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An Object-Oriented, Client-Server Architecture for a
Generalized Multimedia Processing Model in a
Distributed Multimedia System

t

DooHyun Kim'  Young-Hwan Lim '

ABSTRACT

In this paper, we describe a multimedia data processing model that supports a wide variety of
applications based on multimedia production model. This model supports network-transparent ac-
cess 1o stored multimedia data, real-time multimedia input devices, and multimedia processing. The
model addresses real-time data switching and delivery, as well as acquisition, processing, and out-
put. Most translation, compression, and synchronization services are integrated. This model consists
of three layers: (1) stream, (2) multimedia presentation, (3) hyperpresentation. This paper de-
scribes the data abstractions associated with each layer. These data abstractions provide a frame-
work for defining the services provided by each layer, and describe the object-oriented mecha-
nisms that provide those services. A sample scenario is presentated to illustrate the use of this
model. A server-client architecture and implementation issues, and future directions are also dis-
cussed.

1. INTRODUCTION

We are developing a multimedia [/O system,
called MuX. The MuX consists of a multimedia
I/0 server, a presentation manager, an applica-
tion programmer’s interface (API), and a
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scripting language. The MuX system provides
real-time support for streams (e.g., audio,
video, mouse, and graphics). It also provides the
capability to interactively define, edit, and re-
view a multimedia presentation via the APL
Once a presentation has been edited, its struc-
ture can be stored for later reirieval, editing,
and playback using the scripting language.
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While a multimedia presentation is being pre-
sented, it can be controlled by either the applica-
tion or the presentation manager. These multi-
media presentations can be linked together to
form hyperpresentations.

Most vendor multimedia solutions[ 33, 34, 35,
36] address the problem of attaching various
media devices, such as VCRs and camcoders, di-
rectly to the computers. This approach to multi-
media processing limits computers Lo being only
I/0 control boxes, Similarly, system developers
and researchers have defined abstractions for
multimedia processing that support specific ver-
tical applications (e.g., computer-based train-
ing)[40], specific topics (e.g., synchronization)
[15, 16, 37], or specific media types (eg.,
music, video)[13, 29, 34]. This approach limits
the richness of applications that can be support-
ed by native services. A more general approach
to multimedia computing is required to supports
a variety of applications such as hypermedia[5,
22, 327, video conferencing| 12, 307], multimedia
authoring, archiving, and collaboration[ 6, 23].

To make multimedia technology more useful
for information producer and hence for consum-
ers, a multimedia production model was defined
for the MuX. In the multimedia production
model, multimedia information systems help
users compose presentations by enabling them
to record, process, mix, and integrate media
from a variety of different sources, and store
and play the resulting compositions. With an ef-
fective multimedia information system, a media
producer can extract important information
from stored media and compose a presentation
that conveys a message concisely and effective-
ly. Ultimately, a multimedia presentation will re-
quire less effort for a user to assimilate infor-
mation, because multimedia presentations take
advantage of the user’s natural ability to proc-
ess multiple information media in parallel, and
thus magnify the impact and intelligibility of the

information presented.

The objective of the MuX system is Lo provide
a more conductive environment for the multime-
dia production model. To support the objective,
the MuX provides the following functionalities:

O Media integration and syschronization

O Adaptive, fine—frained media syschroniz-

ation that adjusts to changes in resources
and demand

C Synchronization between the presentation

of different media across multiple 1/0
channels

O Network transparent access to multimedia

data in a distributed system environment

O Multimedia presentation creation, editing

and control : the ability to define and mod-
ify presentation that specify time, space,
and intermedia relationships

O Powerful multimedia processing: capabili-

ties such as

— Data compression and decompression

— Media transformation, including synthesis

and decomposition, such as speech synthe-
sis, speech recognition, natural language
understanding, character recognition, and
gesture recognition

This paper is focused on the multimedia data
processing model and software architecture to
embody the above functinalities, especially, the
media integration and synchronization .

In the following section, we discuss the multi-
media production, the multimedia processing
model including its data abstractions, services
and mechanisms. Then we discuss an object—
oriented design issues and its implementation is-

sues.

