1Z AZEAUY AHA 7HEA 28 =7 HE 139
DOI: 10.3745/KIPSTD.2009.16-D.1.139

AT AFE Ads AFH Bel g =7 A

chabat 7)7) hp ol B4 FAHow FHE 4 b ¥u AR AATe @4 #gEe v)eno o 2 s Ada Ao A
Aube] el) b4 54 sled|, A4 7o SES Addor #8 @ & e AAY W AL nfel A S AW Y Faw
Exo|c}, aeu} o] B4 Aaelk Hsim, vlzg)ae] Habgel sd chadt deje] WE ol WAER AAde] A4 3 9 &
Aol ol2igol & deiAUck ¥ =FellAi AF AAwel AWz AEA pelE AdHew fe ¥ F ‘il— g A 9 TE skl
Mubgl Axegdels vl Hele] AAGEe] FH M AAT Ul AWz ZEA] MskE BAH e 7|5 E 3 Ao

IISIE YEHE 7|8t ADEQYN I J2HY ALK QIE{HO|A, NET, 23 MAY

Development of Monitoring Tool for Synaptic Weights
on Artificial Neural Network

Shin Hyun Kyung'

ABSTRACT

Neural network is a very exciting and generic framework to develop almost all ranges of machine leaming technologies and its
potential is far beyond its current capabilities. Among other characteristics, neural network acts as associative memory obtained from the
values structurally stored in synaptic inherent structure. Due to innate complexity of neural networks system, in its practical
implementation and maintenance, multifaceted problems are known to be unavoidable. In this paper, we present design and implementation
details of GUI software which can be valuable tool to maintain and develop neural networks. It has capability of displaying every state of
synaptic weights with network nodal relation in each leaming step.

Keywords : CBSE, GUI, .NET, Artificial Neural Network

1. Introduction

Since Turing Machine has been proposed, computability
has been one of the central subjects in computer science
[1]. As a part of the key approaches to computability
issues, machine learning technique can be characterized
by its effort on self leamning capability [2]. Among various
machine learning techniques, the neural network is a
framework on which various computational machine learming
methods are based. The neural networks utilize the concept
of network composed of the computing nodes and the
links among them [3,4,5]. As the most significant characteristic
of neural networks, they do not follow the fetch-execute-
store process of the von Neumann digital computer; on

% o Q7T NBUE AU Aol oleh Ashel
P nn Ao e Aone St
EEH 20089 119 199

A5 2008 124 59

the other hand, they globally respond to input pattern
stimuli [6]. In other words, they do not contain data and
algorithmic instructions in a separate memory system:
instead they store data throughout the network in the
pattern of weights, interconnections and states of the neurons.
This reflects highly problem-dependency property of neural
network programming. This property also often discourages
neural network development from the fact that structural
complexity of network makes the verification of states
very hard.

Our focus in this paper is on design and implementation
of the neural network in aspect of software development.
From the software engineering point of view, computation
with the neural network can be considered as construction
of pipelines connecting four individual modules: feature vector
selection, specification of learning algorithms, control mechanism,
and user interface. With support of the modemn programming

140 HEXZ|S2I=EX D H16-DT H13=(2009.2)

languages based on object-oriented design, the elements
of neural network structure, node and synapse, are easily
formulated to the low-level computational units. We also
adopt the usage of hierarchical layered structure composed
of the neurons and the links in order to utilize component
based software engineering.

The contents of the paper are organized as follow: in
section 2, previous research works related are investigated,
in section 3, the proposed design of GUI developed in this
paper is explained, in section 4, implementation details of
GUI are described, in section 5, experimental results can
be found and the conclusions are also discussed.

2. Related Works

Among the four topics on design and implementation
of the neural networks mentioned above, the feature
vector selection is exclusively problem dependent, the
learning algorithms devised to train neural network are
fairly standardized by the products of MatLabTH [7] and
Intel's OpenCVI8,9], and the control mechanism and the
user interface are not standardized and less problem
dependent. Therefore, the main discussion in this paper is
devoted to development of graphic user interface.

