Mk
;

=
o
010
s
[kl
Hy
I
e
10
om
o
~
0%
b
~d

2471 PHE Z2HO|(Plug-and-Play) HEE 0185

82 dx 9] (Plug-and-Play) N3 <&
o] 83} o]y & =g 7% £3} 7Y

ttre

ttett

=
H»
.
Bl
0F o

tt
IS -
O"H'od %; E

12
1
=1
ra

2 %

=ElNE @ §4 22aYe) WY HE % £Y& S, 2 TEaPo) 2 TIPS A4
Hl2% PHE FHYE + ULE she ohE ool WE A2y At Bstd O2oh o]& sto 3717
AL Ve Abgatdlch AwA 249 SlEt FEE A2 YEEHE $8 T2IYL Yolun o) &3}
71 A8 Had PUE FoR TAY Relth o] WEYEE RYo) THE £4 TrPSE Y o
2 o 2dsls 5F4E EAFE0h FUA 8249 JoIlVE REL P ¢4 ZEOYo| UE g4 TR
Qe FUF T dHoz wFHI) 4P ME Apdr) oxFoz HMA 849 do|FEZ
IF WAz Z%c] e & Z2aPEY AYE N2 DR & YEE, ZH A4 g 2E
o) 28 F4E At o3P A7k Q4 E AMgeld, Jolo) $4 TEaY AV HE L 59
2 B8 MEL M2Rle] 8% 2T 8 BEANG

The Integration of heterogeneous applications
through Plug-and-Play

t

Sooncheol Baeg,” Joong-min Choi'', Myoeng-Wuk Jang'"
Sang-Kyu Park," Byung-euiMin'""" and Young-Hwan Lim

tttrre

ABSTRACT

In this paper, we discuss an effort to develop a multi-agent architecture through which heterogeneous
applications communicate and cooperate by means of plug-and-play mechanism. Three components are
created in order to challenge the plug-and-play mechanism: meta-information, PnP agent module, and
ICM. The meta-information is used to automatically set up a suitable configuration for a new plugged -
in application, eliminating the need for direct addressing among heterogeneous applications. The PnP
agent module is a homogeneous controller that operates on an application to ensure that its activities
are coordinated with those of the others within the community, providing a uniform control mechanism.
The ICM is a high level communication message that provides a homogeneous communication envelope
for all heterogeneous applications. The combination of these three components is used to meet the desire
for implementing the plug-and-play mechanism. In this distributed, open architecture, one should be
able to simply plug in a new application and it should work.

1. Introduction There are many thousands of software appli-

cations available to computer users today, pro-

¢ Y8 U RRUAENRT L ABASATY MU g ~ - ~ :
1o ’?ﬁl §:§§m'{§ ﬁxf;ﬂ’:}ﬂz})ﬁmia ¥ viding a variety of services and information.
WYY URNETL A7 ; ; :
ferr ¥ E 4 RRRIENETA dpAsdT Ay Although most of these applications provide
treer 38 4 RINEURTL Telojrlold TR ooy ; Y .
SEUS 10050 BY 19 B DR 10050118 9 their users significant value when used in stand

948 EHEEBHIEE| =FX| M23 M65(95.11)

-alone applications, there Is increasing demand
for applications that can cooperate[10]. This co-
operation offers expanded opportunities for soft-
ware reuse and extensibility.

One of the major issues surrounding the soft-
ware cooperation has been the integration of ap-
plications. The integration is not so easy since
applications are not constructed with the aim of
integration in mind. They are written by differ-
ent people, at different times, In different lan-
guages, and with different interfaces.

A simple way for the integration would be to
modify the source codes of the application and
re-compile them into a single application. This
is too static : Integrated systems should be
configurable, that is, it should be able to add,
move or remove applications as necessary. How-
ever the integrated application would have to be
modified and re-compiled whenever one of
these changes occurs. This is an aspect of trans-
parency ; applications should be independent of
the changes of other applications.

Object-oriented programming is an important
programming technology that offers expanded
opportunities for software reuse and extensi-
bility. Object-oriented programming shifts the
emphasis of software development away from
functional decomposition and toward the recog-
nition of units (called objects) that encapsulate
both code and data. As a result, programs be-
come easier to maintain and enhance. Despite
its promise, penetration of abject-oriented tech-
nology to major commercial software products
has progressed slowly because of certain obsta-
cles. This is particularly true of products that
offer only a binary programming interface to
their internal object classes (i.e., products that
do not allow access to source code).