2. MULTIMEDIA PRODUCTION

In the multimedia production model, there are
essentially four steps in preparing and using
multimedia information, as illustrated in (Fig-
ure 1.) C ' )
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(Figure 1) Multimedia Production Model Process

Step 1. Capturing multimedia data in real time:
This step consists of capturing data
from a single medium, such as video or
audio, and recording it on some interme-
diate storage medium thal may or may
not be used as the final storage medium.
Examples include shooting video on a
camcorder using 8-mm tape, laping
music on a cassetle tape, or shooting a
picture with a camera on 35-mm film.

Step 2. Editing and representation of each medi-
um'’s data: Depending upon the medi-
um, this step consists of editing data
from each medium in its original format
(such as cutting and splicing video or
filtering an audio recording); transfer-
ring medium from one storage format
to another (such as transferring video
from 8-mm tape to a digital format, or
scanning a photograph); or actually
creating data and editing the medium
itself as in the case of text, graphics, or
animations.

Step 3. Preparing a coherent multimedia pre-
sentation based on captured and edited
data:This step consists of taking cap-

tured and edited multimedia data and
integrating all of the data into a coher-
ent presentation, including specification
of the time and space relationships be-
tween data from each of the media, and
creation of hypermedia links between
multimedia presentations.

Step 4. Publishing the multimedia presentation:
This final step is to store and prepare
the delivery of the multimedia presenta-
tion. In preparation for delivery, the
multimedia presentations are usually
stored in a multimedia database; or
some multiple presentations can be or-
ganized as a hypermedia presentation,
which
interactively in a nonlinear fashion by

allows a user to browse
traversing links and nodes. Finally, the
presentation can be directly relayed to a
communication channel for on-line pre-
sentation.

For real-time delivery of the multimedia in-
formation, some of the steps, such as Step 2 or
Step 3, can be skipped;or the processed data
can be passed directly to the next step without
being stored. Depending on the application,
these steps can be combined into a single proc-
ess in the application. Multimedia teleconferen-
cing, for example, does not have Step 2, so that
after Step 1 the captured audio and/or video
data passes directly to Step 3, in which this
data is combined with other data such as mouse
pointer input or text from a graphics window,
and then is immediately broadcast to the other
participant in the teleconference.

The consumer system, in contrast to the com-
plex production system, will consist of only a
multimedia browsing system. This browsing
system will give end users access to on-line
presentations via communication through the
computer network, or by access to stored multi-

media or hypermedia databases. Production and
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consumption of multimedia products are bridged
by publishing multimedia products. The relation-
ship between the published product and the con-
sumer system is illustrated in (Figure 2).

PUBLISHING MULTIMEDIA
PRODUCTS

oo resastms s sy CONSUMER
Presenca Mutimedia/
(Comem) = |
MMOB
Store/
Pubiishing Muktimedia
Player

Store/ ‘
Stors/

(Figure 2) Relationship Between Published Multime-
dia Products and a Consumer

3. MuX MULTIMEDIA DATA PROCESS-
ING MODEL

In this section, we present a multimedia data
-processing model that is intuitive to developers
and end-users of applications for multimedia
production, but is powerful enough to accommo-
date real-time multimedia synchronization and
integration services across a network of cooper-
ative processors. This model supports network-
transparent access to stored multimedia data,
real-time multimedia input devices, and multi-
media processing. The model addresses real-
time multimedia data routing and delivery, as
well as acquisition, processing and output.
Media translation, compression, and synchro-
nization services are integral to the model.

As illustrated in (Figure 3,) our model com-
prises a stream layer, a multimedia presentation
layer, and a hypermedia presentation, or
hyperpresentation layer. The stream layer pro-
vides services similar to a video router used in

HyperPresentation Layer

Multimedia Presentation Layer

Stream Layer

(Figure 3) Multimedia Data Processing Model
Layers

video production studios, where sources and des-
tinations are local or remote files or devices
(such as microphones, musical instruments,
video cameras, displays, and audio speakers).
The multimedia presentation layer is based on
the concept of a programmable media multiplex-
er or media mixer, such as an audio mixer used
in concert productions, or a switch or video edi-
tor used in a video production studio. In this
layer, the media multiplexer takes input from a
variety of sources, mixes them according to con-
trollable parameters, and directs the result to an
output port or destination. The hyperpresentat-
lon layer 1s a generalization of the links used In
hypermedia document, where the document
may include time-based media such as audio
and video, and the links are dynamic and vary
over time,

3.1 STREAM LAYER

The base layer of the model is the stream
layer. The abstraction of a stream represents
the data associated with a particular medium.
Examples of media include standard media
(audio, video, 1mages, graphics, and text) as
well as other media streams including mouse/
keyboard, pen, animation, and musical instru-
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ment digital interface (MIDI) streams. These
streams may originate from a file, a device, a
connection, or from the higher layers. Streams
representing these media can be classified into
the following categories:

1. Digitally sampled continuous media strea-
ms: The medium stream represents a set
of samples with a continuous sampling
rate and pattern.

