184 BIXHSHCISRE S| =2X| HIH H2E (K 7)

oy s

2

A @A E

MST 74 =2

ol = o

g;

£ =& 245 (Munimum—weight Spanning Tree MST)el glej4] e =9 g3 s}
AM(Ee #3) £2& 7HEE HH)HUEAD, MSTE AF4ste £4 ¢n2dd§ M)
& A MDY 42 FY A4 RPYTE Hm+n log(t+f))olx, o] A1t RAEE On
+n log(t+))7h 9, 474 @ MENIY Z2HH2 Fo|X Hresp N 7 P29
F(resp. o] H MSTH AtME gz £)elch a4 VENZY Yei7t Hyo] & thgol f=0
o]l m=eY A¥cle m=t+no] Wr} =g ¥ =F9 vlxg} BRAME g9 251, Aaae}
ohAzlz2 22 449 2o} AAEAYE A4S dnYFE Al

Distributed Algorithm for Updating Minimum — Weight
Spanning Tree Problem

Jung Ho Park' and Joon Young Mint!

ABSTRACT

This paper considers the Updating Minimum—weight Spanning Tree Problem(UMP), that is,
the problem to update the Minimum-—weight Spanning Tree(MST) in response to topology
change of the network. This paper proposes the algorithm which reconstructs the MST after
several links deleted and added. Its message complexity and its ideal—time complexity are (m
+n log(t+£)) and O(n+n log(t+ f)) respectively, where n is the number of processors in the
network, #(resp. f) is the number of added links (resp. the number of deleted links of the old
MST), and m=t+n if f=0, m=e (ie. the number of links in the network after the topology
change) otherwise. Moreover the last part of this paper touches on the algorithm which deals
with deletion and addition of processors as well as links.

1. Introduction

Consider an asynchronous network where a
cost or weight (representing, for example,
usage fee or delay) is associated with every
link. For the purpose of disseminating infor-
mation in the network, it is advantageous to
broadcast it over the Minimum—weight Span-
ning Tree(MST), since information will be
deliverd to every processor with small com-

t FANY ARAGE HapA LR T
1t A8 YNGR YA At T4
EEYS4 11994 14 159, AAISERE 119943 54 149

munication cost. Many distributed algorithms
have been proposed for constructing the
MST. Most of them consider the initial prob-
lem to construct the MST, that is, construc-
tion of the MST starts from scratch. In a
real network, topology of a network often
changes because of processor (or link) dele-
tion (e.g. failure) and addition(i.e. recovery).
When network N changes to N’, the MST T
of N may not be the MST of N’. For exam-
ple, when a link of T is deleted by the topol-
ogy change, T is devided into two trees, and
the new MST must be reconstructed to



broadcast or collect messages efficiently. This
paper considers the Updating MST problem
(UMP), that is, the problem to update the
MST in response to topology change. In
UMP, it 1s assumed that topology change
does not occur during the execution of an al-
gorithm. In the following, N(resp. N’) repre-
sents a network before topology change(resp.
a network after topology change), and T
(resp. T') represents the MST of N(resp. N’)
It is obvious that UMP can be solved by
the known algorithms which construct the
MST from scratch. For the problem to con-
struct the MST from scartch, Gallager et al.
presented a distributed algorithm and showed
that its message complexity is optimal within
a constant factor[3]. Moreover, Awerbuch
improved the algorithm and obtained an opti-
mal algorithm in both the message complexity
and the ideal—time complexity[1]. By apply-
ing Awerbuch’s algorithm to UMP, UMP can
solved in O(e+n log n) messages and O(n)
(ideal) time, where n (resp. e) is the number
of processors (resp. links) in the network N’
However, most part of the new MST T’ may
coincide with the old MST T, and it 1s natu-
ral to assume that each processor knows the
old solution, that is, each processor knows
which incident links are those of the old
MST T. This raises a question: How efficiently
UMP can be solved by utilizing the old solu-
tion? This is an interesting subject of study.
In this paper, we propose the algorithms
which reconstructs MST T after several links
are deleted ans added. Its message complexity
and its ideal —time complexity are O(m+n log
(t+f)) and O(n+n log (t+f)) respectively,
where t (resp. f) is the number of added
links (resp. the number of deleted links of

the old MST T) and where m=n+1t if f=0,
m=e otherwise. Thus, our algorithm is superi-
or to Awerbush’s algorithm in the message
complexity. In the last part of this paper, we
will touch on the algorithm which deals with
deletion and addition of processors as well as
links.