Neural network computation requires fairly small counts
of control parameters. However, it requires determining
the value for each synaptic weight, which usually takes
tens of hundreds, through training method. Problem of
training lies in the fact that update of synaptic weights is
data dependent. Misra [10] surveyed on implementation of
ANN as a part of project to understand inordinate time
to train or run ANN; Kim and Lee [11] explored synaptic
parameter space to study temporal aspect of neural information
processing.

Many researchers tend to use the existing commercial
or the open source libraries for design and simulation of
neural networks, e.g., Neural Network ToolboxTM of MatlabTM
and Intel OpenCV. Advantage of employing existing library
is mainly twofold: fast development cycle and reliability
of performance. Both the machine learning library of OpenCV
and the neural network toolboxTM also provide the facilities
for graphic user interface. In order for successful simulation,
strong data dependency of neural network programming
inevitably requires capability of thorough investigation on
synaptic values at each training stage. However, the
existing GUI has limitation of flexibility. We developed a
programming library of various types of neural networks
from scratch and also created GUI as a means to
improve the library.

3. Design

As a part of project for development of computer
vision library, the machine learning technologies have
been developed on framework of neural networks including
the three basic functionalities of statistical modeling such
as classification, regression, and clustering. In software
engineering perspective, we followed a recent trend of
design pattern compatible with component-based software
engineering(CBSE)[12, 13]. (Fig. 1) illustrates the underlying
idea of component-base engineering applied to construct
our neural network library.

In component-based engineering of neural network library,
we consider the following three subjects as infrastructural
bases: network type; adopted learmning algorithm method; and
activation-function type. Diverse types of neural networks
- ADALIN, MLP, KNN, SVM, SOM, and etc - are under
the hierarchy of object modeling where a base class ‘StatModel’
serves a top parent object to all network objects. Various
types of leamning algorithms are designed to have a common
interface so that they are unified by a generic delegate
(function pointer) object and they are parameterized by
user-specific input value. Unlike conventional neural networks,
in our neural network library, network model and learning
algorithm are designed as mutually orthogonal. Several
activation functions are also designed to have a common
interface. Moreover they are devised to be independent on
learning algorithms. In (Fig. 1) overview of neural network
library shows component-based design pattern. The gray
dashed lines illustrate component-wise construction of the
neural network of interest.

The base elements of neural network are neuron and
synapse. From the design point of view, neuron is consisted
of three fields' a memory block to hold value, two memory

I
2 Identity
k-l
E Sigmoid
o Rt c Gauss
¥ 3 §
& g Tanh
Ie =
:;—E 2 Heaviside
12
1=
o
<
- .4""_\(':-' T

Network type "

Error correction

: Léa}ﬁiﬁg rule

Memory based
Hebbian

Selection of MLP with error
correction learning rule and
sigmoid activation function

Competitive

L
2
b=

£

L]
z

=
£

E

L]

@
4

Boltzmann

(Fig. 1) Design of the underlying neural network library

| 1 [Eapsa::()n&hﬁh};;(émr e
2 e->value = Aw,;

n E I) MessageHandler(e); ;
“H [LeaningAlgorithmHandler |
'“'1:{““‘1\"& A E

. _ _ . _ _ . _ Application Domain Boundary _ _ _ S PO (R
Inter-Op :

GuUI

¥
| Form::0nChange(EventArgs* e)}{

|Va V‘!"'| |V|=l | | i Queue.Enqueue(e->value);
RS T
(Fig. 2) Design of the callback routines to pass the changes

occurred in synapse states

blocks to represent addresses of pre- and post- synapses.
Synapse is consisted of three fields: a memory block to
hold value(synaptic weight), two memory blocks to represent
addresses of pre- and post- neurons. The most significant
aspect of element-based design is that we can easily
introduce a layer of neurons and a layer of synapses so
that the neuron and the synapse objects can keep its
simplest form while the layer class takes charge of very
complex functionalities including forwarding, application of
activation, back-propagation if necessary, etc. Structural
simplicity of neuron and synapse objects helps to analyze
progressive changes occurring during performance of neural
network. We adopt callback technique [14], shown in (Fig.
2), prevalent in CBSE and event driven architecture in
NET language.