2. Synthesized continuous media streams:
These streams are not originally generated
by sampling a device. Rather, the output
samples are synthesized from a data model
to form a continuous stream.

3. Event-based streams: These streams are
interrupt- or event-driven and therefore
have a nondeterministic sample rate.
Although the streams are not continuous,
the stream data is time stamped at the
time of each event. These streams often
correlate to human interaction, such as
mouse movement or keyboard input.

Streams within each of these categories can

be further classified as real time (i.e., generated
at the time of execution) or playback (i.e.,
prestored and played back from a storage de-
vice).

3.1.1 Stream Services

The services provided by the stream layer in-

clude the following:

O Accessing multimedia data from a file, a
device, or a connection, or from the higher
layers.

0 Delivering multimedia data to a file, a de-
vice, or a connection, or to the higher lay-
ers, in a timely manner

0 Processing of an individual stream (e.g.,
compression)

O Selecting an input from one or more
streams and distributing it to one or more

destinations
0 Time-stamping or marking [Shepard
1990] stream data for downstream synch-

ronization.
3.1.2 Stream Layer Abstractions

To provide these services, several abstractio-
ns and mechanisms have been defined, including
a stream, source, destination, filter and filter
pipe, and switch. These mechanisms are illus-
trated in (Figure 4) and are described in more

detail below.

STREAM STREAM
SOURCE DESTINATION

(Figure 4) Stream Layer Mechanisms
3.1.2.1 Stream

A stream is a flow of data through a conduit
[Northcutt 19917 that reads data from a
source, perform data type conversion, and deliv-
er data to a destination. Source and destination
mechanisms provide access to multimedia data
in a file, device or connection. Sources and des-
tinations are similar to transducers, described
by Northcutt and Kuerman [1991]. Data from
a source can be digitally sampled, synthesized,
or event driven, as noled above. For synchron-
ization purposes, the source is responsible for
marking data or time stamping data with a
system clock time value. For streams that origi-
nate from a remote site, the time stamp is cor-
rected, within a margin of error, for differences
between the remote site and the local site. A
level of performance and quality of service be-
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tween the destination and the sources may be
specified for each stream.

3.1.2.2 Filters®

Before a stream delivers data to a destina-
tion, a filter can perform one of several types of
processing operations on it, including format
conversion (e.g., RGB images to YUV images);
data compression and decompression; and data
type conversion (e.g., speech to text). Varying
degrees of quality of service and performance
can be achieved by having alternate filters for
these operations.

The basic elements of a filter include an
input, an output, control parameters, and a pro-
cessing program. Filters can be combined to
form filter pipes, or collections of filters. If a fil-
ter does not have any control parameters, or if
the control parameters are provided at the time
of processing (such as the quantization table for
JPEG+ compression [Wallace 1991]), then it
is said to be context free. A context-dependent
filter operates within a context that can be spec-
ified and controlled independently of the data

stream.
3.1.2.3 Switch

A stream switch provides two main func-
tions. selecting an output stream from multiple
input streams, and directing the selected media
stream to multiple destinations. Selecting from
multiple input streams can be used to support
chalk- passing protocols [6]. Directing to multi-
ple destinations allows the input stream to be
tapped and tailored to form separate streams.
AYUV input stream originating from a video
device can be output to a stream that converls
to an RGB video to be displayed locally and to
an MPEG+ [13] compressed video stream to
be sent to a remote location.

SELECTION CONTROL
DESTINATION?
SOURCE1 (STREAM A)
(STREAM A)
SOURCE2
DESTINATION2
(STREAM 8) (STREAM A)
SOURCE3
(STREAM ¢} DESTINATION3
[STREAM A)

(Figure ) Stream Switch

For example, consider the situation illustrated
in (Figure 5). In this example, three streams
(A, B and C) are all inputs to the stream
switch. Using selection control, the switch can
select one of the three input streams (in this
case stream A). The selected stream is distrib-
uted to the output destinations. In this situation,
streams B and C have no final destination, so,
the switch may act as a destination and “stop”
the flow from the corresponding sources.

