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A Coverage-Based Software Reliability Growth Model
for Imperfect Fault Detection and Repeated Construct Execution

Joong-Yang Park’ - Jae-Heung Park’" - Young-Soon Kim'™"

ABSTRACT

Recently relationships between reliability measures and the coverage have been developed for evaluation of software reliability.

Particularly the mean value function of the coverage-based software reliability growth model is important because of its key role in rep-
resenting the software reliability growth. In this paper, we first review the problems of the existing mean value functions with respect
to the assumptions onl which they are based. Then a new mean value function is proposed. The new mean value function is developed

for a general testing environment in which imperfect fault detection and repeated construct execution are allowed. Finally performance
of the proposed model is empirically evaluated by applying it to a real data set.

U= AZENN M2 ME DH(Software Reliability Growth Model). Wo% #&+(Mean Vaiue Function), 78
(Construct), *8& HAE(Uniform Testing), @& J# W (imperfect Fault Detection)

1. Introduction

Recently software is becoming an integral part of com-
puter system. Since failures of a software system can cause
severe consequences, quality of software system has become
an important software product characteristic. One of quanti-
fiable measures for software quality is software reliability.
Testing is a key activity for detecting and removing faults
and improving reliability of a software system. In theory,
it is impossible to detect and remove all the faults within
a reasonable amount of testing time. Therefore developers
usually determine when to stop testing and release the soft-
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ware based on the estimate of reliability measures such as
the initial fault content, the time to next failure and the num-
ber of remaining faults. Many software reliability growth
models (SRGMs) have been proposed and applied to estimate
software reliability measures.

One of most popular SRGMs is the class of Non-Homoge-
neous Poisson Process (NHPP) SRGMs. The NHPP SRGMs
express the fault detection/removal process during testing.
Let N(£) denote the number of faults detected up to testing
time t. Assuming that detected faults are removed immedi-
ately, N (t) represents the fault detection/removal process.
The NHPP SRGMs assume that N (¢) follows a Poisson dis-
tribution with mean value function (MVF) m(¢). The MVF
m(t) represents the relationship between the expected num-
ber of detected faults and the testing time. The NHPP
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SRGMSs are characterized by their own MVFs. Most of the
existing NHPP SRGMs derive the MVF from the assump-
tion that failure intensity is proportional to the number of
faults remaining in the software. Pham and Nordmann [6]
thus propose the general NHPP SRGM represented by the

following differential equation :

dm(t)

= Kdla(®) —m(D] )

where a(t) is the fault content function and b(t) is the fault
detection rate function. In this framework, various a(t) and
b(t) reflect various assumptions on the software testing
process. A constant a(t) implies perfect debugging assump-
tion ; an increasing a(t) reflects imperfect debugging. A
constant b(t) means that the failure intensity is proportional
to the number of remaining faults ; an increasing b(¢) im-
plies that the fault detection rate varies due to, for example,
the learning phenomenon during testing. Pham and Zhang
[8], Pham, et al. [7] and Pham [5] identify a(¢) and b(¢)
of the currently available NHPP SRGMs.

There is another approach to the development of NHPP
SRGMs. The approach takes advantage of coverage in-
formation gathered during testing. The idea behind the ap-
proach is that the more a software system is covered, the
more likely reliable is this software system. A few cover-
age-based NHPP SRGMs have been proposed in Vouk [11],
Piwowarski, et al. [9], Gokhale, et al. [1], Rivers and Vouk
[10], Park, et al. [4] and Malaiya, et al. [2]. In this paper we
focus on the MVF expressed in coverage, m(c). MVF in
coverage expresses the relationship between the expected
number of detected faults and the coverage. The primary
objectives are to review the existing MVFs and to propose
a new MVF. We first review the existing MVFs in Section
2. For practical application we need to select a model whose
underlying assumptions adequately represent the actual fault
detection/removal process. Thus the underlying assump-
tions of each MVF are discussed in depth. It is shown that
some MVFs do not comply with their underlying assump-
tions and that some MVFs are based on impractical as-
sumptions. For the former case either the correct MVF or
the correct set of assumptions is given; for the latter case
the corresponding practical assumptions are identified. In
addition, new interpretations of some assumptions are also
presented. Section 3 derives a differential equation for the
MVF for a general testing environment, in which imperfect
fault detection and repeated construct execution are allowed.