Up to date, a number of algorithms have
been proposed for UMP. However, they con-
sider either link deletion or link addition, and
no algorithm considers the situation where
both deletion and addition of links occur. Our
algorithm can be applied to
(a) the case that only link addition occurs,
and
(b) the case that only link deletion occurs.

In the rest of this section, we compare our
algorithm with the previous results for these

two cases (see Table 1).
{a) The case that only link addition occurs

For UMP after t links addition, Tsin pre

(Table 1) Comgplaxities of aigorithms for UMP

) Links Deletion t Links Addtion
Paper (2] Our result Pager (5] Our result
MC [O(fp) Ofe+niogf)  |[O(nt+t) O(n+t+nkgt)
BC. |O(fpelogn) |O{elogn+n O(nt log n+ O(nlog thg n+
kg f g n) tlgn) (n+t)ogn)
IC. |0(2p) O(n+nkgf) {O(nt+t) O(n+nkgt)
SC. [Olnelgn) |Ofe) 0Oe) Ofe)

M.C. : Message Complexity.

B.C. : Bit Complexity.

1.C. :ldeal—Time Complexity.

S.C. : Space Complexity. (Total storage in the

whole network)

n . the number of processors.

e :the number of links in the network after to-
pology change.

f :the number of deleted links of the old MST
T.

p . the length of the longest cycle in the net-
work before topology change.



186 St X2|BBEE| =2X| H1Y H2E (94 7)

sented an algorithm[5]. Its message complexi-
ty and its ideal—time complexity are both O(
n+t+ ¥). For this case, the message complex-
ity and the ideal—time complexity of our al
gorithm are O(n+t+n log t) and O(n+n log
t), respectively. Therefore, our algorithm are
O(n+t+n log t) and O(n+n log t), respectiv-
ely.

Therefore, our algorithm is superior to Tsin’s
algorithm in both the message complexity and
ideal —time complexity.

(b) The case that only link deletion occurs.

For the case of j links deletion, Cimet et
al. presented an algorithm (hereinafter denot-
ed as CK)[2]. Its message complexity and its
ideal —time complexity are both O(7p), where
p is the length of the longest cycle in a net-
work N. For this case, the message complexi-
ty and the ideal—time complexity of our al-
gorithm are respectively O(e+n log f) and O
(n+n log f). (Recall that f represents the
number of deleted links of the old MST T,
while ) represents the number deleted links
containing the non—tree links. This implies
that f<; holds.) It depends on the parame-
ters n, ¢, f, p and ; whether or not our algo-
rithm is better than CK in
complexity and the ideal—time complexity.
The bit complexity of CK is O(fpe log n)
since the length of each message used in CK
is O(e log n) bits. On the other hand, the bit
complexity of our algorithm is O(elog n+n

the message

log f log n) since the length of each message
used in our algorithm is O(log n) bits. There-
fore, our algorithm is better, in the bit com-
plexity, than CK. Furthermore, CK utilizes in
the auxiliary information, called a replace-

ment set, in addition to the old solution. To
store the replacement set, CK needs the stor-
age of O(ne log n) bits in the whole network.
On the other hand, the space cpmplexity (the
total storage in the whole network) of our
algorithm is O(e) since our algorithm needs
no auxiliary information except for the old
solution. Therefore, our algorithm is superior
to CK in the space complexity.

