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Scheduling Algorithms and Queueing Response Time Analysis

of the UNIX Operating System
Jong Seul Lim'

ABSTRACT

This paper describes scheduling algorithms of the UNIX operating system and shows an ana-
Iytical approach to approximate the average conditional response time for a process in the UNIX
operating system. The average conditional response time is the average time between the submit-
tal of a process requiring a certain amount of the CPU time and the completion of the process.
The process scheduling algorithms in thr UNIX system are based on the priority service disci-
plines. That is, the behavior of a process is governed by the UNIX process schuduling algo-
rithms that (i) the time-shared computer usage is obtained by allotting each request a quantum
until it completes its required CPU time, (ii) the nonpreemptive switching in system mode and
the preemptive switching in user mode are applied to determine the quantum, (iii) the first-
come- first- serve discipline is applied within the same priority level, and (iv) after completing an
allotted quantum the process is placed at the end of either the runnable queue corresponding to
its priority or the disk queue where it sleeps. These process scheduling algorithms create the
round-robin effect in user mode. Using the round-robin effect and the preemptive switching, we
approximate a process delay in user mode. Using the nonpreemptive switching, we approximate
a process delay in system mode. We also consider a process delay due to the disk input and
output operations. The average conditional response time is then obtained by approximating the
total process delay. The results show an excellent response time for the processes requiring
system time at the expense of the processes requiring user time.
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1. Introduction

This paper introduces the scheduling
algorithms of the UNIXe operating system and
shows an analytical approach to approximate the
average conditional response time for a process
in the UNIX operating system. The average
conditional response time is the average time
between the submittal of a process requiring x
seconds of the CPU time (see CPU time in
Section 4.1) and the completion of the process.
The average conditional response time is a
function of the CPU time - it is proportional to
the CPU time. In the UNIX system, the CPU
time consists of system time and user time {see
Section 4.1). Therefore, the average conditional
response time is a function of system time and
user time. Also, the UNIX system has two
classes of priorities - system priorities and user
priorities and two types of modes - system mode
and user mode (see Sections 3.1 & 4.1}. For
priorities, a system priority is higher than any
user priority. The process scheduling algorithms
in the UNIX system are based on the above
priorities and modes. That is, a process is
scheduled by the preemptive switching if a
process is in user mode; by the nonpreemptive
switching if the process is in system mode; by
FCFS if the process is in the same priority level
(see Section 3.3). From these process scheduling
algorithms, we found the round-robin effect is
created in user mode (see Section 3.4). Using
the round-round effect and the preemptive
switching, we approximate a process delay
during its stay in user mode. Using the
nonpreemptive switching, we approximate a
process delay during its stay in system mode. We
also considered a process delay during its stay
for resources (e.g., block I/O). The average
conditional response time is then obtained by
approximating the total process delay (see
Section 4.4).

The organization of this paper is as follows.
Section 2 gives a brief overview of the well-
known round-robin scheduling algorithm.
Section 3 describes the process scheduling
algorithms in the UNIX system. In Section 4,
we introduce definitions, assumptions, and
notation that are needed for our analyses. We

also formulate a mathematical model of the
average conditional response time and show
approximate analyses. In Section 5, we present
a case study for the exponential distribution.
The case study gives some numerical results and
discussions for the average conditional response
time. Section 6  describes practical
considerations of the derived results. By way of
example, the average conditional response time
of the UNIX system under an IBM-3081K
machine is presented. Conclusions are given in
Section 7.

2. The Round-Robin Scheduling Algorithm

In this section, we briefly describe the well-
known round-robin scheduling algorithm. A
newly arriving process joins the end of a single
queue and waits until it finally reaches the CPU
in a first-come-first-serve (FCFS) discipline.
Upon reaching the CPU, the process seizes the
CPU for the preassigned quantum. The process
is then ejected from the CPU at the time it
completes a preassigned quantum. Assuming
that all quanta shrink to zero, the round-robin
algorithm results in what is commonly known as
the processor-sharing system. For the
processor-sharing system, Kleinrock [3,4] and
Sakata (8] derived the average response time of
a process requiring x seconds of the CPU time

as T(x) = l—’-‘p-, where p = (average arrival rate of

processes) x (average of the required CPU time
x} = X . If the process completes its required
CPU time, it departs from the system and the
CPU immediately executes the next process
waiting at the head of the queue. If the process
has not completed its required CPU time, it is
cycled back to the end of the queue. The
structure of this system is shown in Figure 1.