The differential equation is then implemented for the uniform
testing environment. An illustrative numerical example for
evaluating the practical applicability of the proposed model

is presented in Section 4.

¢ Notation
m{c) :the MVF in coverage
M “ the set of all the constructs in the soft-

ware under testing
[ - the cardinality of a set

. the set of the constructs not yet covered

Mc(t)=M - M
“0=M () up to testing time ¢

M.(t) “the set of the constructs covered up to
testing time ¢

c=clt)= | Mc(t) | ‘the coverage at testing time ¢
M|
dM.(t) . the increment of Mc(f) caused by addi-
tional testing during dt
|dMc(¢t)| - the increment of o(f) caused by addi-
de =dc(t) = M| tional testing during dt
a “ the total number of faults in the software
b(?), b(c) : the fault detection rate functions in the

testing time and the coverage

2. Review of the Existing MVFs in Coverage

Recently several MVFs in coverage have been proposed
and applied to real test data sets. This section reviews the
existing models for the MVF. Assumptions on which each
model is based are specifically presented and appreciated in
order to evaluate its adequacy for the fault detection phe-
nomenon. When various model are available, we should
choose the one whose underling assumptions fit best for the
testing environment under consideration. If such a model
does not exist for a specific testing environment, we either
choose an approximate model or develop a new model for
the specific testing environment. Therefore it is important
to understand the underlying assumptions of each model. In
addition, we provide new interpretation of some assump-—

tions.

2.1 Vouk Model
The first coverage-based SRGM is proposed by Vouk [11].
The MVF of Vouk model is developed under the following

assumptions :

e Assumption 1. (Perfect Debugging) Detected faults are
removed immediately without introducing new faults.
¢ Assumption 2. (Imperfect Fault Detection) Coverage of

a construct does not imply that the construct is fault-free.
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e Assumption 3. The rate of change in the number of de-
tected faults with respect to coverage is proportional to
the number of faults remaining in the software.

¢ Assumption 4. The fault detection rate is proportional to
the coverage.

¢ Assumption 5. (Resource-Constraint Non-operational Test
ing) Test cases are generated so as to cover as many
constructs in —m as. possible.

o Assumption 6. There is the minimum coverage, Cmin, Such
that Cmin <c(t).

A usual modeling approach is to derive a differential equa-
tion describing the dynamic behavior of MVF. The following
differential equation was derived in Vouk [11] from the

above assumptions.

—g,;_(ff)— = B(c—cnna—m(c)] ¢, Caon=¢C. (2)

Solving this differential equation with initial condition
m(cmin)=0, the MVF in coverage of Vouk model is obtained

as

m(c) = a{l—exp[~ B(c— cmn)?]}. (3)

Let us first discuss the imperfect fault detection assump-
tion and other assumptions related to it. The discussion is
also applicable to the subsequent models. Consider a con-
struct having faults at the beginning of testing. The im-
perfect fault detection assumption implies that the construct
may contain faults even after it has been covered. The fault
detection phenomenon under the imperfect fault detection
assumption is usually modeled as a stochastic process in
which

(D faults are independent, ie., detection of a fault is in-
dependent of detection of other faults ;
@ when a construct is covered, a fault in that construct is

detected with some probability.

The detection probability is usually referred to as the fault
detection rate per fault or simply the fault detection rate.
It generally depends on the testing time and the coverage.
The time and coverage dependency of the fault detection rate
reflects the learning factor, the ease of test and so forth.
Assumption 4 says that the fault detection rate function b(c)
is a linear function of already achieved coverage, i.e., b(c)

= B(c— ¢min) where B is the proportionality parameter. If
the assumption is replaced by
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¢ Assumption 2.1. (Perfect Fault Detection) Coverage of a
construct implies that the construct is fault-free,

assumptions about the fault detection rate function are not
necessary. The perfect fault detection simply means that the
fault detection rate is 1.