The first obstacle that developers must con-
front is the choice of an object-oriented pro-
gramming language. No binary standard exists
for C+ + objects, so the C+ + class libraries

produced by one C+ 4+ compiler cannot (in gen-
eral) be used from C+ + programs built with a
different C+ + compiler. The second obstacle 1s
that, because different object-oriented lan-
guages and tool kits embrace incompatible of
what objects are and how they work, software
developed using a particular language or tool
kit is naturally limited in scope. Classes imple-
mented in one language cannot be readily used
from another. A C~ + programmer, for exam-
ple, cannot easily use classes developed In
Smalltalk, nor can a Smalltalk programmer
make effective use of C+ + classes. Object-ori-
ented language and tool kit boundaries become,
in effect, barriers to inter-operability.

We present an approach to the integration of
software applications through a plug-and-play
framework. With this framework, we should be
able to simply plug in a new application and it
should work. The framework automatically sets
up a suitable configuration for the new agent.
In the framework, a server application named
broker waits for requests from client software
applications. The requests involve the connec-
tion to the broker (plug-in), the fulfillment of
goals, and several services. A client application
requests a connection to the broker, posts a
query to the broker and performs a task as-
signed by the broker. For every request posted
to the broker, the broker determines which ap-
plication 1s capable of performing the request,
and then delegates it to the application.

The determination of the broker is based on
an internal database, called meta-information.
The meta-information (information about appli-
cations) contains all the associated data such as
the location, the name and the capabilities of
the applications that are currently connected. In
addition to this meta-information, a homogene-
ous controller and a high level inter-agent com-
munication message are essential to support the

plug-and-play (or PnP) mechanism. The homo-

Ep{d M= SeH0l(Plug-and-Play) WS 0185 O 88 Z2182] S8 7Y 949

geneous controller, named PnP agent module, .

operates on an application to ensure that its
activities are coordinated with those of the oth-
ers within the community, providing a uniform
control mechanism. The inter-agent communica-
tion message, called ICM, provides a homog-
eneous communication envelope for all hetero-
geneous client applications. The framework,
named PMAF(Plug-and-Play based Multi-
Agent Framework), employs three components
(the meta-information, the PnP agent module
and the ICM) to support dynamic plug-and-

play of many heterogeneous applications.
2. Plug-and-Play Example

To illustrate how multiple stand-alone apphi-
cations can be cooperatively used, we now con-
sider an example. Let's assume that a system
administrator wants to be notified when his
system security 1s broken. This scenario in
volves the cooperation of the eight stand-alone
applications in the network in (Fig. 1). Through
the user interface application, the query “When
mail about security alert arrives, get it to me by
telephone” is posted to the broker, asking for
the resolution of speech recognition. The user in-
terface application accepts spoken or handwrit-
ten natural language queries from the user. The
query will be answered by the speech applica-
tion, and then a new query for the translation
of strings into Inter-application expressions.
The broker will then route this type of query to
the natural language parser application that is
responsible for the translation. When the trans-
lated query from the user interface application
has been posted to the broker, “when mail about
security alert arrives”, the broker knows that
the mall application should be the one to resp-
ond to this type of question. The mail applica-
tion constantly monitors incoming mails, testing
the condition.

Mail Calendar Databasc Notify
application application application application
|] |
I
[. Broker
I
[T I 1
Speech Parser User Interface Phone
application application application application

(Fig. 1) An example of the cooperation
among applications

Once the condition has been met, the mail ap-
plication posts the following actions to the bro-
ker:“get the message to the user by telephone.”
The notification application will read this and
respond. In order to send this information to the
user, it must first know where the user is. A
goal “whereis(user, Location)” is posted to the
broker, and the broker will route this query to
the calendar application. Once the location has
been returned, the notification application then
asks the broker to find out the phone number
for that given location. This information is an-
swered by the database application. Finally
once the notification application knows where
and what phone number the user 1s. A query Is
posted to the broker to contact the user,“send
particular message by telephone”, and of course
the phone application can response this type of
queries.

A variety of systems can be designed for this
scenario. We could build a stand-alone applica
tion from scratch including all the capabihties
of the eight applications rebuild all the existing
software In a common environment, so that
they all share common representations, reason-
ing mechanisms and knowledge semantics con-
struct a framework into which these existing
applications can be incorporated (with minimal
modifications) which allows them to communi
cate and cooperate with each other.

We chose the {inal option and in this paper
we address some issues of the framework. In

the next section, we describe the framework ar-

950 SEHBMEIEE =2X) H2E M65(95.11)

chitecture to support this plug~and-play mecha-
nism.