Oycled Arrivals

——=  Single \/CPLU
New Arrivala Queue Departures

(Fig. 1) The Round-Robin System.



8. The UNIX Scheduling Algorithm

This section describes typical concepts as to
how the UNIX process scheduling is done.
Bach [1] discussed a detailed UNIX scheduling
algorithm. Henry [2] showed the UNIX
scheduler handles processes according to the
prioritized round-robin scheduling algorithm. A
brief discussion related to the UNIX scheduling
algorithm is presented in Thompson [10]. Since
source codes of the UNIX system are constantly
modified, some of our descriptions in this
section might not be appropriate for some cases.

3.1 TPwo Classes Of Priorities

In the UNIX system, the process scheduling
algorithm is based on a priority service
discipline using 128 priorities from 0 (high and
good) to 127 (low and bad). There is one
important dividing priority in these priorities, at
40. Priority 40 separates system priorities from
user priorities (priority 40 is a user priority). A
system priority is higher than any other user
priority. A priority between 0 and 39 is assigned
to a process that goes to sleep. A process goes
to sleep when the resource (e.g., block I/0) it
requests is unavailable and sleeps until the
resource is obtained. When it wakes up, the
process is placed at the end of the queue with
the good priority (i.e., system priority).

3.2 Computation Of Priority

The priority of a process in system mode
remains unchanged unless this process issues a
system call (see system call in Section 4.1) and
goes to sleep. The process goes to sleep and its
priority is raised to a system priority only when
the resource it requests is unavailable. A system
priority is assigned according to the event for
which the process is waiting. On the other hand,
the priority of a process in user mode (i.e., user
priority) changes dynamically, according to the
recent CPU usage. The priority of a process in
user mode decreases as it uses the CPU and
increases as it waits for the CPU. The following
example computes the priority of the process in
ugser mode. The initial default user priority
(usually 60) assigned to the process in user
mode lasts only less than one second on the
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UNIX System V. It then receives a new value
according to (3.1). A new user priority in (3.1)
is computed every one second clock interrupt
(e.g., every e0® clock tick)! or each time a
process returns from a system call. The p_cpu,.,
in (3.1) is incremented by 1 in every 1/60 second
clock tick while the process is executing on the
CPU. Starting from gero, it can increase to a
maximal value of 80. This zero value of p cpuyw
is assigned when a new process arrives, when a
process is swapped in? , or when a process
leaves the CPU for a long time (usually more
than 7 seconds). The p cpugw is halved only at
every 60® clock tick. Note that p_cpug,.w becomes
P CPUpsore at every 60% clock tick and that the
smaller user priority in (3.1) implies the higher
scheduling priority.

user priority =

at the 60% clock tick (3.1)

otherwise,

P_CPUnow/2
0+ {p_cpu.m

where p cpu,w i8 computed by the following
equation at every 60 clock tick just before the
priority is computed by (3.1).

P_CPUnow = %{Min(ao + P_CPUbefore +

the number of clock ticks while the process seizes the CPU)}.