Assumption 5 is closely related to Assumption 2. The
redundant execution of constructs generally occurs in a gen—
eral testing environment. All the constructs executed by
additional test cases do not belong to M.(#) . Some belong
to M.(t} and others belong to M.(t) . That is, constructs
in M,(#) may be executed over and over again. If the fault
detection is perfect, the constructs in M (#) are all fault-
free. All the remaining faults are located at the constructs
in M.(t) . If the fault detection is imperfect, the constructs

in M.(t) may contain faults. The faults remaining in M.(#)
are also exposed to fault detection activity. Under a general
testing strategy the model should take into account the addi-
tional fault detection phenomenon caused by the redundant
execution of constructs. Vouk model ignores this additional
fault detection phenomenon by employing Assumption 5. In
other words, Vouk model considers only the fault detected
in M_(#) . Since Vouk model assumes the imperfect fault
detection, the number of faults in M () is not la—m(c)],
but [@a—m(c)] minus the number of faults in M.(£) .
Therefore Equation (2) is likely to overestimate dm(c)/dc.
In conclusion, Vouk model does comply with its underlying
assumptions. Specifically speaking, Assumption 3 cannot be
adopted with Assumptions 2 and 5.

2.2 Rivers and Vouk Model
Rivers and Vouk [10] proposed a coverage-based SRGM
with MVF

¢ b(a)

m(c)=a—(a~mmin)exp( fc.,.,l—z dz), (4)

which is obtained by solving

dm(c) b(c)
dc = (1—c¢) La—m(c)] for

C min <c (5)

with initial condition (€ min )= M nin. Rivers and Vouk
[10] derived Equation (5) from Assumptions 1-3, 5 and the

following assumptions :

e Assumption 4.1. The fault detection rate is a function of

coverage.



1290 SEXeIS=F XD M11-DH MBS (2004.10)

o Assumption 7. (Uniform Fault Distribution) Faults are
uniformly distributed over all the constructs in M at the
beginning of testing.

¢ Assumption 8 At most one fault can be located at a
construct.

¢ Assumption 9. All the constructs in M.(#) are equally
likely to be executed by a test case.

Since Rivers and Vouk model adopts Assumptions 2, 3 and
5, it suffers the same problem with Vouk model as mentioned
in the last paragraph of the previous subsection. That is,
Rivers and Vouk model does not comply with its underlying
assumptions.

However, it is still necessary to discuss three newly em-
ployed assumptions. The discussion produces a new MVF.
Suppose that Assumption 3, conflicting with Assumption 2
and 5, is eliminated from the set of assumptions listed above.
Due to Assumption 5 only the faults located at dMc(¢t) are
exposed to fault detection activity. The increment dM(c)
will then be proportional to the number of faults in dMc(t).
Assumption 7 implies that the fault density per construct
is a constant alM | at the beginning of testing. The con-
structs in dMc(t) are newly covered and their fault densities
are alM 1" as they were at the beginning of testing. It is
easily verified that the expected number of faults in dM.(¢)
is adc and that the expected number of faults detected from
dM_.(t) is ab(c)dc. Thus

dc(c)

dc = ab(c) and m(c):af: b(7) dr

for €min = C. (6)

It should be noted that Assumptions 8 and 9 are not used
for the derivation of Equation (6).

Assumption 8 enables us to classify the constructs in

M (t) into two categories : constructs with a fault
(one—fault constructs) and fault-free constructs. The num-

ber of one—fault constructs is equal to the number of faults

in M (¢) and the number of faults in M.(¢) is a(l1—c)
under Assumption 7. The expected number of one-fault con-

structs in dMc(¢t) is obtained under Assumption 9 as

aM
| c(t)l a(1—¢) ic

al=)"gromr ~ I

= adc

Thus dm(c)/dc and m(c) are again obtained as Equation
(6). That is, Assumptions 8 and 9 does not make any change

to the model given by Equation (6).

2.3 Piwowarski, Ohba and Carusoc Model
Piwowarski, Ohba and Caruso [9] developed an MVF in
coverage under Assumptions 1, 2.1 and 7 and the following

modified assumption :

¢ Assumption 9.1. (Uniform Testing Profile) All the con-

structs in M are equally likely to be executed by a test.