3. Plug-And-Play Architecture

An agent is the smallest unit that can plug
into the PMAF. The agent communicates with
external applications via an inter-agent commu-
nication message, sharing services and informa-
tion with other applications (or agents). By con-
verting applications into agents, we can have
them cooperate in the PMAF. An agent is able
to respond to all messages defined by the ICM,
and uses the message to invoke the services of
other agents. Agents monitor local and remote
events, such as messages from other agent, da-
tabase updates, OS, or network activities, deter-

mining for themselves the appropriate time to

execute.
. Broker
Agent
Network
_______ ? NS A
Plug-and-Play [Phugrand-piay |
Agent Mo : | Agent Module |
: T
Domajn L1 Domain ¢
Knowledge #1 : { Knowlddge #2
............... . T
Application Function calls.ctc
Agenl R
Applicsting :

(Fig. 2) A plug-and-play architecture

The PMAF is a blackboard-based model [6,
7]. This model allows individual “client” agents
(or application agents) to communicate by
means of messages posted on a blackboard con-
trolled by a “server” blackboard agent (or bro-
ker) as shown in (Fig. 2).

There are two kinds of agents in the PMAF:
a broker agent and an application agent. The

broker agent (or simply, broker) is an agent
that coordinates the cooperation and the com-
munication among application agents. An appli-
cation agent is an entity that plugs into the bro-
ker and then plays. The application agent per-
forms domain specific operations, which are
eventually mapped into an application’s capabili-
ties. An application agent can readily plug into
the broker or unplug from the broker. Plugging
Into the broker, the application agent sends its
name and capabilities. The broker then con-
structs the meta-information with the data just
sent from the application agent. The meta-infor-
mation contains useful hints for the broker to
figure out what application agents are currently
plugged in and what goals they are capable of
solving.

When attempting to solve a goal, an applica-
tion agent can either post a general request to
the broker expecting some application agents to
resolve il or specify an application agent to
solve the goal. In the former case, the broker de-
termines which application agent(s) should be
responsible for the request and route it to the
most appropriate application agent(s). Applica-
tion agents respond to requests delegated by the
broker that eventually originate from another
application agent or the user’s request. Commu-
nication and interaction among application a-
gents take place solely through the broker.

3.1 Components

The architecture to support plug-and-play a-
gents consists of the following four com-
ponents: Plug~and-Play Agent Module (PnP
agent module): the PnP agent module is a ho-
mogeneous controller that operates on a domain
knowledge to ensure that its activities are coor-
dinated with those of the others within the com-
munity, providing a uniform control mechanism.
This module establishes connections among a-
gents. The PnP agent module in the broker side

2211 &= S0I(Plug-and-Play) 7H=S 0188 018 28 D220 £8f 7| 951

creates a socket into which application agents
are plugged. The PnP agent module in the appli-
cation agent side then requests connection o
the broker. When the broker accepts the connec-
tion request, plug-in process is completed. The
PnP agent module interprets incoming ICM,
passes extracted mission to the domain knowl-
edge and constructs outgoing ICM with the mis-
sion’s result.

Inter-agent Communication Message (ICM):
the ICM provides a homogeneous communica-
tion envelope for all heterogeneous application
agents. Agents use the ICM to invoke other
agent’s services or provide their own services.

Coordination Knowledge: This knowledge is
designed to coordinate the interactions among
application agents. According to the interpreted
ICM, part of the coordination knowledge is used
to perform appropriate actions. These actions
involve constructing the information about cur-
rently connected application agent, determining
the proper recipient of a task and returning so-
lutions to the originating application agent. The
information about application agent is essential
to the plug-and-play mechanism. The meta-in-
formation is used to determine the proper recipi-
ent of a task, eliminating the need for direct
addressing among heterogeneous applications.

Domain Knowledge: This knowledge contains
application agent’s domain specific operations.
This knowledge can be constructed from
scratch, by interrogating applications data files,
or through function calls provided by the appli-
cations. In addition, other application agents ca-
pabilities can be used in building the domain
knowledge.

The block diagram in (Fig. 2) shows how the
four components of the PnP architecture work
together. The broker must at least be executed
in advance providing a socket into which appli-
cation agents plug. The PnP agent module com-
pletes the plug-in process performing the se-

quence of network connection, and advertising
the application agent’s name and its capabilities
to the broker. The broker constructs the meta-
information through the combination of the ap-
plication agent’s name, its network address and -
its capabilities. The meta-information will be
consulted to determine proper recipient of a
task. .

Incoming messages from the broker are inter-
preted by the PnP agent module. The PnP
agent module maps the interpreted message into
the application agent's local operation contained
in the domain knowledge. After executing the
local operation, the PnP agent module returns
the results if any to the broker by using the
ICM.

3.2 Plug-and-Play Algorithm

The following steps are performed by two a-

gents: the broker and an application agent:

a) The broker first builds a socket into which
application agents will plug.

b) An application agent requests the connection
to the broker. When the request is accepted
by the broker, the application agent sends its
name and capabilities to the broker.

¢) The broker constructs the meta-information
by using the data sent from the connected
application agent. Whenever a new applica-
tion agent plugs into the broker, the broker
updates the meta-information. Whenever a
disconnection of an application agent hap-
pens, the broker deletes all the associated
meta-information.

d) Both the broker and the application agent it-
erate following steps.

