YAE QLEME QA2 T 2o HE2/AHOM JHY THAAT 1143

YAS 2LBAE 2l S 3 B4 A EFAllA MY

A i E AN A OAF 2d T B4 oPEAE ARl A Yuizteld e} solAl A4vte) da 2a) dejE Hejs)
Abgol gk 1, dlolEdol s 3 R A, EAAY A F ol 7HA) AE nwsteol doh B =EANE B dEuAeld A
o DHAE diE AZN e YAF eBAE wlal WHE AM83h: DONSL(Data Server of Non SQL-Query) o} =211 & Attt} o
oMHA e EAAA A€ A9stn WASF DBMS Atold e 24 & dedshe WS B4 e 2R FRoY Agd g
A 2 g9 74 AZGen s A4S ¢t A71aL AEElY DAOData Access Object)& MAAZ 22X FUTE Alo|E THE o5}
A st e Aledct

A Framework for Developing Distributed Application
with Web-Tier Object Modeling

Sang-Ho Cheon' - Ki-Hyeon Kwon'' - Hyung-Jin Choi™"

ABSTRACT

To develop multi-tier model or distributed architecture based distributed application needs to consider various aspects such as division of
role between web-designer and software developer, defining entity and its usage, database connection and transaction processing etc. This paper
presents DONSL(Data Server of Non SQL-Query) architecture that provides solution to above aspects through web-tier object modeling. This
is the architecture that guarantees the transaction processing and performance between web-tier and DBMS through simplified usage of query
logic property. This new conceptual framework also solves enterprise site implementation problems simplifying tier, and removing DAO(Data
Access Object) and entity.

FIN= : B4 0TI X (Distributed Architecture), AXEHN T KA (Software Framework), MHE 2BHE DY (Web-Tier

Object Modeling)

1. Introduction

In recent days, there is significant increase in the re-
searches related to the application of framework and pat-
tern on system over the Internet and distributed environ-
ment[1 - 3] instead of old QOHDM[15] Model.

The need of application is for maximizing the mutual
operation, composition, extendibility and reusability of the
web-application. And it also makes possible to divide the
once-written system into various classes, easing the sys-
tem upgrading and expansion[b, 6]. But, various facilities
are needed to develop a system using framework and

+
t+
tHt

o

b gdopsta gy 4aE e
1A diste gRENgeta sy

) Adoiatn AEE ety wg

120049 54 39, AR 120049 69 28

o

o

rir o oL FiN
g
e

pattern. If the ultimate goal of using framework and pat-
tern is maximizing reusability and satisfying mutual oper-
ation, the division of work between web designer & soft-
ware developer, sharing of entity within the system, au-
tomatic creation of SQL-query to connect database and
transaction processing through agent should be done[5].
In this paper, instead of making improvement on exist-
ing WAS(Web Application Server), DONSL(Data Server
of Non SQL-Query) architecture is designed and im-
plemented which is more effective and has improved de-
velopment productivity. Chapter 2 contains theoretical co-
ncepts and drawbacks of n-tier structure and MVC
{Model View Controller)-framework. Chapter 3 proposes
MVC Model based DONSL architecture and also contains
the detail explanation of distributed TX spec., DONSL

1144 SE2MIE2=&XI D M11-DAH H|52(2004.10)

agent, development roles and advantages of DONSL ar-
chitecture. In chapter 4, we describe the implementation of
DONSL architecture and its performance. Finally, we con-
cluded with conclusion and future research to be done for
maximizing the result of DONSL architecture.

2. Software Framework and MVC Model

2.1 N-Tier Architectures(3-tier and Multi-tier, WAS Tier)

Browser, application server that is connected by servlet
or CGI(Common Gateway Interface) and database store
forms 3-tier architecture, Though object modeling and im-
plementation is simple, but it lacks the solution to complex
web application required by any enterprises. And, the proc-
essing time also increases as the user number increases(4].

Multi-tier architecture-WAS tier satisfies the complex re—
quirements and improves the multi-user processing speed.
And, it also separates clearly the presentation part and busi—
ness logic part. But it requires the detail understanding of
distributed architecture making object modeling complicate.
And, it holds high chances of error occurrences which can
lengthen development time, and can make maintenance
handy.

22 MVC Framework & Entity : Roles and Weaknesses

MVC{(Model View Controller) framework is the structure
that minimizes the alteration effects through function encap-
sulation[11, 16]. Hence, it is accepted as a nice method in the
perspective of system expansion and maintenance. Model is
expressed in terms of entity in distributed system. And, en-
tity is very important factor since all other entity related
items must be modified if entity needs modification. It takes
long time while projecting object as entity at the time of ob-
ject-oriented analysis and designing. There is also difficulty
to implement presentation entity and DBMS entity sepa-
rately.