Assumption 2.1 implies that the faults in a construct are
detected when the construct is executed for the first time.
In other words, the fault detection rate is 1. The increment
dm{c) will then be the expected number of faults within
dM.(t). Since the fault density per construct is a|lM | due
to Assumption 7 and |dM:(¢)|=|M|dc, we have

am(c)
e 2 )

Solving with initial condition m (0)=0, the MVF in coverage

is thus obtained as
m(c)=ac. (8)

We can transform the above differential equation into a
different form. Note that a—m(c)=a{l-¢) and a=[a—
m(c)l(1—¢)”". Substituting these into Equation (7), we
have

dm(c)  a—m(c)

dc 1—¢ . 9)

We will now show that Equation (9) derived from a differ-

ent set of assumptions. Suppose that Assumptions 1, 2.1 and

o Assumption 10. Remaining faults are uniformly dis-

tributed over all the constructs in M (#)

are postulated. Since the fault detection is perfect, all the
remaining faults are located within M.(#) . Therefore the
fault density per construct in M (¢) is computed as [a—
m(c)l| M (#) |"'. The expected number of faults in
dM (t) is then computed as [a—m (e)iIM&)| ' ldM(£)|.
Consequently Assumptions 1, 2.1 and 10 also produce
Equation (9), which in turn is equivalent to Equation (7).
Therefore, if the perfect fault detection is assumed,
Assumption 7 is equivalent to Assumption 10.

Unlikely to the previous two models, Piwowarski, Ohba

and Caruso model implicitly allows the redundant execution
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of constructs. However, this does not influence the fault de-
tection process under the perfect fault detection. This is be-
cause all the constructs in Mc(¢) are fault-free and the
re-execution of constructs in M(t) does not increase the
number of detected faults. We should also note that
Assumption 9.1 is not used at all for derivation of the above
differential equation. Assumption 9.1 is necessary for deri-
vation of the relationship between ¢ and £, which is not dis—
cussed in this paper.

2.4 Enhanced NHPP SRGM

Gokhale et al. [1] suggested a unified framework for finite
failure NHPP SRGMs, called the Enhanced NHPP (ENHPP)
SRGM. The proposed ENHPP model is based on Assump-
tions 1, 2, 41 and 7. The MVF of the ENHPP SRGM is given
as

m(c)“—‘af0 b(r)dry (10)
which is obtained by solving

dm(c)
T =ab(c) an

with initial condition m(0)=0. Note that Equations (10} and
(11) are equal to Equation (6) except for the initial condition.

The ENHPP SRGM allows the repeated execution of
constructs. Since the fault detection is imperfect, faults
can be found in Mc(t). This implies that the increment
dm(c) consists of two terms, the expected number of
faults found in dM.(¢) and the expected number of faults
detected in the constructs re-executed. Equation (11) does
not include the second term. The ENHPP model simply
ignores the faults remaining in M¢(£). Consequently the
fault detection process under Assumption 2 is not fully
reflected in the ENHPP model and the ENHPP SRGM is
likely to underestimate the expected number of detected
faults. The ENHPP SRGM does not comply with its un-

derlying assumptions.

25 Park, Park and Park Model
Park, Park and Park {4] developed an MVF in coverage
based on the Assumptions 1, 2.1, 6 and 10. The MVF is given
by
1-c¢ b
m(c)—a[l—( 1 ) ] for Cmin S¢€. (12)

 Cmin

ot
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The corresponding differential equation is

dm(c) — a—m(c)
dc 1-¢ (13)

where the fault detection rate is a constant b. Since the
fault detection is assumed to be perfect, it is not reasonable
to introduce the fault detection rate into the model. That is,
b must be set to 1. We showed that if the fault detection
is perfect, Assumption 7 is equivalent to Assumption 10.
Therefore the model given in Park, Park and Park [4] is
the same with Piwowarski, Ohba and Caruso model with
Assumption 6 added.