1) interpret incoming messages from other a-
gents, extracting goals or command to ex-
ecute.

1) examine the domain knowledge or coordi-
nation knowledge to perform appropriate

actions.

952 B=EEEXEEE =2X] M2 M65(95.11)

ill) execute appropriate actions and return
the results to the originating agent.

4. Convention

So long as an application program abides by
the convention of the PMAF, il does not matter
how the agent is implemented: the application
can readily plug into the agent community shar-
ing its services and information with other ap-
plications. The convention includes the PnP
agent module’s control flow (agent behavior),
the description of the meta-information and the
ICM.

G’lug in (Estabilish conncclinns)j

[Advestise capabilitics j

————t|
Gy

Interpreie messages

During Life

Blackboard Domain
Agent Fulfill events Knowledge
Outgolng
Message

(Fig. 3) The behavior of an agent

4.1 PnP Agent Module

Because all the agents are independent pro-
cesses, they go through birth, life, and death
(Fig. 3). At birth, application agents are instan-
tiated with specific capabilities and plug into the
broker. During their lives, they go through a
continuous cycle of reading messages (inter-
agent communication), unwrapping the messag-
es 10 extract events to perform, examining the
events against triggers to produce new events,
fulfilling events, and returning the results.

While fulfilling the events, application agents
knowledge or take

utilize their domain

advantage of other application agents capabili-

ties by posting subgoals to the blackboard. The

PnP agent module 1s responsible for these con-

trol tasks.

So long as a program abides by the details of
the communication convention implemented in
the PnP agent module, it does not matter how it
is implemented. For example, electronic mail
programs from different platform, data format,
and capabilities can inter-operate with other a-
gents through the PnP agent module.

The behavior of agents is, in principle, quit
simple. After connecting to the broker and re-
poriing the application agents capabilities, each
PnP agent module iterates the following steps
at regular intervals:

(1) read the current ICM, and unwrap the wrap-
per layer to extract a message content.

(2) examine the trigger base. Execute the capa-
bility corresponding to the message content.
The capability can be found either in the per-
former or in the domain knowledge.

{3) construct and send the outgoing message.

The PnP agent module is at the heart of the
PMAF and has been used in the development of
cooperating multi-agent systems. This module is
based upon the philosophy of providing generic
interface with multi-agent systems. By includ-
ing the PnP agent module into their applica-
tions, developers can make their applications
agent-aware. The separation of the domain and
control knowledge into the domain knowledge
and the PnP agent module respectively, allows
preexisting systems to be incorporated into the
multi-agent community with relatively few
modifications, and allows the control knowledge

to be reused in a number of applications.
4.2 Meta-information

The first step for the plug-and-play is to
make individual application agents visible to the
broker. Agent names should be assigned to indi-
vidual agents. Agenis use their names as identi-

E210 HE ZeH0(({Plug-and-Play) HES 0I5 0 & 28 T2 70| £8) 71y 953

fiers when connecting with the broker. Messag-
es are sent to named agents. Individual agents
are responstble for notifying the broker of their
own capabilities so that the broker can find out
which application agent is able to handle a task.
The broker must store information about the ap-
plication agent capabilities associated with the
agent’s name. This meta-information (or infor-
mation about agents) is used to determine the
proper recipient of a task, eliminating the need
for direct addressing among heterogeneous ap-
plication agents.

A BNF description of the meta-information is
as follows: (In accordance with standard con-
ventions, { } denotes repetition of zero or more
times. [] denotes repetition of zero or one
time.)

{meta-informations;:: =‘["{m-knowledge’
{, “m-knowledge:}]’
i ={({agentName;, ‘['(capability
{. (capability:}*]")
.. ={alphanumeric-str:
I =/{capabilityName[({ parame

ter {,{parameter;})]
.. ={alphabet;{‘alphanumeric;}

{m-knowledge’

{agentName :
{capability

{capabilityName

{parameler: .. = {alphanumeric-str
| {variable:
{alphanumeric-str; ::=(alphabet:

{ {alphanumeric; }

{alphanumeric: .. =/{alphabet) | {digit;

{variable) I ={(capital}(alphanumeric)

{(alphabet; i=alblel -l y |z

(digit: =002 - 1819 ="
Oy

{capital; U=AIBICTH - (Y2

For example, the intuitive reading of the
meta-information (schedule, whereis(User, Lo-
cation)) 1s “the broker knows that schedule
agent is able to answer where the user is”.