4. Implementation

As seen in (Fig. 3), the GUI is consisted of the three
divided tabs: network type selection tab: network layer
structure selection tab: and presentation tab. The first tab

ol

oK

40} C
HEZY

H1

AHA 7SR 141

=]

clZ

- JHE

r

is consisted of three separated panels: at the left panel a
user can select the type of neural networks to perform
simulation, at the right panel a user can select the type
of learning rules to be adopted by the neural network,
and at the bottom left panel the number of hidden layers
can be specified. At the second tab structural information
on the hidden layer, if it exists, is received. Due to the
fact that a number of hidden lavers must be decided at
run-time, the panels used in the second tab are designed
as a form of the user control and not observable. Only
the panels selected are dynamically allocated and exposed
to user to set structural information of each hidden layer.
The third tab is consisted of the three panels, the
progress bar, and the one menu item. Users can link the
training data to the network through the menu item. Three
panels are located at left, top-right, and bottom-right.
The left panel is designed to show the progressive values
of the synapses defined in the neural network. For
compatibility with run-time decision on the number of
synapses defined in the network, each synaptic value viewer
is designed as user-control and is located automatically
with identifiable index. The top-right panel is designed to
present structure of the neural network. The bottom-right
panel is designed to show messages invoked from the

program library.

4.1 User Inputs for Network

In our system neural network is considered as an object
which can be parameterized by the two major options
(‘Neural Network Type' and ‘Learning Type'), the several
minor options (such as ‘Activation Method', ‘Connectionism’,
‘Error Estimation Type’, and ‘Training Parameters’), and
the number of hidden lavers. To achieve this model in
software level, our GUI has been implemented to have
capability of creating several different types of neural
networks at run-time. First of all, neural network type
can be selected among the following options: ADALINE,
MLP, RBF, SOM, SVM, Committee-Machine, Recurrent-

B. Hidden Layer Structure

C. Training Process Viewer

[=R
[el ™ o et
Hral Matwork Trpe Haaral Netwon Lnareng Tipe (N T r—— [Buiot Faer Lavws inforrmiaen i
[T =y (BT] { i
e | e 8 i
1 Loy Cnmanzien [¥ Loews Demansion |
o | cotem [oK | Cortm |

] Hamoer o HONn Ligen il

(Fig. 3) Snap shot of GUI consisted of three layers

142 ZEXM2ISSI=FA D HM16-D3 M1=(20002)

Networks, and etc. It is conventional that a learning rule
depends on a neural network type such as MLP with
ertor correction, and SOM with competitive learning, etc.
However, in our GUI, network type and learning rule can
be constructed as marginally orthogonal. Even though it
is not always recommended, through our GUI, it is possible
to create a neural network with any type of learning rule,
which is useful for design of new style of learmning machine.
Secondly, selection of learning rule is parameterized with
possible options of ‘error correction’, ‘memory based’,
‘competitive’, ‘regularization’, ‘hebbian’, and ‘boltzmann’. The
‘error correction’ is designed for back-propagation style
machine learning[5]. The ‘memory based is used in associative
memory style machine learning such as k-NN[15]. The
‘competitive’ is used in un-supervised machine learning
such as Kohonen SOM [16]. The ‘regularization’ is used
in regression stvle machine leamning such as RBF [17].
The ‘hebbian’ is typically used in Hopfield network and
has two sub-choices ‘Hebbian-Apex’ and ‘Hebbian-Gha'
[18]. The ‘Boltzmann' is used in recurrent style machine
leaming such as Recurrent-Dynamics and generative Hopfield
network[19, 20].

Selection of the user inputs is illustrated in (Fig. 4) For
the convenience of visualization, only four important options
are displayed.

Selection of the number and the dimension of neurons
to be assigned in each layer is straightforward. For simplicity
of paper we omit to show details on the second tab which
is about user input for hidden layer structure.

