-
proves at the same time. The retrieval result is kept ex—
istent with SARM’s maximum result. The exclusion stand-
ard is improved so that errors of existent SARM and 1.23
retrieved components may be able to exist but similar com-
ponents are retrieved faster.

(Table 2> E-SARM Parameter
Symbol Definition

8p,(t) | Pre-activation value decreased by criterion pattern reduction ratio
¢5,(t) | Input value coming into present component i
M Maximum activation value = 1.0
D.(¢) | Cumulative component activation value of previous step
op Component reduction ratio = 0.1
87(¢) | Pre-activation value decreased by component reduction ratio
¢ (t) | Input value coming into present criterion pattern [
m Minimum activation value = -0.2
T(¢) | Cumulative criterion pattern activation value of previous step
8y Criterion pattern reduction ratio = -0.2

<Table 2> gives us a definition of the variables for the
activation value calculation used in the E-SARM algorithm
(Figure 8), where the criterion pattern and components ac-
tivation value is calculated using metrics. The more times
circulation is repeated, the more stable the activation value
becomes. The part where reference times don’t conform a
standard is removed automatically and the calculation
process ends.

4, System Design

4.1 system repository

The system repository in this paper is composed of an
information database where general information on the cri-
terion pattern and components are saved, and the structure
database where structure information of the UML class di-
agram is also saved. strCategory gives information on the
domain classification. docDocument is the field which ex-
plains the whole-component it's principle, intention, appli-
cable circumstances and what is necessary to recognize the
component realization ; pitfalls, hints and techniques. rel~
Com is a criterion pattern related to components classified
by clustering. UserlD stand for the identity of the user who

creates and registers a component. <Table 3> shows the
layout of the component information database. <Table 4>
depicts the component structure database. Information of
component structure includes image expressing the struc-
ture of the components class diagram and information of
the component’s order pair to conduct clustering for com-
ponent classification. As shown in <Table 5>, pattern in-
formation uses a form that is used on Gamma’s design pat-
tern expression, and pattern classification by Agerbo’s esti-
mation and user ID that are registered are stored in addition
to the pattern information database that stores the
information.

{Table 3> component information databas

Field Name |Data Format Description
strName char Name of component
strCategory char Category by domain classification
docDocument text Description about component
relCom Link Criterion pattern related to component
UserID char Component registrant’'s [D

(Table 4> component structure database

Field Name | Data Format Description
strName char Name of component
imgStructure image Image of component structure
StrPair char Information of order pair
strPattern char Relevant pattern
{Table 5) Pattern information database
Field Name |Data Format Description
strCategory char Classification by use purpose
strAnalysis char Classification by verification
(FDP, L.DDP, RDP)
StrName char Design Pattern Name
docIntent text Principle and intention
docApplic text pattern application
imgStruct image Image of pattern structure
docPartic text Class and object of design pattermn
docConseq text Result of pattern use
g || P s
docCode text Pattern code by C++, Java
docRelated text Difference of Related pattern
Mem_ID char User ID

A pattern that is classified according to use purpose by
the strCategory value is used as a facet in facet retrieval
with the strAnalysis field value that is classified by FDP,

2 W i HEHE FFQ E-SARME 0183 M 1139

LDDP, and RDP. Also, an user who registers a pattern can
correct and delete this pattern to register by oneself be-
cause they can confirm the user ID through the Mem-ID
field. The DocPartic field amounts input value that can de-
scribe the class name such as the class or the object that
takes part in the structure of the design pattern, and change
it's specific pattern structure to a pattern structure that
consists of abstract class names when creating a code.

4.2 System Structure '

As shown in (Figure 9), this system stores information
that includes the class name, level, super-class, and the
member function of the component information in re-
pository through a syntactic analyzer. The repository con-
sists of three areas : Data, Process, and Viewer area and
if the user inputs a query through the retrieval viewer, after
the activation value is calculated by E-SARM, the compo-
nents appear by their priority of their activation values.
This time, if the user copied and pasted the selected compo-

‘nent in the diagram to reuse this component, the component

information, the source code information, and the graphic
information move automatically. Also this system corrects
components in order to ensure compatibility with the sup-
port editor. And this made editor supports the functions of
the member function, the variable declaration etc. If any
class is selected in the class diagram, the editor is supported
with its source code, and if this is stored after modifying
the code, the code information is updated in the component
repository and can then be reused. The whole system
structure in this study is composed of four tools - a compo-
nent retrieval section, a component browser, a pattern
browser and a S.A device. We constructed a pattern library
and a component library separately to save an abstract pat-
tern structure and concrete component structure.