2. Model

Our model is standard one, that is, (Al)
through (A5) are assumed.
(A1) The processors are connected by bidi-
rectional communication links and the proces-
sors communicate only by passing messages
along the links. A nework N is denoted as N
=(P,L) where P is the set of processors ans
L is the set of links, with | P| =nand |L |
=e,
(A2) The network is asynchronous, that is,
the time to transmit a message along a link
is fimte but unpredictable.
(A3) Each processor u has a unique identity
number (ie. processor number) ID(u), and
every identity number is represented in O(log
n) bits. Each link (x, v) has a unique weight
W(u, v), and every weight Is represented in
O(log n) bits.
(A4) The processors all perform the same
program. The program executed in each pro-
cessor Includes (a) its internal operations,
(b) send operations to send messages via its
ports, and (c) receive operations to receive
messages from its ports. (Each processor can
distinguish its ports each other.)
(A5) Any non—empty subset of processors
may start the algorithm sponteneously, and
each of other processors starts the algorithm



when it receives a message.

MST Updating Problem (MUP)
Let N be an arbitrary network and assume
that the MST T of N is already constructed,
that is, each processor knows which incident
links are those of T. The MST Updating Prob
lem(MUP) is the problem to reconstruct the
MST after N changes to N’ by adding sever-
al links to N and deleting several links from
N. In order to solve UMP efficiently, some
auxiliary information (e.g. the replacement
set [2]) may be utilized. In this case, the
auxiliary information needs to be updated so
as to correspond to N

Note that UMP defined above dose not
cover the topology change where deletion and
addition of processors occur. This paper main-
ly considers only deletion and addition and
links, and touches on deletion and addition of
processors in the last part.

In this paper, MUP is considerd under the
following assumption.
(A6) The topology change does not occur
during the execution of an algorithm.

Throughout this paper, N=(P, L) (resp. N’
= (P, L")) represents a network before topolo-
gy change (resp. a network after topology
change), and T=(P, L) (resp. T'=(P, L{")
represents the MST of N (resp. N’). More-
over, L, (resp. Ls) represents the set of
added links (resp. the set of deleted links of
T), and let t=|L,| and f=|Ls{. Note
that L, does not contain the deleted links
which are not the links of T. We will pay
only a little attention to the deleted links not
included in L.

Measures of efficiency of algorithms

In this paper, to measure the efficiency of

MST 24 24t ¢H2IE 187

an algorithm, we use the following measures.

(A) Message complexity . The (worst case)
message complexity is the maximum
total number of messages transmitted
during any execution of the algorithm.

(B) Bit complexity: The (worst case) bit
complexity is the maximum total num-
ber of bir transmitted during any execu-
tion of the algorithm.

(C) Ideal time complexity: The (worst case)
ideal time complexity is the maximum
number of time units from start to the
completion of the algorithm, assuming
that the propagation delay of every link
i1s one time unit of some global clock.
This assumption is used only for pur-
pose of evaluating the ideal time com-
plexity, since. the network is
asynchronous.

(D) Space complexity . The (worst case) space
complexity is the total amount of stor-
age of all processors in the whole net-

work.
3. The idea of our algorithm

In this section, we describe the idea of our
algorithm to update MST after several links
are deleted ans added.

3.1 Application of Gallager's method

Our algorithm is partly based on the tech-
nique Gallager et al. proposed[3]. At first,
we shortly illustrate the Gallager’s method.
Gallager’s Method

Any connected subgraph of the MST is re-
ferred to as a fragment. Define a link as an
outgoing lLink of a fragment if one adjacent
processor i1s in the fragment and the other is

not. Gallager’s algorithm, denoted as GHS



188 B2 BH H2|SBEE| =2X 1A H2E(9N 7)

hereinafter, starts with each individual proces-
sor as a fragment, that is, there exist n frag-
ments each of which consist of one processor
in the beginning of GHS. GHS enlarges each
fragment by finding its minimum—weight
outgoing link and combining the fragment
with the fragment at the other end of hnk,
then enlarges each of the new fragments
again in the same way, and so forth, GHS
repeats the above procedure until there exists
only enforces a balanced growth of fragments
by utilizing the level of each fragment, which
reflects the size(i.e. the number of proces-

sors) of the fragment.