3.3 Scheduling With Four Disciplines

A newly arriving process usually gets a user
priority 60 and joins at the end of the queue with
priority 60. Also the process stays in user mode.
Note a process may run either of two modes,
namely user mode or system mode. It then
accesses the CPU by FCFS. Upon seising the
CPU, the UNIX scheduler allots a quantum the
process. A quantum is usually one second. If
the process has not been interrupted during the
full one second quantum, the process uses the
CPU for the full one second and is then ejected
to be placed at the end of the queue
corresponding to its user priority. If the process

1. In this eample, one second has 60 clock ticks.

2. For swapping policy, a process is swapped in from a
secondary memory device. For a demand paging policy, a
page is swapped in from a secondary memory device
each ime page fault occurs.
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is interrupted by the higher priority process
before a full one second quantum, the process is
preempted (for this case, a quantum is less than
one second). It is then placed at the end of the
queue corresponding to its user priority. This
discipline is the preemptive suntching in user
mode. When it gets the CPU later, its service
continues from the point of preemption. On the
other hand, if the process in a user priority
issues a system call, the process transfers from
user mode to system mode. In this case the
priority of the process remains unchanged, but it
is neither preempted by the process with the
higher priority nor ejected by a quantum
expiration. That is, the process completes the
system call regardless of quantum and priority.
This discipline is the first type of the
nonpreemphive switching n system mode. During
a system call, the process is put to sleep if the
resource is unavailable. It then gets the system
priority (high and good). Once the process with
a system priority gets the CPU, it also be neither
preempted by the process with higher priority
nor ejected by a quantum expiration. This
discipline is the second type of the nonpreemptive
suntching in system mode. Processes waiting on
the same user or system priority are dispatched
to the CPU, according to their arrival time on
that priority. This discipline is FCFS unthin a
Prionty Level.

Upon completing the whole required CPU time,
the process departs from the UNIX system and
the CPU immediately executes the next process
waiting at the head of the highest priority queue.
If no process in the UNIX system, the CPU
becomes idle.

3.4 Round-Robin Effect In User Mode

The UNIX process scheduling algorithm
creates the round-robin effect in user mode
(note that it does not create the round-robin
effect in system mode). That is, the behavior of
the processes in user mode do not exactly follow
round-robin (see Section 2), but it resembles
round-robin. To explain that, we consider the
following three categories derived from the
example in Section 3.2.

Category 1 :if a process in user mode has

required an unavailable resource
during one second quantum (i.e., if
a process has to go to sleep), it will
be placed at the end of a queue that
is somewhere between 60% priority
queue and 100* priority queue® when
it returns to user mode from system
mode.

Category 2 :a process in user mode has not
required any resource and not been
preempted during one second
quantum, it will be placed at the end
of a queue that is somewhere
between 75* and 80* queue.

Category 3 :if a process in user mode has
required an available resource or
been preempted during one second
quantum, it will be placed at the
end of a queue that is somewhere
between 60® and 80% queue.

From the above, we have the immediate result
that a process in Category 1 will be on the
average delayed longer than a process in
Category 3. A process in Category 2 will be on
the average delayed longer than a process in
Category 3. In other words, a process that has
required an unavailable resource or has
completed a full one second quantum is delayed
longer than a process that has not completed a
full one second quantum. From this, we deduce
the following:

o If a process has required an unavailable
resource or has completed a full one
second quantum, it is on the average
delayed longer than other processes in
the UNIX system;

e if a process has not completed a full one
second quantum, it is on the average
delayed shorter than other processes in
the UNIX system.

We can then see that the delay in user mode is
counterbalanced by the above two
considerations so that the overall delay in user

3. From (3.1), we can compute the new user priority
ranging from 60 to 100.



mode may approach the same delay as in the
round-robin scheduling algorithm. Moreover,
as time progresses the priority of a process rises
until it gets the CPU no matter which category it
may belong to. Therefore, we believe the
round-robin effect is created in user mode. This
round-robin effect in user mode could be
validated by the computer simulation. We plan
to publish the computer simulation study on the
round-robin effect in future. In this paper, we
will use the round-robin effect in user mode
without the exact proof.

4. An Analysis Of The UNIX Response Thme

In this section, we introduce the following
definitions, assumptions, and notation. Those
will be used throughout the paper. We then
formulate and analyze an approximate model.