* Although stream mechanisms are generally
media independent, filter mechanims are, by na-
ture, media dependent.

3.2 MULTIMEDIA PRESENTATION LAYER

The multimedia presentation layer builds on
the stream layer. A multimedia presentation is
a collection of streams that are coordinated
with respect to time and space. Streams within
a presentation are synchronized and have
shared presentation control. There are logical
groupings of media streams for integration and
media-specific presentation control. The stre-
ams of dissimilar media (e.g., aural and visual)
are synchronized and presented in parallel.
Streams of similar media can be cut, reordered,
processed, and mixed to form a new stream.
These streams are grouped together as a chan-
nel for presentation or further processing. Ex-
ample presentations are movies, videoconfe-
rencing, and collaborative work spaces.
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The model’s basic elements are derived from
the video production model, but almost any
media could be accommodated. Concepts from
the video production model can be represented
as follows: “tracks” are time-ordered streams;
“channels” are a group of tracks associated
with a mixer; and a “presentation” is the com-
plete set of synchronized channels. The concep-
tual model for the multimedia presentation
layer is illustrated in (Figure 6).

3.2.1 Multimedia Presentation Layer Services

The services provided by the multimedia pre-

sentation layer include the following:

SOURCE

STREAM AL PRESENTATION
Track Al
: —>
CUPSAIL A12 A3
HANN
e CHANNELA ) besTiNATION
STREAM A2 MIXING | STREAM A
T
SOURCE rack An
STREAM AN
° o
° 0
SOURCE Track Bt a
STREAM B1 o o
SOURCE Track B2 N "\|_CHANNEL B
e | ——p | DESTINATION
STREAM B2 /MIXING > sn?sm n
SOURCE Track Bn )
STREAM BN

(Figure 6) Media integration Concept

O Interstream (i.e., parallel streams) and

intra-stream  (including integrated st-
reams and single-stream order) synch-
ronization [Yavatkar 1992]. Whereby the
synchronization timing can be specified
using hierarchical relationships, a time
line, and reference points [Blakowski,
Hubel, and Langrehr 1991].

O Integration of synchronized multimedia
data, such as blending two video signals,
mapping a video signal onto a graphics
surface, and mixing multiple audio streams

O Presentation-specific processing of a si-
ream, such as chroma keying or warping a

video signal.
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3.2.2 Media Presentation Abstractions

To provide the media integration and synch-
ronization services outlined above, we have de-
fined the following mechanisms: logical time
system, cue, presentation context, mixer, track,
channel, and presentation. These mechanisms
are illustrated in Figure 7 and are described
below.

3.2.2.1 Logical Time System

As discussed earlier, a presentation is the cen-
tral element for providing synchronization in a
presentation. It interfaces between the timing
mechanisms and the media integration mecha-
nisms. The timing and synchronization mecha-
nisms in the MuX server are based on the logi-
cal ume system (LTS).

B Presentation

Channel

_\

O — -~
: H / Mixer] | Destination
O N S Stream
) - Cii
Source Tracks
Streams

(Figure 7) Multimedia Presentation Mechanisms

The LTS is a relative time system and con-
sists of two major components: a start time and
a tick interval. The tick interval is the time be-
tween ticks on the clock and is specified in a
real-time measure, such as milliseconds. Given
these two quantities, it is possible to transform
between logical time and real time (le.,
absolute time).

An advantage of the logical time system is
that time can be scaled simply by scaling the
mner tick time [2, 24]. Another important as-

pect of the LTS is that it is possible to have dif-
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ferent time domains for different elements. This
allows significant flexibility.

We utilized this aspect to define the timing
mechanisms for the MuX server based on the
media integration concepls described earlier,
namely, presentations, channels, tracks, clips,
and the underlying media. The timing relation-
ship between each of these components is illus-
trated in (Figure 8).

The presentation time domain in inherited
from the master time domain. Channels inherit
the time domain from the presentation. A track
has a separate time domain derived by translat-
ing from the channel domain using the track
start time. To get from the track domain to the
medium time domain, both a translation and a
scale must be performed. The translation is
based on the cut-in time of the appropriate clip,
and the scaling factor is a ratio of the estab-
lished frame interval (i.e., the inner tick time of
the master LTS) and the frame interval of the
underlying medium. The scaling factor elimi-
nates the problem of media with different frame
_rates. Note that by tying each of the channels
to the master LTS time, synchronization be-
tween tracks can be achieved by simply specify-
ing the track start time (in the presentation
master LTS time domain) appropriately.