The capabilities known to the broker are high
level logical operations that are mapped by the
application agents to one or more its own local
operations. From the programmer’s point of
view, the capabilities can be seen as APIs
through which programmers can make use of

other application’s operation. Mapping an appli-
cation's operations into the capabilities is the
basic step of making the application an applica-
tion agent. Then, 1t is required that its meta-in-
formation be public to the broker. The meta-in-
formation is a uniform representation of appli-
cations’ various forms of the operations. This
uniformity resolves the heterogeneity among ap-

plications.
4.3 Inter-agent Communication Message

The PMAF agents share information and ser-
vices with other agents by communicating. A-
gents use the ICM, a high level communication
message that provides a homogeneous communi-
cation envelope for all helerogeneous agents.
When using the ICM, an agent transmits mes-
sages composed in Prolog-like syntax, providing
the familiar syntax and rich semantics of first
order predicate logic, wrapped in an ICM.

The ICM is conceptually a layered message
consisting of the wrapper layer, the primitive
layer and the message laver.

The wrapper layer encodes a set of features
to the message that describe the lower commu-
nication parameters, such as the identity of the
sender agent, and a wrapper indicating the mes-
sage is for inter-agent communication.

Agents communicating with each other re
quire a well-known set of conventions. This set
of conventions comprises a protocol that must
be implemented at both ends of a connection.
This protoco! is implemented in the primitive
layer that determines the kinds of interactions
one can have with another agent. This primitive
signifies that the message is a query, a com-
mand, or any other mutually agreed upon
speech act [11, 12]. It also signifies how the
sender would like any reply to be delivered (i.e.,

what primitive will be followed).

The message layer is the actual content of the

954 EFREEX2EE =2X| H2H H6S(95.11)

ICM. This layer may contain a goal to solve or
a command for controlling agents.
The following is the syntax of the ICM:

ICM . =term{(sender-agent;, {protocol-
msg) | (msg-cnt})
{sender-agent) .. = (agentName

(protocol-msg) : . =post-query ‘(’[{agentName)
W goal}')' | solve'("{id)", {goal ")’
| solved “(*(id)‘," {solver)‘,{goal}’,

{results)‘)’
{goal) .. ={capability ;
(results) i="(msg-cnt)*T
{msg-cnt) * = {capability | {commands;
| {message)
{commands): : = {alphanumeric-str
{message): : = {alphanumeric’ (alphanumeric}

The ICM supports seven basic primitives:
post-query, solve, solved, add-trigger, register-
solvable-goals, read-bb, write-bb. Post-query is
used to post a query to the broker. This primi-
tive causes the broker to determine appropriate
application agents that may handle this query,
to send the agents a new ICM composed of
solve primitive, and to add a trigger. The appli-
cation agents receiving the ICM with the solve
primitive perform the goal and return the
results. All the results are conveyed using
solved primitive. This primitive denotes that the
content of the message layer is the solution to a
query. Add-trigger is used to let an agent do

NL> post_gquerviget JICL(< NI)
—_—

—

wodvedipazer.get_ICL{< NL>R)L{

mln(lm JCLe-NL> R)

mlved{) paterges I I(NI ~R).

et JCLE-NE>1CL) fret il N I
e

Parsct Ageni
post querviget weather(95:5.1""
Seonl’R)) wlw{i pr weather(95.:3°3" Seou

.mlvrdﬂ Ritel get wenther(95/3:3
solvedihitel get weather('95/5/3"" " Seoul’, R) Solw -
<NL> Seoul'R). - Soln~)

—

Uscr Interface Agent Broker Hitel Agent

<NL> = "gel the weather in Seoul on May 3 1995
<ICL> = get_weather("98/3/3', 'Seoul’, S1)

<Soln> = get_weather{'95/5/3", *Seoul’, fine)
<NL_O> = "The weather is fine”

(Fig. 4) An example of interactions among agents

something whenever a condition is satisfied.
Register-solvable-goals allows agents to send
their capabilities to the broker. Finally, read-bb
1s for reading data from the broker’s blackboard
and write~-bb for writing data to the black-
board. (Fig. 4) shows an example of an agent’s
interactions by means of these primitives.

Communicating through the ICM instead of
direct function calls allows agents to resolve the
heterogeneity. The ICM is constructed and inter-
preted by the PnP agent module.

4.4 Trigger

To the activities of control mechanism, we
add trigger handler to enhance the desired char-
acteristic of dynamic control. Triggers that
eventually direct the behavior of agents can be
added and removed dynamically by a local
agent or remote agents. Fundamental to the no-
tion of triggers is the occurrence of events.
Triggers are defined to correspond to specific
events. The occurrence of an event that match-
es a trigger of event type suggests that some
agent should perform some specific action
responding to the event. The action part of the
matching trigger becomes a new event to be
processed. For example, lets assume that an ap-
plication agent posted the query to the broker
The broker
would determine appropriate application agents

“what is johns phone number?”.

and route the request to them. Not knowing
when the answer will be arriving, the broker
sets a trigger indication that when solved mes-
sage arrives, the solutions should be sent back
to the asking agent.
trigger(event, when, solved(id-1, phone(john,N),
Solutions),
Sforward(askingAgent,
N), Solutions)
Trigger base contains this trigger. Each in-

id-1, phone(john,

coming ICM is examined against the triggers of
event group in the trigger base. The message,