4.1 Definitions

e CPU time : the required processing time
of a process (CPU time consists of
system time and user time).

o System mode : a UNIX mode where a
process executes the UNIX kernel codes
and accesses the system data segment.

o User mode : a UNIX mode where a
process executes user programs and
accesses the user data segment.

o System call : a call that is initiated by the
processes in user mode and causes a
transition from user mode to system
mode.

« System priorities : UNIX priorities from
0 to 39 (high and good).

User priorities : UNIX priorities from 40
to 127 (low and bad).

o ‘System time : the time a process spends
in system mode.

o User time : the time a process spends in
user mode.

o Our tagged process : a process that we
keep track of from its arrival (or
submittal) to its departure (or
completion) by attaching a tag.
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e The average unfinished work U : the
average CPU time required to empty all
processes already in the UNIX system,
assuming no new process enters the
UNIX system (note that U equals the
average waiting time of arriving
processes in the queue by a FCFS
discipline, but U is not equal to the
average waiting time in the queue by the
round-robin scheduling algorithm).

o The average modified unfinished work
U’ : the average CPU time required to
empty all processes already in the UNIX
system, assuming no new process enters
the UNIX system and assuming any
process requiring the longer CPU time
than our tagged process requires just the
same CPU time as our tagged process.

o CPU factor : User time devided by CPU
time.

42 Assumptions
A. The system has only one server (i.e., one
CPU).

B. The arrival stream of processes and the
requesting stream of system calls by
processes are Poissonian at the average
rates of A and ), respectively. The amount
of the user time required by each arrival
process and the amount of the system
time required by each system call follow
arbitrary distributions with the average of
% and 4, respectively. The k* moments of
those are x* and t¥, respectively.

C. The context switching overhead between
processes is negligible; all quanta in user
mode are the same size and shrink to a
negligibly small amount (presumably
almost sero).

D. The first type of the nonpreemptive
switchtng in system mode (see Section 3.3)
does not happen. That is, we assume the
requested resource is always unavailable.
This assumption assures that a process in
user mode has always a user priority and a
process in gystem mode has always a
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system priority. Without this assumption,
a process in system mode could have a
user priority.

4.3 Notation

% the system time of our tagged process.

%, the user time of our tagged process.

x the total CPU time of our tagged process
=% + Xye
p the CPU factor, x, devided by x

T(x) The average response time of a process
requiring x seconds of the CPU time
(i.e., the average conditional response
time).
U, the average unfinished work for system
time of processes in system priorities.

U’, the average modified unfinished work
for user time of processes found by our
tagged process.

), the average rate at which processes need
the UNIX kernel (this rate results from
system calls because a system call is
generated each time processes need the

UNIX kernel).

A the average arrival rate of processes.

t  the average system time required by each
system call (i.e., the average duration of
a system call).

& the n® moment for the system time
required by each system call.

% the average user time of all the processes
entering the UNIX system.

% our tagged process average delay by user

time of new arrivals during its stay in the
UNIX system.

. the n® moment for the truncated
remaining user time.
Fs the portion of time that the CPU

executes processes in system mode (i.e.,
utilization for system time of processes =

AL).

Pu the portion of time that the CPU
executes processes in user mode (i.e.,
utilization for user time of processes =
xg).

v the expected portion of time that our
tagged process is waiting for resources
(e-g., block I/O) during its stay in the
UNIX system.

4.4 Model Formmlation

We begin by formulating our response time
model from the viewpoint of our tagged process.
Our tagged process is delayed on the average by
the total system and user time of the processes
waiting for the CPU during its stay at the UNIX
system, by the waiting time for resources it
needs, and by its own service time (i.e., by its
required CPU time).

Towl Dhgyed Procong Ehgged Procesy Fhgged Procosg Kagged Procesy
— {Dddnw|, [Diwanw{ | Ddey Ow

::: — ar'n-g"' u::'n— ‘::uuﬁ‘ 1 v

Deley Processss Processes Time

Figure 2. The Total Tagged Process Delay.