3. A New Coverage-Based NHPP SRGM for Repeated
Construct Execution

In the previous section we reviewed MVFs of the existing
coverage-based NHPP SRGMs. Assumptions on which each
model is based are specified. The differential equation repre-
senting the fault detection phenomenon subject to the as-
sumptions are also presented and appreciated in depth. We
found that some of the existing models do not comply with
their underlying assumptions. One common problem of the
existing models is that they do not fully reflect the repeated
execution of constructs under the imperfect fault detection
environment. If the fault detection activity is not perfect,

M () may contain faults. A test case usually executes con-

structs in M(t) and M (%) . In other words, re-execution
of covered constructs occurs in the imperfect fault detection
environment. Faults can be detected in both M(t) and

M_(t) . Some models simplify the fault detection phenom-
enon by employing a testing strategy that does not allow
the redundant construct execution. Other models just ignore
the fault detection phenomenon occurring in M(¢). It is
therefore necessary to develop more realistic models for the
fault detection phenomenon in the imperfect fault detection
environment. As testing proceeds, the fault density per con-
struct in Mc(t) becomes lower than it was at the beginning
of testing. Therefore the fault density per construct in M.(¢t)

is different from the fault density per construct in M (#) .
A realistic coverage-based SRGM should take into account
this fault density change. In this section we develop a new
coverage-based NHPP SRGM under Assumptions 1, 2, 4.1,
6 and 7 and the following additional assumption :
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e Assumption 11. The faults remaining in M(t) are uni-
formly distributed over all the constructs in Mc(¢).

Suppose that additional testing is performed at testing
time ¢ during dt. In general, the additional testing will ex-
ecute some constructs in M¢(¢) and/or some constructs in

M_(t) . Execution of some constructs in M.(#) expands
M (t) and consequently increases c¢(t). That is, the set of
constructs in M (%) executed during dt is the increment
dM (t). The constructs in M¢(t) re-executed during dt in-
crease neither M(t) nor c(t). However, it may contribute
to the number of detected faults. The set of constructs in
M (t) re-executed during dt is denoted by RM(t). There-
fore, the increment of the number of detected faults, dm (c),
is the sum of the numbers of faults detected in RM(¢) and
dM(t). The number of detected faults in RM (¢t)(dM.(t))
is the product of the fault density of RM(¢)(dM(t)) and
the fault detection rate. Due to Assumption 7, the fault den-
sity of a construct in dM.(t) is a constant @ IM [ and the
number of faults in dM(t) is adc. Similarly the total num-
ber of (detected and undetected) faults in M(t) is obtained
as ac. The number of faults remaining (undetected) in Mc(¢)
is therefore ac —m (c). Assumption 11 implies that the fault

density of a construct in M.(¢) is

ac—m(c)  ac—m(c)
M) IMlc . (14)

Consequently the increment dm (c) is expressed as

ac—m(c)

dm(c) = b(c) Mle

|RM (t) 1+ b(c) adc (15)

We derived a general expression for dm (c). It is not yet
applicable because |RM(¢t)| is not represented in terms of
¢ and dc. The relationship between |IRM(¢)| and ¢ depends
on the testing strategy. Specifically it depends on the strategy
of selecting test cases. For example, the repeated execution
of constructs in M(t) does not occur under Assumption 5.
That is, IRMc(£)|=0. Then the general expression results

in the following differential equation :

dm(c)

o _abla (16)

which is identical to that of the ENHPP model.
Now we derive the general expression for dm (c) under
Assumption 9.1. One of important reliability measures is the

number of faults remaining in the software. When the pri-

mary objective of testing is to detect and remove as many
faults as possible and the managemental decision on when
to stop testing is made based on the number of remaining
faults, all the faults in the software should be considered
equally important. It is then reasonable to adopt the testing
profile distributing equal frequencies over all the constructs.
Even when an operational profile is not available, the uniform
testing profile may be used as an alternative. Suppose that
p constructs are executed during dt. The p constructs are
partitioned into RM(t) and dM(t), where IRM:(t)| and
IdM (t)| are respectively expected to be pc and p(1-c¢).
Therefore, since |[dM(t)l is IMdc, IRM:(t)| is expected
to be IMlc(1—¢)'dc. Substituting this into Equation (15)
and dividing both sides by de¢, we have

dm(c) a—m(c)
A e T a7

Solving with initial condition m (cmin)=0, the mean value

function for the uniform testing profile is obtained as

m(c)sa[l—exp(—fc M‘1‘2)], (18)

Cun 1— 2

If we set cmin=0 and mmin=0 in Equation (4), then
Equations (4) and (18) become identical. However, we should
note that the two models are based on different sets of as-
sumptions and that Equation (4) cannot be obtained from
its underlying assumptions as explained in Subsection 2.2.