The logical time system (L.TS) is the basic

timing specification mechanism for synchr-
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(Figure 8) Timing Relationship between Presenta-
tion Components

onizing streams. Streams are synchronized by
specifying their timing relative to the LTS. For
example, channel times can be related to presen-
tation time, and track times can be related to
the channel times. Through the LTS, presenta-
tion of tracks, presentations, and channels can
be scaled in a relative manner.

3.2.2.2 Cue

A cue i1s a synchronization mechanism that
allows the specification of timing relationships
between streams. It binds one timing event to
another, e.g., the start of one stream is bound to
the end of another. A timing event can be offset
by a delta or a delay value. Given that the dura-
tion of the two related streams is known, com-
plex temporal relationships can be specified
using a cue; including before, after, meets,
overlaps, starts, finishes, and equals [15].

3.2.2.3 Presentation Context
The presentation context (PC) provides the

mechanisms to specify parameters that define

how media streams are mixed, integrated, and

: A_ Volume = F(t)
[
u
m ﬁ
¢
1 1 L 1 1 N 1 1 1 1 1 1 oy

Time

(Figure 9) Time-based Presentation Context

PRESENTATION CONTEXT (PC)

T

AUDIOPC DISPLAYS C

VIDEODISPLAYPC IMAGEDISPLAYPC GRAPHICSDISPLAYPC

(Figure 10) Hierarchical Presentation Context
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presented to the end user. PCs are specific to
the medium associated with a stream. The PC
values can be specified as a function of time.
For example, a PC for an audio stream would
specify the volume at which that stream is pre-
sented. The volume can be specified to change
over time as illustrated in (Figure 9). As shown
in (Figure 10), there is one PC for audio media
(APC), and there are three PCs for display
media. video (VDPC), image (IDPC), and
graphics (GDPC). The presentation context
value associated with a PC varies over time, of-
fering considerable flexibility in defining how

media streams are integrated and mixed.

3.2.2.4 Mixer

The primary element for stream integration
and intrastream synchronization is the mixer.
Multiple integrated streams are synchronized at
the mixer input. The mixer's main function is to
take frames of data from the inpul streams and
compose them into a single output stream. Inter-
nal to each mixer, streams can be hierarchically
integrated [ 16, 24 ] where a group of streams is
mixed with other streams, and so on,

The mixer defines a space or domain in which
the media is composed. This domain provides a
relative basis by which the individual streams
can specify how they are integrated within that
space. In a visual domain, still images, video im-
ages, and 2- and 3-D graphic objects are ren-
dered to form a final rgbaZ image [7] using
such techniques as warping, chromakeying,
morphing [3], alpha blending, compositing, and
texture mapping [ 8].

3.2.2.5 Track

A track mechanism facilitates the synch-
ronization, reserialization, and media processing

specification of a single-medium stream. Sync-
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hronization is achieved by specifying a track’s
start time relative to the logical time system of
a channel. There are three timing-specification
methods: (1) a priori specification of the track
start time relative to the channel’s time domain,
(2) specification of track start time with a cue,
and (3) dynamic direction from the application
or user via a start command.

A track also reserializes streams through the
use of clips. Clips define cut-in and cut-out
(start and stop) times.

Each track has a presentation context associ-
ated with it. The presentation context is time
based, relative to the track’s LTS. When a
track receives data from a stream, it converts
the data’s time stamp (based on real-world
time) to logical time, and derives the presenta-
tion context values based on the logical time, to

be used by the mixer for media integration.
3.2.2.6 Channel

A channel groups a set of tracks that are in-
tegrated by a mixer. It defines a common logi-
cal time domain for specifying the timing rela-
lionships of the set of streams being integrated.
A channel also defines the interrelationship be-
tween the streams, including stream ordering
and processing within a mixer. A channel has a
time-based PC associated with it, which is ap-
plied in a hierarchical fashion to each of the

tracks associated with the channel.
3.2.2.7 Presentation

A presentation groups together a set of chan-
nels that are synchronized in parallel. It pro-
vides a master time domain for specifving the
lime relationships of the presentation. As with
the other mechanisms, it has a PC, which ap-
plies to all channels comprised in the presenta:

tion.
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3.3 HYPERPRESENTATION LAYER

The highest level of the three-layer model is
the hyperpresentation layer. The abstraction of
the hyperpresentation layer is that of a dynamic
network of multimedia presentations connected
by links, forming multidimensional (time and
space) multimedia presentations. Links that
connect multimedia presentations together are
dynamic in that they change over time and
have fixed lifetimes during which they can be
activated {Brondmo et al. 1990; Halasz 1988;
Michon 1992; Ogawa et al. 1990; Zellwech
1992]. Users can interactively access and man-
age Information contained within the hyperpre-
sentation network by traversing links. In
addition, related information can automatically
be iriggered for presentation when time-sensi-
tive preconditions are mel.