Applying Gallager's method to UMP

When topology change occurs, most part of
the new MST T may coincide with the old
MST T. For example, consider the topology
change where several links of T are deleted
and no link is added. By the topology change,
the old MST T 1s divided into several con-
nected components, and then each connected
component is a fragment of the new MST T'.
This fact implies that an algorithm for UMP
can start with enlarged fragments, that is,
each of the fragments may contain more
than one processor. By the algorithm exactly
similar to GHS, we can efficiently construct
MST from the initial configulation. We de-
note the algorithm as PMHT (see reference
[4], initial character of author).
[(Property 1]} If the algorithm PMHT starts
in the situation that there are r fragments,
then it constructs the MST with the message
complexity O(n log r+e) and the ideal—time
complexity O(n log r+n ).

When f links of the old MST T are delet-
ed, T is divided into f+1 connected compo-

nent. Therefore from Property 1, the algo-
rithm PMHT reconstructs MST with the mes-
sage complexity O(n log f+e) and the ideal
—time complexity O(n log f+n), after f links
of the old MST T are deleted (and no like is
added).

Consider the case where both link addition
and link deletion occur. In this case, the old
MST T is divided into several connected by
the deleted links. But all connected com-
ponents of T—L4«(P, Lr—E,))may not be the
new MST T since there exist added links.
Therefore, the algorithm PMHT can not be
simply applied to this case.

How can we solve UMP after several links
are added and deleted? We can pick up an
idea in the algorithm Tsin proposed[5].

3.2 Tsin's method

Tsin[5] proprsed an algorithm to recon-
struct MST after several links are added and
no link is deleted. We briefly describe the al-
gorithm.

Removal of the maximum—weight link in a
cycle

When a link (u, v) is added, (u, v) and
the u—~v path in T from a cycle. In this
case, the new MST T’ is obtained by remov-
ing the maximum—weight link in the cycle
from T+{(u, v»)} (=(P, LiU{(nw, v)})).
When several links are added, T+ L.(=(P,
LyUL,)) has several cycles. Tsin’s algorithm
reconstructs the new MST T’ as follows.

(1) Let Twon be T+La.
(2) Repeat the followings until there exists
no cycle in Tuok.

(i) Find a cycle of Twak and find the max-

imum—weight link [ in the cycle.

(it) Let Twon be Twer— {1}



(3) Tuox is the new MST T°. (Note that Twon
has no cycle in (3).)

Tsin's algorithm cannot efficiently recon-
struct the new MST T’, because it sequential-
ly processes the cycles in T+L. Therefore
the authors tried to process the cycles con-
currently, but it seems to be difficult to do
so in the reasonable cost (the number of
messages). In order to solve this difficulty,

we introduce new idea.
3.3 Partition links (Our new idea)

The algorithm PMHT is an efficient algo-
rithm to reconstruct T from the initial
configulation where there exist several en-
larged fragments. In order to apply PMHT to
the case where both link addition and link de-
letion occur (the set of partition links is de-
noted by L, throughout this paper). The defi-
nition of the partition links is described later.
The key point is that the partition links satis-
fy the following properties.

[Property 2] The partition links are links of
the old MST T, that is, L+=2L, holds.
(Property 3] Let [ be any link of the old
MST T. If | is deleted by the topology
change, | is a partition link, that 1s L,=2L,
holds.

[Property 4] Each connected component of T
—L, is a fragment of the new MST T, that
is, L, contains the maximum weight link in
each cycle of T+L..

[Property 5] The number of connected com-
ponents in T—L, is O(t+ f).

[Property 6] The partition links can be
found efficiently.

Our algorithm first finds the partition links
and changes them to non—tree links, then all

tree links (except for partition links) of the

>
[

MST 74 &4t gae|

i
8

r

old MST T form several connected com-
ponents of the old MST T. Property 4 im-
plies that each connected component is a
fragment of the new MST T'. Therefore in
the latter half of our new algorithm, PMHT
is applied to construct the new MST T.
Property 5 is needed to bound the message
complexity of our algorithm, because the mes-
sage complexity of PMHT depends on the
number of fragments in the imtial
configulation. In order to utilize the partition
links efficiently, Property 6 is needed.

The partition links are defined as follows.
For simplicity, the MST is regarded as a
rooted tree in what follows.