The coverage-based NHPP SRGM with MVF of Equation
(18) is actually a class of NHPP SRGMs, whose members
are defined by the corresponding fault detection rate functions.
The simplest is the case where fault detection rate is a con-
stant b. The constant fault detection rate reflects that there
is no leamning during testing. The MVF for the constant fault

detection rate is obtained as

m(c)=a[l—(117;;)b]. (19)

This is equal to Equation (12) of Park, Park and Park
model. It is to be remembered that Equations (12) and (19)
are derived from different sets of assumptions and that Park,
Park and Park model does not comply with its underlying
assumptions. If the learning phenomenon seems to occur
during testing, an appropriate fault detection rate function
should be derived and applied to Equation (18). This will
not be discussed further in this paper.



4. Application to A Real Data Set

In this section we empirically evaluate performance of the
coverage-based NHPP SRGM proposed in the Section 3.
Especially the simple model with MVF of Equation (19) is
applied to a real data set reported in Vouk [11]. <Table 1>
presents the data set gathered from a NASA supported
project implementing sensor management in the inertial
navigation system. There are three separate implementa-
tions of the sensor management system. The data set in
<Table 1> is from the first implementation. The data set
is also reproduced in Park et al. [4]. The cumulative number
of detected faults is plotted in (Figure 1) and (Figure 2). It
is evident that the MVF is not a straight line through origin.
Therefore Piwowarski, Ohba and Caruso model and the
ENHPP with constant fault detection rate are not applicable
to this data set. Now the model with MVF of Equation (19)
is applied to both block coverage and branch coverage.
Maximum likelihood estimates of @, cmin, and b and the cor-
responding performance measures are computed and pre-
sented in <Table 2>. The fitted MVFs are also plotted in
(Figure 1) and (Figure 2). The proposed coverage-based
NHPP SRGM with constant fault detection rate works rea-
sonably well for both coverages. We can say that at most
2 faults remains in the software at the end of testing.

(Table 1) Sensor management system data

Cumulative number Block Branch

of detected faults coverage Coverage
0 04574 0.3702
1 0.5597 0.4748
2 0.6517 0.579%5
3 0.7050 0.6380
3 0.7628 0.6921
4 0.7780 0.7150
5 0.7920 0.7280
6 0.8000 0.7380
6 0.8682 0.8169
7 0.8720 0.8250
9 0.8853 0.8410
9 0.9597 0.9376

(Table 2> Maximum likelihood estimates and performance measures

Parameter Block coverage Branch coverage
a 105160 10.4660
C min 0.4574 0.3702
b 0.7450 0.8501
SSE 10.7992 10.8000
AlC 43.3665 41.8902

ki

st X 78 MEly g% 28 1293

15 -

10~

Number of detected faults

T T T l T T
0.0 02 04

(Figure 1) Plot of the number of detected faults and the
fitted MVF for block coverage.

Number of detected faults

T T T T I T
0.0 02

(Figure 2) Plot of the number of detected faults and the
fitted MVF for branch coverage.

5. Concluding Remarks

In this paper we first review MVFs of the analytical cov-
erage—based NHPP SRGMs. Thus the empirical model sug-
gested in Malaiya et al. [2] is excluded from this paper. The
review shows that some models do not comply with their
underlying assumptions and that some models do not ap-
propriately represent the fault detection phenomenon.
Specifically all the models do not reflect the repeated ex-
ecution of constructs in the imperfect fault detection
environment. Thus a new model explicitly taking account
of the repeated execution of constructs is developed. For
practicalapplication of the proposed model we need to pro-
vide a fault detection rate function. The proposed model is
implemented for the case where the fault detection rate is
constant and applied to a real data set. The constant fault
detection rate implies that there is no learning during
testing. Therefore, fault detection rate functions reflecting
the learning phenomenon need to be developed. Future re-
search will be directed to the development of the fault de-

tection rate function.
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