The infotmation content of a presentation
changes over time. One portion, or segment, of
a presentation may address oﬂe topic, while an-
other segment may cover another topic. These
segments may overlap. A specific point in time
can be denoted by a milestone. Segments and
milestones correspond to the visual or aural con-
tent (media specific), or correspond to all media
that are being presented. links between one
presentation and other presentations come and
go with their associated segmenis and mile-
stones. For example, a segment of a presenta-
tion might generally cover “topic X", and dur-

ing the presentation of that segment a user
3.3.1 HyperPresentation Layer Services

The services provided by the hyperpresen-
might hit a “tell me more” button to see a relat-
ed presentation on the same topic X. When fin-
ished with the side topic, the user could return
to the original presentation. This type of inter-
action 1s illustrated in (Figure 11).

User Seiects “Tell Me More™

/

L \ s VA
~ —
s - Pres C

AUser Hits Ratum

Pres A

Pres B
User Hits Return

Pres A Pres B Pres A Pres C _ Pras A
[ - & - = m——

Time

(Figure 11) Example Serial HyperPresentation

tation layer include the following:

O Time-based linking of multimedia presen-
tations, based on the content of the presen-
tation defined by milestones and segments
that may overlap

O Triggering of parallel presentations when

time-sensitive preconditions are met.

3.3.2 HyperPresentation Abstractions and
Mechanisms

To provide theses servAices, the hyperpres-
entation layer supports the following mecha-
nisms: condilions, control streams, actions, and
comparators, shown in (Figure 12). Using these
fundamental components, flexible, user-defina-
ble links and triggers can be constructed. Each

of these mechanisms is described below.
Condition Action
Context T l
Control .
Stream
Comparator

(Figure 12) HyperPresentation Layer Mechanisms

3.3.2.1 Condition

A ondition describes an event upon which one
presentation is associated or linked with another
presentation. This condition is directly related to
the information content of a segment or mile-
stone of the originating presentation. The condi-
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tion is only valid for the duration of the seg-
ment or instant of the milestone, which is de-
fined relative to the logical time system of the
originating presentation. A condition can be de-
fined spatially with regions or hotspots [ Michon
1992] that are compared to mouse input, aural-
ly with tones or phrases that are compared to
audio input, and gesturally with gestures com-
pared to pen input, data glove input, or video
input. The condition can also change over time.
For example, a hot spot can move and change
size along with a graphic object that is moving
in a presentation. A presentation context assocl-
ated with the condition defines how the condi-
tion is represented (e.g., visible or invisible but-

ton, {x, v coordinate) Lo the user.
3.3.2.2 Control Stream

A control stream is the mechanism that can
activate a link. A link Is activated when a con-
trol stream meets a condition (defined abave).
A control stream can consist of, but 1s not limit-
ed to, input from the following: mouse, key-

board, data glove, video camera, or pen.
3.3.2.3 Comparator

A comparator is the primary mechanism for
detecting a link or trigger condition and execut-
ing the actions necessary to link the presenta-
tions together. To perform this operation, a
comparator has a control stream and a condi-
tion associated with it. During operation (be-
tween the start time and the end time), a com-
parator continuously compares the input from
the control stream to the associated condition
that activates a link or trigger. This implies that
the clock or time system of the comparator
must be synchronized with the clock or time
system of the multimedia presentation. When a
condition 1s met by the control stream, the com-
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parator executes an action to link the presenta-

tions.
3.3.2.4 Action

When a comparator determines that a condi-
tion is met (e.g., @ button was mouse selected at
the location of a link), the comparator executes
a set of programmatically defined actions that
perform a link traversal or trigger. For exam-
ple, if the semantic 1s a jump (i.e., a sequential
link), the action pauses the current presenta-
tion, pushes that status of that presentation
onto a stack, and plays a specified segment of
the destination presentation, and upon returning
from the destination presentation, resume the
original presentation, using the status from the
stack. Since the actions are defined program-
matically, an almost limitless variety of links

and triggers can be defined.
3.4 SAMPLE SCENARIO

A sample scenario, illustrated in Figure 13,
shows how streams, switches, tracks, channels,
presenlations comparators, and compositors can
be interconnected. This example demonstrates
the manner in which tracks are aggregated into
channels and channels are grouped into presen-
tations, and how multiple presentations can in-
teract through hyperlinks.