220 ¢h= Z2H0[{Plug-and-Play) HEE 0188 018 S8 T2 EF 71E 955

solved(id- 1, phone(john,N), [phone(john, 593
2)1) matches the trigger and causes the broker
to forward the solutions to the originating
agent. This trigger handling eliminates the need
for waiting all the time for a reply and allows
the broker to perform some other tasks. The
triggers of test group execute periodically their
conditional part to monitor changes such as
mail spools or databases, and the action part of
the matching trigger is posted to the broker as
an event. Incoming events can take an arbi-
trary form. The only caution is that for an
event to be useful for triggers there must be a

corresponding trigger.
The following is the syntax of the trigger:
(irigger base;:.="'["(trigger}, {trigger)']’

(trigger) i =trigger(’{group)’, (type)', {condi-
tion)‘,’(new-event ‘)’

{group) ;i =event | test | data
{type) .. =when | whenever
{condition; .= {msg-cnt)
(new-event) ..={msg-cnt)

The triggers of when types are removed from
The trigger base whenever used, but those of

whenever types are not removed.

5. Experience with the Prototype

The development of the PMAF encompasses
two distinct efforts: development of the PMAF
core and constructing a new application agent
either from scratch or by making pre-existing
application the PMAF-aware. All the PMAF
core components have been implemented. The
implementation of the core has been developed
in Prolog on Sun Sparestations running Sun OS
4.1. We have another version implemented in C
on PCs running Microsoft’s WindowsNTTM.
We have demonstrated the scenario described in
section 2. All the application agents have been
developed in Quintus Prolog or C on Sun
Sparcstations and PCs, except for the pen/voice

user interface agent, which is implemented in
Basic programming language on a PC and a
PDA platform. The communication is based on
TCP/IP. Almost every system provides an inter-
face for network communication based on this
protocol and it therefore provides a good basis
for communication. The blackboard architecture
has been ported both to UNIX and WindowsNT-
T™.

Dynamic plug-and-play was one of the funda-
mental design principle of the PMAF. Not all
system components of multi-agent systems are
known at design time. We can expect a develop-
er to provide a new application agent capable of
new functionality in the future. The PMAF ar-
chitecture supports a flexible system in which
application agents may be added, removed, or
replaced at any time without making changes to
other programs. The broker keeps all the inror-
mation concerned with the application agents
currently connected, and deletes the associated
information when the disconnection of an appli-
cation agent happens. If the broker receives a
request for an application agent’s capability, it
only has to look for the application agent of the
required capability and send the request to il
Further, the addition or deletion of an applica-
tion agent only requires a simple update to the
broker's database once the required local meth-
od has been implemented.

User interface is not “hard-wired” in our im-
plementation. The PMAF is able to link to a va-
riety of user interfaces that use the ICM proto-
cols and have the PnP agent module’s behavior.
Therefore, not only the user interface agent can
be connected and disconnected dynamically like
other application agents across a network, but a
variety of interfaces such as X windowsTM-
based or WindowsTM-based can coexist. Users
can carry user interfaces and get other applica-
tion agents services at any place where he can
use phone line or TCP/IP network.

956 BIFHEEXEEE| =2 A H2F& M6F(95.11)

A broker may itself be a client in a hierarchy
of brokers; if none of its applications can solve
a particular goal, this goal may be passed fur-
ther along in the hierarchy {8]. Following
Gelerntner’s LINDA model [9], blackboard
systems themselves can be structured in a hier-
archy, which could be distributed over a net-
work.

The creation of an application agent should
be simple. We present an example of an applica-
tion agent program in Prolog (Fig. 4). The
agent’s name and its capabilities are a prerequi-
site. The PnP agent module extracts these data
from the predicates agentName and solvable
respectively, and uses them in connecting to the
broker and in advertising the agent’s capabili-
ties. The do-event routines contain real pro-
gram codes for the capabilities defined in the
solvable predicate. These routines can be con-
structed from scratch, by interrogating applica-
tions data files, or through function calls provid-
ed by the applications. Furthermore, other appli-
cation agent's capabilities can be used in build-
ing the do-event routines. In (Fig. 5), the predi-
cate others make this possible. This predicate
allows the application agent to post a request
and wait until the solution arrives. This feature
is useful since an application agent’s capabilities

can be reused by other application agents.