We used the structural pattern and the behavioral pattern
of Gamma as a criterion pattern and omitted patterns that
didn't provide any pattern structures. Developers can re-
trieve a component that they wish to reuse by use of a
component retrieval device. If one selects qualities such as
domain, function, type and OS of the component, one wants
to retrieve components, using an interface that provides the
component information, and then a component browser re-
trieves this component satisfying these qualities in a com-
ponent library. A S.A device calculates the activation value
of the retrieved component with a criterion pattern and then
extracts similar candidate components. Besides this, it also
conducts a query by a pattern as well as by a component
and supports to retrieve components doing a function or

1140 EMeIFS=&EX D M11-0 X5%(2004.10)

a role of a criterion pattern even if a component cannot be
properly set up. At this time, the pattern browser retrieves
the criterion pattern and the S.A device retrieves the
components. The system suggested in this study can raise
the efficiency of component reuse by providing the most
appropriate component to query and similar candidate com-
ponents in order of their activation values.

Class_Name
Level_Num
Syntax _Class
*| Anaiysis [17 sub_Ciass
Data Class_Name dethod_List
Method Var_List
Data_Type Inheritance_Infor
Class_lnheritance
Source_Code Enhanced
P! g M-» Component
Sigone Infor_Extraction Activation Retrieval
Infor_Graphic link
Infor_Relocation | Retieva]) Diegram
Viewer Viewer
Viewer Class_Hierarchical_View
Class_Code_View
Class_Elements_View
i ator_Vi
e # Reuse M4 Reuseand Edit

—- Component Retrieval part Pattern Retrieval part

Component j
L\Drary

(Figure 10) System structure

Pattern
Library
— e

5. Performance Evaluation

In <Table 6>, we compare the system we designed to
existing component related systems. SCF (Software Com-
ponent Factory)[16] of Select corp., Together [17] of Toge-
therSoft corp. and COOL : Joe2.0 [18] of Computer Asso-
clates corp. are representative tools for component de-
velopment. We compared our proposed method in this paper
with these three systems to see how efficiently our system

reuses components during the component creation process.

{Table 6> Reusability Comparison

SCF Together |COOL : Joe2.0| Suggested system
component « . A o
discrimination
pattern x x x 0
application
Domain reuse x x x 0
Component “ « Platform Platform
Modeling subordinate independent
- BP CUML - UC - UC modeling
Domain modeling ’ modeling - Object modeling
. diagram X
Modeling |- UC modeli Type - Sequence
modeling ng diagram diagram

“w "

~“x" means that the system doesn't support a certain
function at all, “A” means an imperfect support, and
“O”"means a perfect function. SCF and Together support
the function of the component interior design and realiza-
tion, but don't support the component modeling function,
which discriminates some components and expresses them
diagrammatically. COOL : Joe2.0 can discriminate the E]JB
component on the system architecture and support compo-
nent modeling function. However, this system causes a re—
using problem in circumstance of other platforms like CCM
or COM because it creates a platform-dependent com-
ponent. In order to increase reusability between platforms,
the suggested system hides the specific code for realization
by retrieving the component in consideration of the only
pattern structure applied to the component, and gives us
the component structure with a diagram. Component reus-
ability and portability between platforms can be increased
by classifying reusable components by function and show-
ing their structures with a diagram. In addition, it supports
the retrieval of candidate components and classifies compo-
nents by domain ; so large-scale reuse at domain levels can
become possible.