This scenario shows a collaboralive hyperp-
resenlation application in which two users ma- -
nipulate independent mouse input devices. Their
devices alternate In controlling the cursor
through a user-defined chalk-passing protocol
that controls the input selection of the switch.
Two video sources are played in the first pre-
sentation. One video source is read from a file
and the second comes from a network connec-
tion to & remote device. These streams request
data from their input sources, process the data,
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and deliver to their respective tracks before
their assigned deadline. The track converts the
data’s real-time timestamp into logical lime and
queues the data in a time-based queue until 1t is
accessed by the mixer. At the appropriate time,
the mixer accesses the data, using a synch-
ronized data-extraction technique for both the
video tracks and the mouse track (whosz cursor
icon is defined in the mouse track’s presentation
context). The mixer then integrates the data
and writes the output to a stream that delivers
the data to the output display device.

Hyperpresentation Layer
L Cordition
<Start Message>

Comparator

o]
<
H

Multimedia
Presentation l.ayer

Channe! 1

PR S P

@

Presentation 2
Channel 3
@0 5
F Mixer

Stream Layer

@ Filer N

(Figure 13) Sarmple Scenario

When the user with the cursor control (as de-
termined by the switch) selects a hot spot, the
comparator triggers a second presentation to
begin presentation of an audio stream, which is

played back from a sound file. To perform this

operation, the comparator continuously checks
conditions against the inpul control stream (in
this case <x, y> coordinates of mouse key
presses) against the location of the hot spot.
When a condition stream matches user input, a
trigger message 1s sent 10 the second presenta-
tion, notifying it to start playing at an indexed
time into the presentation. This message propa-
gates down to the channel, track and stream.
Filtering functions are illustrated in several
places in the first presentation. Filter A for the
video file input stream performs scaling of data,
reducing the frame rate from 30 to 15 fps. The
second video source, from the network connec-
tion, has filter B attached to its stream. Filter B
decompresses data from MPEG encoding. Filter-
ing 1s also performed on the input mouse
streams. In filter C, the input events are trans-
formed from global <x, y> coordinates into
window coordinates. In filter D, events are prop-
agated forward, based on whether or not they
match the window id of the current focus.
Timely delivery of data to the compositor,
and from the compositor to the output destina-
tion, uses time constraints specified for the

stream objects.
4, OBJECT-ORIENTED DESIGN

In our version of a prototype MuX multime-
dia [/O system, we have chosen to base our im-
plementation on object-oriented design and im-
plementation techniques. An object-oriented de-
sign provides good mechanisms for extensibility,
maintainability, and portability. By providing
general abstract superclasses, the system can
easily be extended by adding subclasses. Exten-
sions may include adding support for new medi-
um data types, new filtering services, new mix-
ing services, and new interfaces to devices. The
modularity provided by using object-oriented
design techniques also allow for isolation of de-
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vice-dependent code, which simplifies porting
tasks. We choose to use the C+ + object-ori-
ented language for our implementation. The
class hierarchy of the base set of classes to sup-
port this model is defined in (Figure 14) based
on the multimedia data processing model de-
fined in Section 3. The classes illustrated in
(Figure 14) are the classes that are exposed to
a client application through the MuX client li-
brary. In addition to these classes, several other
suites of support classes have also been imple-

mented.
Source - Channel
Stream
Destination —— Track
Filter
DistributedObject{Obj) Switch
AudioMixer
Mixer /
VisuaiMixer
Presentation
Clip
__—APC
PC <

TT—DPC —— VDPC

(Figure 14) MuX Multimedia Data Processing Model
Class Hierarchy

ReadFrame

(Figure 15) Basic Stream Layer Operation
4.1 Delivery and Routing Mechanisms

The Stream'' is responsible for accessing data

1) The capital 'S’ of the “Stream” denotes the stream object.
The same is applied to other objects.