[Definition] An adjacent processor is a proces-
sor incident to an added link or a deleted
link. Define processor u as a branch proces-
sor, if there exist two processors in u’s sons
such that each of them has an adjacent pro-
cessor in its descendents. In other words, u is
a branch processor if u is the nearest com-
mon ancestor of some two adjacent proces-
sors. A marked processor is a processor that
is an adjacent processor or a branch proces-

O Adjacenct Processor ® Branch Processor
# Primary path

(Fig. 1) Adjacent processors, branch processors and
primary paths.



190 812 YL /2B =X HIA H2E (94 7)

sor. (We use the term a marked processor
when there is no need for distinguishing a
branch processor from an adjacent proces-
sor.) For any marked processors u and v, the
u—v path in T is called a primary path if no
other marked processor exists on the u—v
path. Define a link as a partition link, if 1t is
the maximum —weight link in a primary path
(Figure 1).

From the definition, it is clear that the par-
tition links defined above satisfy Property 2
and Property 3. The following two lemmas
show that Property 4 and Property 5 hold.
Property 6 is examined later.

[Lemma 1] Each connected component of T
—L, is a fragment of the new MST T'.

(proof) Assume that there is a connected
component in T—L, which is not a fragment
of the new MST T’. Then, it contains a link
(u, v) such that it is not a link of T, that
is, (u, v)&ELY. Let v be a son u in the old
MST T. By removing (u, v) from T, T is di-
vided in to two trees, the subtree with the
root v (denoted by T.) and the other part T
—T, (denoted by G’).

(Case 1) There exists an added link be-

)

(Fig. 2) Network in the proof of Lemma 1.

tween Tv and G’, that is, an added link
which connects a processor in T. and a pro-
cessor in G'(Figure 2).

There i1s marked processor which is an an-
cestor of u. Let t be the nearest marked pro-
cessor to u among ancestors of u. Similarly,
let s be the nearest marked processor to v
among descendants of v From the definition
of the partition link, the maximum weight
link in the t—s path is the partition link. Let
(g, &) be the maximum weight link and g be
a son of g. Since (u, v) is a link in T—L,,
(u, v) 1s not a partition link, that is, (u, v)
x (g, g) holds. Without loss of generality,
we can assume that (g, g') is a link on the
u—t path. When (u, v) and (g, &) are re-
moved from T, T is devided into three con-
nected components; the connected component
containing u and g (denoted by G1), the con-
nected component containing g and subtree
with a root v. From the definition of i, there
exist no marked processor in G1, that 1is,
there is no added link connecting to proces-
sor in Gl. This fact implies that W(z, 2')>
W(u, v) or W(z. 2)> W(g g') holds for
any link (z, 2') between Gl and T-Gl.
Since (g, £) is the maximum weight link on
the t—s path, W(g, g')> W(u, v) holds, and
W(z, 2)>W(u, v) holds (Claim 1). When(u,
v) is added to the new MST T, (u, v) and
the u—v path in T from cycle. On the cycle,
there exists a link (p, ¢) between G1 and T
—G1 except for (u, v). Since W(p, g)> W(
u, v) holds from Claim 1, (T'—{{p—q)}) +{(
u, v)} i1s a spanning tree and its total sum
of weight is smaller than that of T'. This
contradicts the fact that T" is the new MST
of N’

(Case 2) There exists no added link be-



tween T, and G'.

Since (u, v) is a link of old MST of N, W
(p, 9> W(u, v) holds for any link (p, ¢q)
between Tv and G’ (Claim 2). When (u, v)
is added to T, (u, v) and the u—v path in
T from a cycle. On the cycle, there exists a
link (p, ¢) between T. and G’ except for (u,
v). Since W(p, ¢)>W(u, v) holds from 2
Claim 2. (T'—{(p, ¢)})+{(u, v)} is a span-
ning tree and its total sum of weight is
smaller than that of T'. That contradicts the
fact that T’ is the new MST of N’

[Lemma 2] The number of connected com-
ponents in T—L, is O(t+ f).
(proof) Consider the graph G'=(V’, E’)
where
V'={u| u is a connected component in T
—L,}, and
E’={(u, v) | There exists a partition link
(s, t) such that s(resp. t) bolongs to
the connected component u (resp. v)
in T-L,}.
Clearly, G’ is a tree. From the definition of
partition link, (a) each connected component
corresponding to a leaf of G’ contains one
adjacent processor, and (b) each connected
component corresponding to an internal node
of G’ has at least two sons (Claim 3). From
Claim 3, we can show that the number of
the connected components in T—L, (ie. the
number of vertices in G') is O(t+ f).