Figure 2 above concisely illustrates the average
conditional response time of our tagged process.
As shown in Figure 2, the total tagged process
delay equals the average conditional response
time of our tagged process. Now, we can
rewrite boxes 1-5 as T(x), Ty(x), Ta(x), Ts(x), and
Tu(x), respectively. Thus,

T(x) = Ty(x) + Ta(x) + Ts(x) + Te(x)
Knowing that Ts(x} and T,(x) are none other than
AT{x) and x (= x, + x,), respectively, we have

T = Tu(x) + Tald) + T +x.  (4.1)

Since a system priority is higher than any user
priority, we can consider the following two facts:

(1) Our tagged process obtains a user priority
when it enters the UNIX system. It must wait
for the CPU until all the processes (these do not
include the sleeping processes) with system
priorities complete their required system times.
This delay is on the average the same as U,.

{2) Also, if the processes enter the UNIX



system and issue new system calls during our
tagged process stay T(x), each of those processes
will get a system priority (by Assumption D in
Section 4.2). Our tagged process must wait until
new system calls generated by those processes
complete. This delay is on the average A\ T{x)t.
That is, A, T(x) is the total number of new system
calls during our tagged process stay and then
each of the system call requirest,.

Thus, we have
Ti(x) = U, + AT - (4.2)

To derive U, in (4.2), we observe that U,
consists of the following two parts (i.e., U, and

U,,):

(1) u,, : Delay due to a process (if any) seizing
the CPU with a system priority.

Because of the nonpreemptive switching in
system mode, U,, is merely
U,, = ARL x g, = i/J. (4.3)
" %

where ARL is the average residual life of system
time of a system call and 4, = A%.

The idea in computing ARL is based on the
assumption that the system time required by the
process in a system priority is independently and
identically distributed with an arbitrary
distribution. This system time is renewed at the
instant the CPU starts serving a new process in
a system priority (refer to "Renewal Counting
Process” in Parsen [Ch. 5, 5] and Ross [pg. 284,
6] for more details). Therefore, (4.3) becomes
U, = —=A\t = (4.4)

T

AR
2

Blls

(2) U,, : Delay due to the processes with a
system priority that are found by our tagged
process.

This delay is on the average the same as the
average of the system time required by each
system call () times the average number of
processes in system mode found by our tagged
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process (L,). Note that L, excludes the process
(if any) seizing the CPU with a system priority.
Thus,

U, = 4L, (4.5)

Using Little’s results (see Kleinrock [pg. 6, 4}),
we can see that, on the average, AW, processes
will be in system priorities. Thus,

L, = AW., (4-6)

where W, is the average duration of a system call
in a system priority.

Substituting (4.6) for L, in (4.5),
U,, = AW, = oW, . (4.7)

Since we assume that the arrival stream of the
system call is Poissonian and the duration of
system call follows an arbitrary distribution, the
average duration of a system call in a system
priority is given by

e
W, = 8 4.8

2(1-4) (48)
Refer to Kleinrock [pg. 16, 4] to see details for
(4.8).

Substituting (4.8) into (4.7), we have

e :

U” = m . (4-9)

Since U, = U,, + U, from (4.4) and (4.9) we
obtain

A2

U, = M-n)

(4.10)

The equation (4.10) indicates that the average
unfinished work U, is the same as the average
waiting time W, by a FCFS discipline (refer to
Conservation Laws in Kleinrock [pg. 113-118, 4] for
more details). We can then rewrite (4.2) as

2 _

T = s + AT6R
Y
T 21-4)

+ psT(x) . (4.11)



374 B=HRNCISEEE =X H1H HM3S (94 9)

4.5 Derivation Of T,(x)

Our tagged process delay due to user time of
other processes T,(x) is given by the average
modified unfinished work U‘,. In addition,
during our tagged process stay in the UNIX
gystem, there will be on the average XT(x) new
arrivals, each of which requires an average of
% - Thus, we have

T,y(x) = U, + TR, - (4.12)