Also, through classification by criterion pattern, compo—
nents retrieval consists easily using E-SARM if the ex-
tended components have connection information for a basic
pattern because components are classified in a form that
they extend in this basic pattern. Via characteristics of the
retrieval model, the classification method, the similar pat-
tern retrieval, modeling tool etc., <Table 7> shows com-
parisons between existing systems and the system that has
been designed in this paper. We compared our system with
ModelMaker [19], Omnibuilder [20], Plastic [21] and Meta-
Edit+[22] which are often used as a CASE tool. Plastic
or MetaEdit+ is available by UML modeling but manage-

ment and retrieval of components do not consist efficiently
because an independent retrieval model or classification
model does not exist. Also, pattern based systems, such
as Omnibuilder and ModelMaker, are using Gamma’s pat-
tern classification as a standard but there are difficulties
to retrieve and manage patterns that are added con-
tinuously because they use a string matching method for
retrieval, which is only available ifthe pattern name is
known.

Thus, in this paper, our proposed method is that UML
modeling which is already available, and automatic classi-
fication by structure based clustering which is also avail-
able, are to run in parallel with a similarity component re-
trieval method using E-SARM

(Table 7> Comparing of existing

Modelmaker | Omnibuilder | Plastic 3.0 | Metaedit+ | Suggested

19 {201 [21] [221 system
Component Pattern Pattern Class Class Pattern
Retrieval SUir\g String String Sm’ng E-SARM
Model matching matching { matching | matching
Modeling Tool| Template | Template | Component | Component | Pattern
Addition 0 0 ¢} 0 o)
Rifg_{“;j; 0 0 0 o 0
Classification Gamma Object {Enumeration] Enumeration| Clustering
Method

(Table 8> Precision and Recall

Reca Praiso) reison

0.1 0.72 0.98

02 0.70 094

0.3 0.69 0.90

04 0.68 0.86

05 0.66 0.83

06 063 0.76

0.7 061 0.72

08 057 0.66

09 0.53 0.60

1.0 0.48 053

Avg. of Precision 0627 0.778
Enhanced Avg. - 24.08%

In this paper, we measured the recall and the precision
to evaluate the efficiency of the retrieval system which uses
the E-SARM. The method is the recall and precision in
case that E-SARM and existing SARM is applied. 100
queries is selected with option, and average of the precision
is compared after measuring the precision change of two

22 N V(e HEHE FJ7Q E-SARME 0183 M 1141

cases, changing the recall with 0.1 units. <Table 8> is to
show the precision and recall of two cases. The result of
this simulation shows that the E-SARM is higher 24.08%
(((0.778-0.627)/0.627)*100) degree than existing SARM.

6. Conclusion

We need an interface that makes it easy to retrieve a
component among other diverse components, assemble this
component and use it, hence satisfying users’ demands.
When we develop software as a unit of a component, com-
ponent classification is required for efficient management
of many components. In this paper, we try to manage com-
ponents efficiently and provide a more exact component re-
trieval method using similar candidate components satisfy—
ing demands of users. We classified components of existing
systems into an application domain, did clustering by use
of the criterion pattern’s structure in each domain, and con-
structed a component repository. The structure of criterion
patterns and components change between classes into order
pairs and checks to ensure there is a criterion pattern’s
structure in each component.

A clustered component has a linkage with a criterion
pattern. Using the E-SARM algorithm based on relevant
information has enhanced the precision of component
retrieval. Retrieved components appear as several candi-
dates in priority and their structures are shown dia-
grammatically. Therefore, developers can do a platform- .
independent design because they can reuse components
without regard to a specific code or realization in designing
a new system.

From now on, the study of specific modeling that is ap-
plied largely to diverse domains and components and the
study of an efficient method to assemble components are
required. A study on a classification method in case of more
than two pattern structures being applied on a component
is currently being conducted.

References

[1} George T. Heineman, William T. Council, “Component
Based Software Engineering,” addision-wesley, pp.143-
160, 2001.

[2] A. M. Zaremski, J. M. Wing, “Signature Matching : A
Tool for Using Software Libraries,” ACM Transaction
Software Engineering and Methodology, Vol.4, No.2, 1995.

[3] A. Podgurski, L. Pierce, “Retrieving Reusable Software by
Sampling Behavior,” ACM Transaction Software Engin-

1142 Z2XEI=2=2X D HM11-DH X5=(2004.10)

eering and Methodology, Vol.2, No.3, 1993.