Consider the case that no link of the old
MST T is deleted, that 1s, Li=¢ holds. Then,
it 1s obvious that the following Lemma 3
holds. This observation saves messages in this
case. It follows from Lemma 3 that we can
ignore all links which belong to N but not
belong to T. In other words, no message iIs

sent along those links in our algorithm when

MST 74 24t #12IE 191

no link of T is deleted.

[Lemma 3] The new MST T’ of N’ coincides
with the MST of T+L,, if there exists no de-
leted link of T.

4. The outline of our algorithm

In this section, we describe the outline of
our algorithm. Our algorithm consists of four
phases.

(Phase 1) Check where there exists a deleted
link of T' or not. If there exists no deleted
link of T (i.e. Ly=¢), ignore all links in L—
Lr (links which belong to N but not belong
to T) in the following three phases.

(Phase 2) Elect a leader in each connected
component of T—L, In next phase, the con-
nected component of T—L, is regarded as
the rooted tree whose root is the leader elect-
ed in this phase.

(Phase 3) Find the partition links and
change them into non—tree links.

In this phase, the partition links are found
in each connected component of T—L4 as fol-
lows.

(3.1) Find the
adjacent processors and the branch proces-

marked processors (the

sors) in the bottom—up fashion from leaves

of the connected component of T—Ls This

step proceeds as follows.

(i) Each leaf of the connected component of
T-1.s decides where it is an adjacent
processor or not, and then sends a mes-
sage to its parent to inform whether the
leaf is an adjacent processor or not.

(1) When each internal—processor receives
messages from all sons, it decides wheth-
er it is marked processor or not, that is,
it decides to be a marked processor if
and only if (a) it is an adjacent proces-



192 BIRYZ M2 (BB =2X| 13 H2E (M4 7)

sor or (b) there exist two sons which in-
form that there exist adjacent processors
in their descendants. Then, it sends a
message to its parent to inform whether
there exists an adjacent processors in its
descendants or not.
(3.2) Every marked internal—processor is the
upper end of a primary path, if it receives
the message telling that its son has an
adjacent processor in its descendants. In
order to find the partition link in the primary
path, the marked internal—processor sends a
message to every son that informs there ex-
ists an adjacent processor in its descendants.
The message is transfered to a marked pro-
cessor, which is the other end of the primary
path, and the message carries the maximum
weight of the link which is has ever trav-
ersed. When the message reached the other
end of the primary path, the processor finds
the weight of the partition link of the pri-
mary path, and the message is forwarded up-
ward to the processors incident to the parti-
tion link.
(Phase 4) Apply the algorithm PMHT to the
network N’ with  the initial configuration
where each connected component of T—L,; is
a fragment of the new MST T'.

5. Correctness and complexities of our
algorithm

It is obvious that Phases 1,2 and 3 termi-
nate wihtin a finite time, and the partition
links are correctly found in Phase 3. From
Lemma 1, T—L, is a fragment of the new
MST T'. Thus, by applying PMHT, the new
MST T’ of N’ can be reconstructed within a
finite time in Phase 4.

[Theorem 1] The message complexity of our

algorithm 1s O(nlog(t+f)+ m) and the bit
complexity i1s O(n log(t+ fllog n+mlog n),
where m=n+1t if f=0, m=e otherwise.

(Proof) The message complexity of Phase
1 1s O(n), and the message complexity of
Phase 2 is O(n) if f=0, O(e) otherwise. In
Phase 3, a constant number of messages are
sent through each remaining link of T. Thus,
the message complexity of Phase 3 is O(n).
From Lemma 2, there exist O(t+f) frag-
ments in the beginning of Phase 4. Therefore,
it follows from Property 1 that the message
complexity of Phase 4 is O(n log(t+ f)+e),
if f=0.1f f=0, from Lemma 3 we ignore all
links in L—Lr, and no message is sent along
these links. Thus the message complexity is O
(n logt+ (n+1t)) if f=0..