1) Derivation of U,

Recall that the behavior the processes in user
mode resembles that of the round-robin
scheduling algorithm and the overall delay in
user mode approaches the same delay as in the
round-robin scheduling algorithm (see Section
3.4). Therefore, we approximate U, by using the
round-robin scheduling algorithm. Suppose that
a process is already in the UNIX system and
some of user time of that process has been
completed by the time our tagged process
arrives at the UNIX system. Now, we are
interested in the remaining user time of that
process. From the round-robin scheduling
algorithm, it is evident that every process, having
a remaining user time greater than x, seconds at
the instant our tagged process arrives at the
UNIX system, contributes x, seconds to U,
Also recall that the context switching overhead
between processes is negligible (see Assumption
C in Section 4.2). If the remaining user time of
a process is more than x, seconds, the view point
of our tagged process changes. That is, our
tagged process views that process as if it left the
UNIX system upon completing x, seconds of its
remaining user time. Specifically, if a process
requires a user time of s seconds and has
received r seconds of the CPU service by the
time our tagged process arrives, a remaining
user time of the process is

8-T=Y.

Then, its contribution to U, i8

y y<X
X ¥2X%-

From the above, we obtain the truncated
remaining user time density function that is the
same as the residual life in the renewal counting
process. Ross [pg. 44, 7] derived the cumulative
density function (CDF) of the residual life as

{ (1-F(t)dt

F(y) = —, (4.13)

where F(t) is a cumulative distribution function

o0

of the required user time, and m = [[1-F(t)jat.
(1]

Thus, the truncated CDF of the remaining user
time 18

. F(y) Y <%
F&(Y) = y>x,

Now, the n* moment of f"x.(y) is derived by
applying the Laplace-Stieltjes Transform (see
Schrage [pg. 471, 9]) as

Zo= [PaFO) e xOM-FO0), (414)

where F(y) is given by (4.13).

Letting n = 2 in (4.14), we obtain the modified
average unfinished work U’ in (4.12) by using
Pollacsek-Khintchine (P-K) formula (see
Kleinrock [pg. 16, 4]) as follows.

X

2(1 - pu)

Uyu=

Xu
A{{fi(y) + x2[1-F(x)]}

- rery (4.15)

2} Derivation of %’

During our tagged process stay in the UNIX
system, each of the newly arrival processes delay
our tagged process an average of X’ seconds.

Our tagged process, having visited the CPU n
times so far, must have received an amount of
user time equal to



th

where q; is the i quantum for our tagged

process and1<n<m

Note that Q, 18 less than or equal to x, and

Qu = ZQi = Xa-
i=1
Now, if the process that arrives at the UNIX
system after our tagged process has arrived
requires s of a user time, our tagged process
with Q, will be delayed by that process as
ifs <x, -
D(Qu) = {;_ q ftesyadk (416)
The equation (4.16) becomes possible by
Assumption C in Section 4.2. This relationship
and (4.16) lead to the following truncated
distribution for our tagged process delay.
<X, -
Pl =10 JSRS
where F(s) is defined to be the required user
time distribution of processes.

The first moment of the above F, g (s) is

Xoa- Qe =
% -Qn
{ sdF(s) + (% - Qu)[1-Flx, - Qa)]. (4.17)

Then, using (4.17) we have

P an——
e h (4.18)
a=1

Since we assumed all quanta are the same sizse
(see Assumption C in Section 4.2),

-Ja
Ga {Qm

where q is the equal quantum size and qq, is the
last quantum size.

for n=1,2, - ,m-1
for n=m,

Then, we have Q, = nq (for n=1,2,..,m-1). Since we
assumed all quanta shrink to negligibly small
amount (see Assumption C), we have q,w~gq
and Q,, ¥ mq.

Thus, (4.18) becomes
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X,
m e -0d
=L [ sdF() + (x-na)l1 - Flx, - nq)).(4.19)
nxl 0

Now, we rewrite (4.12) as
e
2(1 - pu)
where x2, and X, are given by (4.14) and (4.19),
respectively.