:—[agent]. /*L.oad the PnP agent module*/
agentName(calendar). /*Define the name of this
agent*/
solvable([/*Define the capabilities of this agent*/
get-free-time-slot(-Date, -Person, -FreeTime),
where(-Person, -Place, -WithPerson)J).
/*Application agent Specific functionality*/
do-event(-, get-free-time-slot(Date,
Person, FreeTime)}: -
get-appointment-file(Person, CalendarFile),
get-free-time-C(CalendarFile, Date, FreeTime)
I
do-event (-, where(Person, Place, WithPerson)):-
get-appointment-file(Person, CalendarFile),
others(get - current - date - and - time(Date,
Time)),
get-appointment(CalendarFile, Date, Time, Ap-

pomntment),
parse-appointment(Appointment, WithPerson,
Place).

/*Interface with C programming language*/
foreign-file(cal.o, [get-free-time-C]).
foreign(get-free-time-C, ¢, get-free-time-C(+ string,
+string, —string)).

(Fig. 5) An example of an application agent program
6. Related Work

Although the issues underlying the design of

software integration based on the plug-and-
play remain largely unexplored, there is an In-
creasing awareness that applications in the fu-
ture will be communicate with others to share
services and information by means of relatively
simple plug-and-play.
One of these related bodies of research is
KQML [3, 2], a new language and protocol for
exchanging information and knowledge. This
wok 1s part of a large effort, the ARPA Knowl-
edge Sharing Effort that is aimed at developing
techniques and methodology for building large-
scale knowledge bases that are sharable and re-
usable. KQML can be used as a language for an
application program to interact with an intelli-
gent system or for two or intelligent systems to
share knowledge in support of cooperative prob-
lem solving.

However, KQML was not defined by a single
research group for a particular project. It was
created by a committee of representatives from
different projects, all of which were concerned
with managing distributed implementations of
systems. The representatives did not share a
common communication architecture. As a
result, KQML does not dictate a particular
system architecture, and several different
systems have evolved.

ARCHON [1, 5, 4] project has developed a
general purpose architecture that can be used
to facilitate cooperative problem solving In in-

E2{7] o1& Z2H0:(Plug-and-Play) 7HES 0126t 0|8 28 T 112H9| & 718 957

dustrial applications. By representing skills, in-
terests and goals of its acquaintances an agent
1s able to specifically involve others in its own
problem solving objective. An agent decides
which skills should be executed locally and
which should be delegated to others.

Each agent in the ARCHON contains repre-
sentations of other agents in the community-in
terms of their skills, interests, current status of
workload etc. However, this approach does not
address the communication overload that might
happen whenever an agent connects or discon-
nects. Since an agent conlains representations
of other agents, the communication could In-
crease as agents plugged into or unplugged

from the community.

7. Conclusions and Future Work

Three components were employed in order to
challenge the plug-and-play architecture: meta
-information, PnP agent module, and ICM. The
meta-information is used to determine the prop-
er recipient of a task, eliminating the need for
direct addressing among hetlerogeneous agents.
The PnP agent module is a homogeneous con-
troller that operates on an application agent to
ensure that its activities are coordinated with
those of the others within the community, pro-
viding a uniform control mechanism. The ICM
is a high level communication message that pro-
vides a homogeneous communication envelope
for all heterogeneous agents. The combination
of these three components is used to meet the
desire for implementing plug-and-play architec-
ture.

The PnP agent module is a domain-indepen-
dent reusable module. It is based upon the phi-
losophy of providing generic interface with
agent systems. By including the PnP agent
module into their applications, developers can
make them agent-aware. Since the PnP agent

module assumes the burden of inter-operation,
application programmers are relieved of this
responsibility and can construct their programs
without having to learn the details of other pro-
grams in the runtime environment. As a result,
applications become easier to maintain and en-
hance.

A variety of applications are available to
computer users today. These applications can be
used as the domain knowledge of agents. The
domain knowledge of an agent may be the inter-
face between the existing applications and the
agent community. There are three ways of ac-
cessing the functionality of the underlying apph-
cation. The first is through the manipulation of
files (for example, mail spool, calendar data
files) and the second is through calls to an ap-
plication’s APl interface (e.g., SDK for
Microsoft' MailTM). Finally, the third is through
a scripting language, or through interpretation
of an operating system’s message events (Apple
Event or Microsoft Windows Messages).

In order that an application agent be
activated, its capabilities need to be mapped
into terms understood by ensemble of applica-
tion agents, and also by users. However, this
advertising knowledge representation can lead
to conflicts among definitions. We intend to de-
velop API description Tool, with which the ap-
plication agent developer describes the services
provided by that application agent. The tool will
produce mappings of expressions in the ICM
into representations that can be merged into a

common whole.
References

[1] T.Wittig, N.R. Jennings and E.H.
Mamdani. ARCHON - A Framework for
Intelligent Co-operation, In IEE-BCS Jour-
nal of Intelligent Systems Engineering -
Special Issue on Real-time Intelligent

958 BT XEIEIE| =2X! H22 M65(95.11)

Systems in ESPRIT, 1994.