These problems tighten the coupling between tiers and be-
come obstacle on the system development and maintenance.
Since SQL query is always dependent on the database, the
logical part of SQL query DAO entity needs to be considered.
The changes in SQL query logic, entity and database affect
all tiers. If the developer can work on any system develop-
ment without worrying much about entity and DAO, compli-
cated web application can be turned into simple.

2.3 MVC Model based Object Modeling
This architecture applies MVC concepts to web-tier in
WAS using entity as model, WorkBean as view and

Controller bean as controller. This structure does modeling
only about web-tier where as WAS tier is handled by auto—
matic transaction processing. And, the entity between each
tier can remove tight coupling problem among tiers through
common APL

3. DONSL Architecture based on MVGC Model

3.1 DONSL Architecture

DONSL architecture consists web tier, WAS-tiered DO
NSL container and database. Web tier uses IResult entity
as model, WorkerBean as view, and Controller bean and a
gent as Controller applying MVC concepts. DONSL contai
ner connects object pool agent and executes the automatic
SQL query, and provides communication among each tier
on XML basis. In this architecture, the developer develops
only XML property used from JSP, WorkerBean, Connenc
tion, Agent and Database. The advantages of this architec
ture are as follows :

¢ Object modeling is done from the web-tier
¢ Entity is used globalizing entity(IResult)
e SQL-query logic is created automatically
(setting SQL properties)
¢ Default agent is used while handling flat Tx(API provides)
e Agent for complex Tx handling can be added

a Web-Tier N :
DONSL
ij container
(o) -
‘ Cantroller(C) ! LD
{ DONSL Connection(APl) ['Fro=
[IResult(M) .\W Virtual]
T g Aseess)
[Agemi) }
% (Runtiose

_toee |

(Figure 1) Multi-Tier Architecture of DONSL

3.2 DONSL Distributed Transaction Specification

Transaction processing of DONSL distributed architectu
re is done by making accessible it through unit transactio
n from web-tier and by including it in primitive SQL-que
ry or unit transaction. Automatic processing of transactio
n unit is done by executing agent for container forwarding
encapsulized transaction from DONSL container to agent.

3.3 DONSL Agent

DONSL agent is used for processing complex transaction,
DONSL container forwards the encapsulized transaction obj
ect to the agent and calls the execution method of agent.

Ex.) Source Code of Agent Interface :
public interface IDonslAgent extends 10bject {
public void unset() ;
public IResult execute(IUserTransaction ut)
throws SQLException ;

From above example, the return value IResult type ob-
ject is transmitted to web-tier. And Agent moves to
DONSL container at the run time reducing the resource
load.

3.4 Admin Tool

Admin tool is the tool that manages all settings of
DONSL-Tier. Web-tier setting is set making accessible
through unit Tx. And setting steps are DB setting, primi-
tive SQL-query setting, transaction setting. This tool is
used as developer's reference tool for making possible one
side object modeling(web-tier).

3.5 Development Roles

In DONSL architecture, web-designer and developer
handle JSP part where as WorkerBean, Controller and
Agent are handled by developer alone. And, developer al-
so looks DONSL container that is connected with DB.

36 Advantages of DONSL

First, one side object modeling becomes possible in dis-
tributed environment. Second, it also shortens developing
time making TxX processing simple and error modification
easy by converting(DAO class remove) SQL~query logics
into SQL-properties. Third, error modification time can be
shortened by converting object transmission among tiers
into XML(Entity class remove). Fourth, it supports the
distributed transaction and has many other advantages
like performance maximization, WAS-tier development in
low cost, low maintenance cost, reduction in extra educa-
tion time for existed WAS, maximization of expertness of
advance technician and reduction of WAS internal struc-
ture learning time etc.

4. Prototype Implementation and Performance Evaluation

4.1 Prototype Implementation

DONSL prototype can be divided into two parts, DO-
NSL container and DONSL client. DONSL container is
again composed of 4 packages, connector package that
looks communication with client, Tx package that handles
transaction, ClassLoader package that looks dynamic class

YHE QENE Ldglg 8% F4 OHECIHOM 7HY T3 1145

loading of agent. Finally, Pool package that manages da-
tabase connection and object resource.