Talx) = + X (4.20)

4.6 The Result Of the Analysis

The detailed procedures of deriving T,(x) and
Ta(x) were shown in the previous sections.
Substituting {4.11) and (4.20) for Ty(x) and Ty(x)
in (4.1), respectively, the equation (4.1) can be
solved in terms of T(x) as

.
_A-n) 2(1 - p)
1-(p + X + 1)

+ X

e . (a21)

where
A, A and x were described in Section 4.3,
A is )8,
:E is given by substituting 2 for n in (4.14),
A 18 X, and

%’ is given by (4.19).
Note the above T(x) is referred to as the average
conditional response time because it is
conditioned on the required CPU time of x
seconds.

6. A Case Study

If the required time of each system call and of
each arriving process follow the exponential, the
evaluation of (4.21) becomes straightforward.
The second moment of the exponential
distribution function is given by

;3- = 2()_(')2 .

Thus, we have

E'_' 2(:)2 ' (51)
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% 8% 1+§[J%-q and  (5:2)
2 =% [ﬂ w® -&.e-E] L (83

See the Appendix for (5.2) and (5.3).

Subetituting (5.1), (5.2), and (5.3) into (4.21),
T(x) ~

Note thatx =% + x,.

Now, we introduce the CPU factor, namely

. S 1) (5.5)
%N tXe x

P
Substituting x, = px from (5.5) into (5.4),
T(x)

= =
h P — = M ox
1- - e
x4+ l-p."*l-p..x"[ e T ]
(5.6)
.=
i L AT |
1-ja + A l+&.[e 1]
From (5.6), we have
T(x) ~
4
.
- b .
———l-(p.+'1) fx, —0
{(5.7)

1 d-E __E_
x+ D+ 2 i,’[l-e"'-%e“
o

1-p 1-p4
ifx, —~o00.
\ 1-(p + M+ 1)
5.1 Discussions

In Figure 3, we display the response time T(x)
as function of x for various p (ie,

p = 0,0325,050,075,10). This figure happens to
correspond to the case of exponential required
time of each system call and of each arriving
process with o, = 04, o, = 04,4y = 0.1, ¢ =
0.001, and x; = 0.01. From Figure 3 and (5.7),
we note the following facts:

a. As the CPU time (= system time + user
time) increases, the response time T(x)
increases.

b. As the CPU factor p increases, the
response time T(x) for a given CPU time x
increases. In addition, the upper bound
and the lower bound of T(x) are given
when p=0 and p =1, respectively. This
implies that the response time is greatly
influenced, not only by the processing
time (i.e, CPU time), but also by the
CPU factor.

c. Whenp = 0 {i.e., when an arriving process
does not require any user time ) T(x)
shows a linear increase. This linear

increase is also shown by equation (5.7)
for x,—~0. This implies that a process
twice as long as some other will spend on
the average twice as long in the UNIX
system when ¢, and x, are negligibly small
andp, + y<< 1.

p="100
p=0T5
p =05

P =02

T(s)

apo~a

=000

00 002 o 0.08 0o 010 012

second
T e aystech Lime + user time = X, + %,

(Fig. 3) Response Time Curves for Various
CPU factor p, p, = 0.4, 5, = 04,4y =01, 4 =
0.001, and 5 = 0.0L.



d. Each arriving process will be delayed by at
least

” —

1-p s

ifx—0. (5.8)

1-(p +1)
In other words, although the required
CPU time of an arriving process
approaches sero, the arriving process is
still delayed by the amount of (5.8).

6. Practical Considerations
8.1 Counsiderations Of The Parameters

In practice, it is difficult to determine
Ae Pur &, %, and p in the derived response time
equation (4.21). We will show how to determine
those parameters in this section. The UNIX
sar(1) (i.e, system activity reporter) gives
%eye, Fusr, Kwio, and Kidle.* For convenience, we
let %sys + %use + %wio denote the portion of time
that the CPU is not purely idle. In contrast,
%idle denotes the portion of time that the CPU
is purely idle. Since g, and p, are utilisations for
system time and user time, respectively, we have
the immediate result such that

Rsye = p, and Fusr = p, .