[2 7 D.Kuokka, L.Harada. On Using KQML. for
Matchmaking. In Proceedings of the First
International Conference on Multi-Agent
Systems, pages 239-245, San Francisco,
California, June 12-14, 1995.

[3] T. Finin, D. McKay, R. Fritzson, and R.
McEntire. KQML: an information and
knowledge exchange protocol. In Interna-
tional Conference on Building and Sharing
Very Large-Scale Knowledge Bases. De-
cember 1993,

[4] C. Roda, N. R. Jennings, and E. H.
Mamdani. The Impact of Heterogeneity on
Cooperating Agents. In Proceedings of
AAAI Workshop on Cooperation among
Heterogeneous Intelligent Systems. Ana-
heim, Los Angeles, 1991.

[53 N. R. Jennings and T. Wittig. ARCHON:
Theory and Practice. In N. M. Avouris &
L. Gasser (eds.), Distributed Artificial In-
telligence: Theory and Praxis, pages 179-
196. Kluwer Academic Publishers, 1992.

[61 R.S. Engelmore, A. J. Morgan, and H. P.
Nii. Introduction. In R. Engelmore, T. Mor-
gan, editars, Blackboard Systems, pages 1
-22. Addison-Wesley Publishing Co.,
Menlo Park, CA, 1988.

[7] Victor R. Lesser, Rovert C. Whitehair, Da-
ntel D. Corkill, and Joseph A. Hernandez.
Goal Relationships and Their Use in a
Blackboard Architecture. In V. Jagann-
athan, Rajendra Dodhiawala, and Law-
rence S. Baum, editors, Blackboard Archi-
tectures and Applications, pages 9-26. Ac-
ademic Press Inc., San Diego, CA, 1989.

[8] Philip R. Cohen, A. Cheyer, M. Wang, and
S. C. Baeg. An Open Agent Architecture.
In Working Notes of the AAAI Spring
Symposium on Software Agents, pages 1-
8. Menlo Park, CA, March 1994.

[9] D. Gelernter. Mirror Worlds. Oxford Uni-

versity Press, New York, 1993,

[10] Michael R. Genesereth and Steven P. Ket-
chpel. Software agents. CACM, 37(7):48-
53, July 1994.

[11] Philip R. Cohen and Hector J. Levesque.
Intention is choice with commitment. In
Artificial Intelligence, 42:213-261, 1990.

[12] Philip R. Cohen and Hector J. Levesque.
Persistence, intention and commitment. In
P. R. Cohen, J. Morgan, and M. E. Pol-
lack, editors, Intentions in Communication,
pages 33-69. MIT Press, Cambridge MA,
1990.

s R
19861 dMdiztn HzFea
FTA(EAY

19881 AAdstn HAF eI
4 (A

- 19883 ~HA FZHAFAAT
| 2 ATAFATA dQATY

M. (9933 ~94d o]z SRI Interna-

tional(International Fellow)

TR Eokdo]HE Alx”, A7} A)2d

3 3 7

1984'd ME&idtn AFe T
484D

1986 d ME&di¥n HFHFe
F4(44h)

19933 State University of New

g York at Buffalo, Computer

_ Science F4 (2HAh)

1993 ~95d X ARFANAF L AFATATF4
Add+4

1995 ~ @A @ychstn A=A Aeta 2o

BAEEAZAE, dolVE Al2¥, x4 FH 9
F&

-

1990d o w Aindw
Y (BgAh)

19923 ¥=x3iatried Atz
4 (H4p)

19923 ~H{A FVFHAFANAT

z = 474
TAlgok: ool HE A28, Y 4

2271 e

S S
1982id MEdittn FFE T
FA A
19843 =27 HAargs
P4
1984‘d~87‘d Pt Hakd
LT
1989 d~dA = HEred

ARG A SR
19873~ 84 BTARBNATL ABAFATA
EOEEX
A EobiololE A2g, F¥ A4, HCI

W oW

: 1982 dgdistn TG (EAD
- 19843 #AFetrled HAJ
o © o AAEYE E2A(MAD

1992 g=nerlge 47 o
ad (%

Az etz TR
19841—4~1987‘—4 dtdrled
19873 ~ # 7 v&i‘ﬁz}%ﬂﬁ?i. AF
4%

BARoE Eu Lo A 2", o] HE

257

Z2H0[(Plug-and-Play) 7HEE8 0188t 0|8 S8 T2739| £t 7|¥ 959

9 9 %

19773 A8ggn £ &4
(8Ah)

19793 d=aetried Wibets
A (44D

19853 Northwestern tHa} dAt
gta} 2 (A

19793 ~82d #ZAR}7|=dT

A AddT4

19833 ~85d Argonne Lab. ¥74

19853 ~ A S ARFNATA oY
474

19931 d ~94d SRI International(International Fel-
low)

alEok GE B TIo], oo BE Al2H

LR