Each message of our algorithm is O(log n)
bits long, hence, the bit complexity of our al-
gorithm is O(n log(t+f) log n+m log n),
where m=n+1t if f=0, m=e otherwise.
[Theorem2] The ideal—time complexity of
our algorithm is O(n log(t+ f)+ n).

(Proof) The ideal—time complexity of
Phases 1, 2 and 3 is O(n). From Property 1,
the ideal—time complexity of Phase 4 is O(n
log(t+ f)+n).

6. Addition and deletion of processors
and links

We can easily modify our algorithm so
that it can reconstruct the new MST after
addition and deletion of processors as well as
links occur. We have only to modify the defi-
nition of an adjacent processor. In the modi-
fied algorithm, a processor u is defined as an
adjacent processor, if u is incident to an
added or deleted link, or if u i1s adjacent to
an added or deleted processor. When a pro-



cessor v is added or deleted, it causes at
most d adjacent processors where d is the de-
gree of v (L.e.the number of links incident to
u). Therefore there exist O(g+t+ f) adjacent
processors, where g is the sum of degree
over all added or deleted processors. From
this observation, the following theorem can be
proved.

[Theoremn 3] After processors and links are
deleted and added, the new MST T’ can be
reconstructed with the message complexity O(
n'log(g+t+ )+ r) and the ideal—time com-
plexity O(n'log(g+t+ f)+n'). Here, n’ is the
number of processors in the network after to-
pology change, g is the sum of degree over
all added or deleted processors, and r=n+g
+t if f=0 and no processor is deleted, r=¢
(i.e. the number of links in the network after

topology change) otherwise.
References

[1] B.Awerbuch : “Optimal Distributed Algo-
rithm for Minimum Weight Spanning
Tree, Counting Leader Election and re-
lated problems”, Proceedings 19th Annu-
al ACM Symposium on Theory of Com-
puting., pp.230—240 (1987).

[2] L.Cimet and S.P.Kumar : “A Resilient Dis-
tributed  Algorithms  for
Weight Spanning Trees”, Proceedings of

Minimum

the 1987 International Conference on
Parallel Processing., pp.196—203(1987).
[3] R.Gallager, P.Humblet and P.Spira : “A
Disrtributed Algorithm for Minimum
Weight  Spanning Trees”, ACM
TOPLAS, 5, 1, pp. 66 —77(1983).

>

MST M2

] 8

bt

3]

2lE 193

0)
r

[4] J.Park, T.Masuzawa, K.Hagihara and N.
Tokura : “Distributed Algorithms for Re-
constructing Minumum Spanning Tree—
The Case of Link Deletions—”, Tech.
Rep. IECEJ, COMP—89—25(in Japanes)
(1989).

[5] Y.H.Tsin: “An Asynchronous Distributed
MST Updating Algorithm for Handling
Vertex Insertion in Networks”, Proc. of

the International Conference on Parallel

Processing and Applications, pp.221—
226(1987).

B A 3
19803 AMgdddm Abdd
& Z(FTA
198013 ~1982y A gdoistn
gy e At
. (A ARAAD
19851 ~19087 Y& 24l7}
3ty Y ARFHA
: F(FAAHAD
1987'd~1990 & oAzt et oty YRF
g (Fubah)
1991~ 32 AEditts Az A gH 24
JARof: BagdneE: AT e F3

9 F 49

19823 ofF:dittw AbgjF 8t
I EQ(FeAD

19863 ~1989yd Alwcetw
Zddidd  HExetsy
F4(A9%44h

199004 ~1993d Y FRehetm
ebel  AHARE A " A}
HAH48)

1993+ 9Y~&A Axdit e ddEd e} A} Az
m-?‘ - - N

AR} Bad e, ’dw‘-‘rE‘l—?-/?—H/—‘!Y_é, Neural
network T