In the (Figure 2), the arrow dotted line shows the de-
pendency relation and the most important thing is weak
dependency between ClassLoader and Tx package. The
prototype is designed prioritizing weak dependency pac-

kage.
1 1 .
Donsl Client Connector ClassLoader
STA
RSV AR !
Tx Pool
——————— >

(Figure 2) Prototype Package

First, ClassLoader is implemented getting inheritance
from J2SE API ClassLoader class since it is the weakest
dependency package. Second, Tx package being the most
core part of DONSL architecture manages the creation
and processing of transaction. The class diagram of Tx is
as follows:

TxManager handles start and end of all unit transaction
as shown in (Figure 3).

TxManager O<} O
NOhJecl% WorkUnit
‘ .
AN
1
TxProcessor | 4 1| DefaultDonsiAgent \
—Q O

! T IDonslAgent IUserTransaction
\ <
k<use>> A '
1 \ ! 7

UserTransactionFactory

UserTransaction | 4 0.* | WorkUnit

(Figure 3) Class Diagram of Transaction Processing

TxProcessor encapsulates the transaction setting details
of DONSL admin tool item-wise. It passes User Tran-
saction to the agent, and calls the agent's execution
method.

DefaultDonslAgent is implemented executing WorkUnit
Collection that is included in UserTransaction using pas-
sed UserTransaction.

The relation between UserTransaction and WorkUnit is
One to Many ie. many jobs can be run in one tran-
saction. In real implementation too, UserTransaction class
includes WorkUnit collection.

1146 FEXM2EZ=FX D H11-DP H53(2004.10)

What we have to notice from (Figure 3) is TxPro-
cessor, DefaultDonslAgent, UserTransaction, WorkUnit all
commonly get inheritance from IObject. And, these class—
es get inheritance from one super interface to reduce me-
mory overload being possible to be managed from object
pool.

Third, pool package implemented connection pool and
object pool using general cache pattern. And, connection
pool manager was implemented for managing connection
pool for each distributed database and object pool manag-
er for managing object pool for each object type.

Fourth, Connector package was designed using Servlet
which can execute DONSL container from any servlet
container.

Fifth, since DONSL client package should communicate
with Connector package, it was designed based on servlet
making accessible to servlet.

Finally, DONSL admin tool was developed using Web
based JSP.

Admin tool consists menu for each item as shown in
the (Figure 4) below so that all items related to trans-

action and details of each item can be set from each

menu.
DONSL AdminTool
« Tratisaction Detail < LISy
¥ fratrechon
e [ETEET SR
nBAGRn!
o YOS RN Nae AHICLE LiST YN + Sapsanton Yow e a
- N + fLomaned ‘iﬁrﬂ 4 3!
Databie » bt e g i Dl At Stk
g ~ Fasater Siames Oor A6
Systom Ot ool << Pwamete Al]
ol
LU < Cwhite
= Pameres Nama e S04, S Transacken) - Aead Grey

l« N

- Sl Wk K €HI o Tranaaoesn}
BAgSt A << M8, RS

Trama tun froert thawe Dolete

(Figure 4) Admin Setting Tool

4.2 Prototype Usage Procedure

To develop projects using prototype, it is necessary to
have project analysis and design at first. The followings
are the setting procedure of DONSL admin tool :

First, transaction list is registered based on analysis
and designing. Transaction list is made on the basis of all
transactions included in the project requirements. Trans-
action list is registered as in the figure executing trans-
action menu from DONSL admin tool. Being initial record,
Unique transaction name and comment should be given,
and details can be added later. These settings can be a
handful material while analyzing and designing any pro-
ject.

Second, database is registered. Since the transaction
projected from any project can be related to various data-
bases, so the related databases should be enlisted in
detail. Database list is also managed with unique name.

Third, SQL is also enlisted. The SQL details are set for
accessing database as low executing module of unit tra-
nsaction.

SQL settings consists unique SQL name, Objective da-
tabase, input parameter and type, SQL-query. After set-
ting the details, SQL tuning can be possible at anytime
without modifying the programming code.

Fourth, unit transaction details are completed. The set-
ting of agent, input parameter, SQL list etc is done.

In real, the automatic transaction processing of DONSL
container is the execution of SQL list using set agent af-
ter getting input parameter based on transaction details.
This setting can be changed anytime without caring pro—
gramming code.

Fifth, when the execution method of Transaction SQL list
is not simple and serial, in other word, when it is compli-
cate, the developer defined agent must be implemented. At
this time, after setting necessary agents from agent menu,
Transaction details can be changed. The agent program-
ming code can be uploaded directly or after compilation.