[4} A. M. Zaremski, J. M. Wing, “Specification Matching of
Software Components,” In Proceedings of the third ACM
SIGSOFT symposium on the foundations of software en—
gineering, 1995.

(6] Seung-Geun Lee, Chi-Don Ahn, “Reusable Component
Retrieval Based on Software Architecture,” The Transac-
tions of Korea Information Science Society, Vol.27, No.11,
pp.1099-1105, Nov., 2000.

[6] Haeng-Kon Kim, Ha-Jung Choi, Eun-Ju Han, “The
e-Business Component Construction based on Distributed
Component Specification,” The Transactions of Korea
InformationProcessing Society, Vol.8, No.6, pp.705-714,
Dec., 2001.

[7] Seong-Man Choi, Jeong-Yeal Lee, “Design and Imple-
mentation of IDAO for Efficient Access of Database in EJB
Based Application,” The Transactions of Korea Infor-
mationProcessing Society, Vol.8, No.6, pp.637-644, Dec.,
2001.

[8] Scott Henninger, “Information Access Tools for Software
Reuse,” System Software, pp.231-247, 1995.

[9] E. Gamma, R. Helm, R. Johnson and J. Vlissides, “Design
Pattern : Elements of Reusable Object-Oriented Soft-
ware,” Addison-Wesley, 1995.

[10] F. Buschman, R. Meunier, H. Rohnert, P. Sommerland and
Stal Michael, “Pattern-Oriented Software Architecture-A
of Pattern,” John Wiley & Sons, 1996.

[11] W. Tichy, Essential Software Design Pattern, University
of Karsruhe, 1997.

[12] P. Bengtsson and J. Bosch, “Scenario-based Software
Architecture Reengineering,” in Proceeding 20th ICSE,
IEEE, Jun., 1998.

[13] Shim U. K, Back I Sup. Lee J. T. Ryu K. Y., “The Value-
Added Brokerage for Steering the CBSD Environments,”
The Transactions of Korea Information Processing Soci-
ety, Vol.8, No.6, pp.681-690, Dec., 2001.

[14] Joe H. J, Ha J. S, Kim J. S, Park C. S., “Component based
System development Methodology Marmi-1I,” Project
Management Technology, Vold4, pp.1-13, 2001.

[15] Jung-Soo Han, Young-Jae Song, “Orient-Oriented Com-
ponents Reuse System using Enhanced SARM,” The
Transactions of Korea Information Processing Society,
Vol.7, No.4, pp.1092-1102, Apr., 2000.

[16] http://www.anonix.comy/.

[17] http://www.together.comy/.
(18] http://www.cai.com/.

{19] www.modelmaker.demon.nl/.
[20] www.omnibuilder.com/.

[21] www pasticsoftware.comy/.

[22] www.metacase.com.

IR

e-mail : scallet@case kyunghee ackr

1904 TSk ARAE S E D

19961 ghdefsta A AA3E o
(FSHAAY

2003 A3 ek Ax}A g s
(Fshupap)

2001 ~AA gt PR us

HHRoF: AZEY TS, S/W AAHE, CBD

B & %
e-mail : jshan@cheonan.ac kr

19909 B3 THSHL AAALESIHFEAD
19923 A3 digta A& FA g8}

(FFHAD)
| 20006 Zsojsta ARE e
(E3haap)
2001~ A Aorhga YRFASY 20s
e P48, EJB, W A3

= o xj

e-mail | yjsong@khu.ac.kr

19693 <Qlstehstn d7] 3 SA(F A

197613 4 Keio University HAHghs}
(F-8 A1)

19799 WA D QEAEA(F A

19713 ~1973d 4+ Toyo Seiko AT¢

19823 ~19833 ®| = Univ. of Maryland A48s} 4t w4

198514 ~1989'3 IEEE Computer Society 3= x]3]% 34

198413 ~198913 A 8|t stal AP ALAS

1993 ~ 1995 A &l gt wFH 3

19961 ~1998\d A & 3t F ok

1998 ~2000d A distn 7192 A

1976 ~ 8 A A8 atal ARALTE ST wp

THE: AXEYFE, OOP/S, CASE =7, S/W Mdx

T8, S/W A4, CBD