4.2 Presentation Layer

Our purpose of this research is to develop software
visualizing the interior states of neural networks in temporally
progressive manner. This is achieved in the presentation

Wy s et pane v 5 =i i
Ganeesl | Lappey | Foun

|| o vt vistwers Trge ¥ et Vieworh Luaming Trge
B e B e

imvisodliensd | Sigmod ETAES TR me Mean Souaretror
vl Tes. | EmeeCemecion

(Fig. 4) User inputs on the first tab for neural network creation

layer where the dynamic structure of neuron layer and
the temporal states of synaptic weights are visualized as
well as the messages invoked from the network. The progress
bar is also presented to indicate the current stage of network
training. The callback technique, described in (Fig. 2), is
applied to send state values from synapses and to create
routines for message passing. In (Fig. 5), presentation layer
is shown when ADALINE is trained with sample data.
Distribution of the sample data is appeared at the right
side of main presentation panel. At the left section of
main panel, values on the three synapses(one from bias
node, two from input node).

In (Fig. 6), training stages are displaved when Kohonen
network is selected to train. The synapses connected to
7x7 2-D Kohonen map(layer) start to show self-organizing
property. In this figure SOM is very early stage. As seen
in (Fig. 5), top-right panel displays network structure
(which is mostly stationary) and bottom-right panel contains

Viewing panel for time
sequence of synapses

W el natuor e

2
Ganers | Layers fiun

1
Graphical visualization of
's layered
Iis presented here

\ Internal messages are passed
through callback to here

of synaptic
weight values in time

(Fig. 5) Snap shot of monitoring the training process with
ADALINE

| General Larers | Run |

Formation of
self-organizing map

sample

A\ Input nal.nfm layer _;

sample

Samile 7x7 Kohonen 2D map
sample’

sampie

sample

sample Messages from library
[~ Progress bar

(Fig. 6) Snap shot of monitoring the training process with
Kohonen network

messages invoked and passed from the internal library.
However, in left panel ordering of synapse value at a
given time instead of time signal graph.

5. Discussion and Comparison with Other Approaches

Intel OpenCV and MatLab Neural Network ToolboxTM
are regarded as the standard products in machine learning
research. Regardless of library performance, we compare
the GUI related functionalities, which can be seen at
<Table 1> As API libraries, all three provide the functions
for creation, training, and simulation using neural networks.
However, Intel OpenCV does not support GUI while
MatLab toolbox and our library support it. In perspective
of flexibility, Intel and our suggested library provide user
callback interface while MatLab doesn't. The neuron models
adopted are almost similar but our library has more
flexibility of generalization as allows using arbitrary dimensional
neuron node. Available transfer functions are also similar.
In terms of availability of neural network models, MatLab
provides the most. For training style, MatLab is superior
as it supports sequential input. Creating networks from
GUI is supported by MatLab and our library. Recent
release (6.0.1., at Oct. 2008) of MatLab toolbox supports
the functionality of monitoring network training process
which is also a main feature of our library. However, we
display more detailed information than MatLab. Our library
displays the values stored in each synapse and neuron

o]

—

0oH

MV AlHA 7IEK 22B =T M 143

while MatLab displays the status of training. In aspect of
programming portability, modularity and callback usability
are important issue. For modularity, Intel library does not
have solid interface design while MatLab and our library
are designed to consider modularity. Matlab provides the
toolboxes while we provide a component library. Consequently,
our library gives more flexibility to the users since the
component library allows user specified callbacks.

With the aid of the GUI developed, controllability over
internal parameter settings is greatly enhanced for neural
network's learning process. For example, we could observe
(in run-time) repetitive fluctuation pattern in sequence of
synapse values when we performed training ADALINE
with sample data having very obscure decision boundary
as seen at the right side panel in (Fig. 5). Then, when
we moved on to use MLP, we could easily observe effects
of the numbers of neurons assigned in hidden layers and
the selection of activation function type. For other cases,
it was critically useful when we were investigating Kohonen's
competitive learning process. We could come up with the
appropriate iteration numbers to determine ordering and
converging phases. The number of clusters as pre-process
to RFB learning is one of the major concems in neural
network studies. We could conveniently control the parameters
to produce an appropriate number of clusters by analyzing
the pre-process by observing the changes in the synapses.