Finally, the DONSL server settings are completed after
finishing transaction setting and saving admin tool setting
details. Now, only client programming is remained which
can be done almost similar like general JDBC progr-
amming. The following is the source code for accessing
DONSL server from client :

DSURL url =
new
DSURL("dons: http:nc: hit: hong/ test@ localhost:8888: ds/Dons™) :
DSConnection conn =
DSConnectionFactory getDSConnection(url, null) ;

String(1 paramNames = {"COFFEE_NAME"} ;
// Tool setting parameter
// Tool Parameter Name

—*

Stringl 1paramValues ={"java"} ;

DSStatement stmt = conn.createStatement()
stmt.setParams(paramNames, paramValues):

String txName = "“Test1l _TX" ; //Todl setting Transaction Name :
stmt.execute(txName) ; // Network DONSL server
IResultSetHouse house = stmt.getResultSetHouse().

[ResultSet result = house.getResultSet(0) .
while(result.next())

System.out printin(result.getString("coffee__name”)) ;
}

(Figure 5) Client Source Code

4.3 Performance Evaluation

Performance evaluation was done comparing with J2EE
platform Java PetStore sample application. DONSL simply
changed Java PetStore sample application into DONSL
server accessible format.

For making overload used in the test reasonable, the
following settings are done in the Stress Tool.

e Warm up Time : 1 minute
® Measurement Time @ 5 minute
¢ Think Time : 5~35 seconds(avg. 20 sec)

For the best result, the actual test was done taking
measurements after passing warm up time and each
user’s think time.

Setting hardware and overload percentage properly, the
test was done generating request from more than 50 vir-
tual users till occurrence of socket error or internal server
error(HTTP error code 500). Following result (Figure 6)

was obtained :

25000
EJBTTLE
20000
15000
7
E
E’ 10000
= DONSL TTFB / TTLB
5000 ,
A/{ . = 4,-”//
Q

50 100 150 200 250 300 350 400 450 500 550 600 650 700

User

(Figure 6) Response Time Comparison Graph

. o TTFB(Time to First Byte) : The time after sending
request and till getting first 1 byte response
e TTLB(Time to Last Byte) : The time after sending re-
quest and till getting whole

Analyzing the above graph what we proved the DO-
NSL server yields the 5 times good performance when
the users are 50 and if more, there is more significant
difference.

In case of J2EE environment, the measurement was not
possible due to the occurrence of socket error when there
are more than 250 users.

After from this nature, the number of classes and code
length per module was also measured for comparing
productivity. The clear difference was seen due to use of
agent in DONSL for managing complicated transaction.
The following is the module class comparison table of

=L

& QENE ZAgg o i HESIHOIE MY Zo

233 147

PetStore sample application.

(Table 1> Module class comparison of PetStore application

Module Page J2EE DONSL
com.sun.j2ee.blueprints.signon.ej
Login b.SignOnEJBcom.sun.j2ee.bluepri
nts.signon.user.ejb.UserE]B DEFAULT]
Account - -
X com.sun.j2ee blueprints.customer. | AGENT
View Account | . . .
X ¢jb.CustomerEJBcom.sun.j2ee.
Information)
blueprints

As seen in the above table, EJB uses module wise
multiple classes where as DONSL uses user defined agent
in the complicated transaction. For example, there was
just one agent used for PetStore sample application. The
remaining model used DefaultAgent included in the
DONSL which eased the coding job. This is due to the
DONSL admin tool settings.

In conclusion, it was proved that DONSL is notably far
better than J2EE environment comparing performance and
productivity.

5. Conclusion and Future Research

The need to improve MVC model based object model-
ing is growing due to the increase in the complexity of
web application. We proposed new DONSL architecture
based on MVC model to facilitate those concerns.
However, limitations of this research should also be noted
in order to motivate and guide future research.

First, we classified DONSL Architecture into Web-Tier,
WAS-tiered DONSL Container and Database. Web-tier
uses MVC [Result entity as model, WorkerBean as view
and Agent as Container making good deal of MVC con-
cept where as DONSL container works as a bridge
among tiers. The developer only needs to develop XML
property which is used from JSP, WorkerBean, Conne-
ction, Agent and Database which eases his job. And,
DONSL architecture brought the efficient handling of co-
mplicated transaction through the usage of agent and
hence, it was proved to be an ideal solution for compli-
cated web application,

Though DONSL architecture provided much relief to
the enterprises who were looking for the solution to pres-
ent complicated web application demand of users, there is
still a lot to do for improving broad acceptance of
DONSL architecture and its reliability. For that, the future
research should be concentrated to find the solution to
following points :

1148 22X Z8l=F X D M11-0F M5 (2004.10)

e Standardization of communication protocol between
DONSL client and server

¢ Interface for other regacy systems apart from DB

® Providing WebService of DONSL Transaction

(the WebService that communicates via HTTP/SOAP

protocol for better co-ordination among enterprises)

References

[1]1R. Johnson, “Frameworks = Patterns + Components,”
Communication of ACM, Vol.40, Oct., 1997.