The 4 was defined as the expected portion of
time that our tagged process waits for resources
(see Section 4.3). During T(x), our tagged
process is waiting for resources each time the
CPU is idle with some process waiting for
resources. Thus, we can have the following
conditional probability.

~ = pr{our tagged process is waiting for resources
during its stay in the UNIX system}

= pr{the CPU is idle with some process waiting for resources

given that our tagged process stays in the UNIX system} .

As long as our tagged process stays in the UNIX
system, the CPU is either running in user mode,
running in system mode, or idle with some
process waiting for resources. In other words,

4. %sys, Bousr, %wio, and Kidle represent the portion of
the time that the CPU runs in user mode, runs in system
mode, is idle with some process waiting for block I/0,
and otherwise is idle, respectively.

1 |
T(e) /
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the CPU can not be purely idle during the time
our tagged process stays in the UNIX system.

* Therefore, the above relationship becomes

4 = pr{the CPU is idle with some process waiting for resources /
the CPU is not purely idle}

= pr{the CPU is idle with some process waiting for resources s

the CPU is not purely idle} /pr{the CPU is not purely idle}

_ Fowio
" %sye + Fusr + Fwio

_ %wio

Now, since the discussions in Section 5 are
expressed only for the exponential distribution,
we can pose a general question: will the same
discussions be valid for the other distributions
such as the Erlang-k, the uniform, and any
arbitrary distribution ? To validate this, we need
to examine cases using other types of
distributions. Because of the complexity, we
omit this examination in this paper and leave it
for a future research.

6.2 Validation Of The Model

The following example demonstrates how to
apply our results to the practical field. We drew
sar(1) and acctcom(l) data generated from an

0

d =02

=000

o 1 1 1 1 A

o0 0.02 004 D08 oos o010 012

second
¥ = system time + user lime = I, + 1,

(Fig. 4) Response Time Curves for Various
CPU factor p, o, = 048, 5, = 0.44, %wio = 4%,
Y~ 0,5 = 0012,
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IBM-3081 machine for 15 minutes. This
sampled data consisted of 6,306 processes. We
then computed the average of system call
duration, user time, and response time for the
sampled 6,306 processes such that

N O sec, g = 0.012 sec, p, = 0.48, p, = 0.44, and Fowio = 0.04.

Substituting these values into (5.7), we obtain
Figure 4. Then, we compared the sampled data
with Figure 4. That is, we plotted the sampled
response time from the UNIX OS running
IBM-3081 machine onto Figure 4. We then
found the sampled data appeared to lie more or
less along the lines in Figure 4. Because it is
straightforward, we do not display these
validation plots in this paper.

7. Conchasions

We have analyzed the response time of the
processes under the UNIX operating system.
We then presented a case study and an example
of the practical application in the case of the
exponential distribution. The results show the
response time of a process requiring a certain
CPU time is proportional to ite CPU factor.
This implies that the process requiring the
larger portion of user time has the longer
response time; the UNIX operating system is
capable of providing an excellent response time
for the processes requiring system time at the
expense of the processes requiring user time.
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Appendix
Derivation of (5.2)

Since F(s) (ie, the required user time
distribution of processes) is of the exponential
distribution, the integral part of (4.19) gives

*g0q
{ s dF(s) + (x, - nq){1 - F(x, - nq)]

xoq 8 P ke §
=ifue£¢+(x.~nq)e = (A.1)
%N o

Then, using the principle of tntegration by parts,
(A.1) becomes

Thus, (4.19) gives

wasdvle.ce =
X R X -, e
i

fje &

q
=c.x3 =
= A - Ky —-e .

X

m
e
n=1

Since a quantum q shrinks to a negligibly small



amount (see Assumption C in Section 4.2), we
have

Derivation of (5.3)

Similarly, substituting 2 for n in (4.14) and using
the principle of integration by parts, we can
obtain the equation (5.3).
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