Our future plan is to generalize our GUI's interface to
be compatible with other commercial or open source neural

¢{Table 1) Comparison among software

3 Neural Network :
‘i ,
Intel Open(Toolbox™ QOur library
) _ APl creation, training, and creation, training, simulation, creation, training, simulation,
Supporting : simulation GUI GUT
functionalities
user callbacks support No support support
Node 1 dim 1 dim arbitrary
Neuron Model : : . p o
- : , hard limiter, ; T : : ; ;o o
I'ransfer functions Lanear, ngm:r),::h oy | BT, Linear, hard limiter, sigmoid Linear, sigmoid, hard limiter
: o ADALIN, MLP, RBF, SOM ADALIN, MLP, RBF, SVM
Modeli Network Model MLP, SVM) ’ : ! : ! !
OSHng RS Layer-Recurrent SOM
Input stvle Concurrent Input Canutst ‘mpul. semential Concurrent input
Training Style input
mode Batch training Incremental and batch training | Incremental and batch training
Create networks N/A Perceptron from GUI Create network from GUI
GUT icnl: ,
Training feedback N/A Display training status Laspiay the.\alue. of-gach
synaptic weight
Modularity Fair Good Good
Portability
Program language C/C++ Matlab C++/NET

144 ZHEX2E2A=FX D H16-DFH H1Z(2009.2)
network libraries such as MatLabTM and Intel OpenCV [20].

References

[1] Turing, A. M., “Computing machinery and intelligence,”
Mind 50: 433-460, 1950.

[2] Sipser, M., “Introduction to the Theorv of Computation,”
2" edition, Course Technology, Boston, 2005.

[3] Bishop, C. M., “Pattern Recognition and Machine Learning,”
Oxford University Press, Oxford, UK, 2007.

[4] Hassoun, M. H, “Fundamentals of Artificial Neural Networks,”
The MIT Press, Cambridge, MA, 1995.

[5] Haykin, S. “Neural Network and Machine Learning,” 3"
edition, Prentice Hall, Upper Saddle River, NJ, 2008.

[6] Caudill, M., and Butler, C., “Naturally Intelligent Systems,”
The MIT Press, Cambridge, MA, 1992.

[7] httpy//www.mathworks.com/products/neuralnet/

[8] http://sourceforge.net/projects/opencvlibrary/

[9] Bradski, G.: Kaehler, A., “Learning OpenCV: Computer
Vision with the OpenCV Library,” O'Reilly, Cambridge, MA,
2008

[10] Misra, M., “Parallel Environments for Implementing Neural
Networks,” Neural Computing Surveys, 1:48-60, 1997.

[11] Kim, S., and Lee, S., "Phase Dynamics in the Biological
Neural Networks,” Physica A, 288:380-396, 2000.

[12] Szyperski, C. “Component Software: Beyond Object-
Oriented Programming. 2nd ed.,” Addison-Wesley Professional,
Boston, MA, 2002.

(13] Heineman, G. T., and Councill, W. T., “Component-Based
Software Engineering: Putting the Pieces Together,” Addison-
Wesley Professional, Reading, MA, 2001.

[14] Stroustrup, B., “The C++ Programming Language, third
Edition,” Addison-Wesley, Reading, MA, 1998.

[15] Shakhnarovish, Darrell, and Indyk, “Nearest-Neighbor
Methods in Leaming and Vision,” The MIT Press, Cambridge,
MA, 2005.

[16] Kohonen, T., “Self-Organizing Maps”, 2nd edition, Springer-
Verlag, Berlin, 1997.

[17] Buhmann, M D, and Ablowitz, M.], “Radial Basis Functions:
Theory and Implementations,” Cambridge University Press,
London, 2003.

[18] Paulsen, O, and Sejnowski, T. J., “Natural pattems of activity
and long-term synaptic plasticity.” Current opinion in
neurobiology 10 (2): 172 - 179. 2000.

[19] Hinton, G. E., Osindero, S., and Teh, Y., “A fast learning
algorithm for deep belief nets,” Neural Computation, 18:
1527-1554.[1], 2006.

[20] Raphael, R, “DARPA Urban Challenge, a C++ based platform
for testing Path Planning Algorithms: An application of
Game Theory and Neural Networks,” Comell University, 2007.

A S A

e-mail - hyunkyung@kyungwon.ac.kr

2002 State University of New York
(Stony Brook) thehgl &-&=83}
(38}

20083~ Al AUdigi 4-8h Betat
T

el | L o

4] 7ok : Neural network. Machine learning. Image processing