[2] F. Bushchmann, R. Meunier, H. Rohnert, P. Sommerlad and
M. Stal, “Pattern-Oriented Software Architecture A Sys-
tem of Patterns,” Willey and Sons, 1996.

[3] M. Jacyntho, D. Schwabe, G. Rossi, “A Software Architec—
ture for Structuring Complex Web Applications,” In
International World Wide Web Conference(www2002),
2002.

{4] K. Lijima, J. Ivins, “An Alternate Three-Tiered Architecture
for Improving Interoperability for Software Components,”
In International World Wide Web Conference(www?2003),
2003.

[5] F. Marinescu and E. Roman, “EJB Design Patterns Ad-
vanced Patterns, Processes and Idioms,” Wiley and Sons,
2002.

[6] T. Fischer, J. Slater, P. Stromquist and C. Wy, “Professional
Design Patterns in VB.NET Building Adaptable
Applications,” Wrox, 2002

[7] Berg, Daniel J. and Fritzinger, Steven, “Advanced Techni-
ques for Java Developers,” Wiley and Sons, 1998.

[8] Mowbray, Thomas J. and Ruh, William A. “Inside CORB
A Distributed Object Standards and Applications,” Add-
ison Wesley, 1997.

[9] S. H. Cheon, G. H. Kweon, H.]J. Choi, “Developing a
Automatic Components Creating System in Distributed
Environment,” Korea Digial Context, Vol.2, 2001

[10] David m. Geary, “Advanced JavaServer Pages,” Prentice
Hall PTR, 2001.

[11] Steve Burbeck, “Application Programming in SmallTalk
-80 : How to use Model View Controller(MVC),” Available
at http://st-www.cs.uiuc.edu/users/march/st-docs/mv.ht
ml. 1992.

[12] E. Gamma, R. Helm, R. Johnson and J. Vissides. “Design
Patterns : Abstration and Reuse of Object-Oriented Des-
ign,” In European Conference on Object-Oriented Pro-
gramming Processing(ECOOP'93), Vol.707 of Lecture
Notes in Computer Science. Springer-Verlag, July, 1993.

[13] Orfali R.,, Hashley D. and Edwards, J. “The Essential Di-

stributed Object Survival Guide,” Wiley, 1996.

[14] D. C. Schmidt, “Experience using Design Patterns to Deve-
lop Reusable Object-Oriented Communication Software,”
Communication of ACM(Special Issue on Object-Oriented
Experiences), Vol.38, Oct., 1995.

[15] D.Schwabe, G. Rossi, “An Object-Oriented approach to
web-based application design,” Theory and Practice of
Object Systems(TAPOS), Special Issue on the Internet,
Vol4 #4, pp.207-225, Oct., 1998

[16] G. Krasner, S. Pope, “A cookbook for using the model-view
controller user interface paradigm in Smalltalk-80," Journal
of Object-Oriented Programming, Voll, No.3, August/
September 1988, 26-49 MVC-based Architecture for e-
commerce. Journal.doc 22/22.

HAa4s

e-mail : shcheonbl @empal.com

1986'd M Zdjsta 38t a}(o]) 8FAL

2002\ Z A gt AFH I

(o] 84 AL

19853 ~1989d ghsheF Ak

1989'd ~1997d (F) DB 7%

1978~ A A (F)LEA| 2 2 gl FolA}

20029 ~ A Zddigtn gy PFe et ALy

WA ROk AEVE A&®, B4 A2d, s

A 7 8

e-mail : kweon@samcheok.ac.kr

1993 st A2 A AT (o] EhAL)

19959 Qs dekel AxAaksta
(el 84

0008 AAsE ot AFEE}ea
(o] ghubap)

1098 ~2002¢ FARS QA B wy

20024~ @A AN BREAFEH @5

A ROE: B4 A2, v E9lol, dutE 2xEg ol

28z
choihj@cc.kangwon.ac kr
Juoishin 28 7o) shap)
PRFZZETANE AL F5 3
(F34AD

dEFHTANE gtz
(F8papAp)

19909 ~1991d ETRI A4 +¢

1014~ A4 2T A3 et 94

#A ok AFAE, A, deel, AFE 2y