Source ’ { stronnD @
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from Source and delivering the data to Destina-
tion. (Figure 15) illustrates this basic operation
and shows the essential objects that perform the
operalions necessary to move data from Source
to Destination. In order to access data and push
it to a Stream, a Source consists of a collection
of four objects: 1) a Source, the primary ob-
ject; 2) an LTS that is used to provide timing
events; 3) a Medium that provides a com-
mon interface to devices, and 4) a Multime-
dia Device, or MMDevice. In this scheme, the
Source object acts as the interface to the
other mechanisms. When a Source receives a
Play message, it sends a Start message to
the LTS, which forks a thread that is used
to execute the tick operations. This thread
immediately sets its deadline for the first tick
of the clock and does a thread yield. Subse-
quently, the LTS thread returns from the
yield and executes a callback that has been
registered with the LTS for the tick opera-
tion. This callback function calls the calls Me-
dium: :ReadFrame( )* member function(Medi-
um: :ReadFrame( ) stands for ReadFrame
member function of Medium class. The same
notation is applied to the member functions
of other classes). The Medium: :ReadFrame(
} performs the device specific operations to
read data from a multimedia device. This
frame is returned to the Source object which
then executes the Stream::receiveFrame( )
member function. In this basic operation ex-
ample, the Stream:.receiveFrame( ) simply
passes the data on to the Destination via the
Destination: .receiveFrame( ) member func-
tion.

The abstract base class Medium is the
basic interface elements used by all its sub-
classes and provides a common interface to

2) The “Medium::ReadFrame( )” denotes the ReadFrame(
) member function of a medium class. The same
detational rule is applied to other member functions.
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the Stream Layer. The Medium provides the
device specific services required to read or
write frame data.

In the case where filtering is applied to the
data stream, the operation is much the same
as described above. However, as illustrated in
(Figure 16),
through a series of Filters that have been

the frame object 1s passed

registered with the Stream object.
i
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(Figure 16) Stream Layer Operation with Stream
Filtering ‘
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(Figure 17) Stream Layer Operation with a
Switch

In the case where a Switch is involved as
illustrated in (Figure 17), the stream’s data
flow is split by the Switch ohject. The meth-
od for splitting the stream depends upon the
tvpe of Ports that the output Streams are
connected to. If the Port is a synchronous
Port, then the data is delivered to the
Stream object using the same thread. If the
Port is asynchronous, the a new thread is
forked to deliver the data to the Stream. In

either case, when the data buffer is delivered

to the output Stream object the reference
count is incremented rather than copying the
data.

4.2 Synchronization and Media Integration
Mechanisms

A multimedia presentation is a collection of
streams that are coordinated with respect to
time and space. Streams within a presenta-
tion are synchronized and have shared pre
sentation control. There are logical groupings
of media streams for integration and media-
specific presentation control. The streams of
dissimilar media (e.g., aural and visual) are

synchronized and vpresented in parallel.
Streams of sinilar media can be cut, reor-
dered, processed, and mixed to form a new
stream. These streams are grouped together
as a channel for presentation or further pro-.

cessing.
4.2.1 End-Peint Synchronization

The multimedia presentation layer elements

consist of the following: “tracks” are time-

ordered streams; “channels” are a group of
tracks assaciated with a mixer; and a “pre-
sentation” Is the complete set of synchronized
channels. A Track object’s main role is to
connect a stream lo a mixer and define the
timing parameters necessary to mix and pres-
ent a medium stream. To facilitate this, a
Track essentially serializes a set of clips from
a medium stream and queues it up for a
Mixer to process. A Track has a start time
that defines when the series of clips is ac-
cessed, mixed with other sireams, and pre-
sented to the output stream. A Track also
has an associated Presentation Context (PC),
which defines how the medium should be

composed and presented to the destination.



HT

The Track’s Presentation Context variables
can have different values over time, thus
allowing for such effects as fade-in or fade-
out. A Track is also responsible for control-
ling the flow of data, including starting the
stream and stopping the stream at the spect-
fied times. When the stream is flowing, be
tween the start and stop times, the Track is
also responsible for controlling the stream
speed. This speed is defined by either the PC
assoclated with the Track or as specified di-

rectly by the client.

T RecalveFrame
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(Figure 18) Track and Channel Timing
Mechanisms

To perform these operations, the Track reg.
isters three “actions” with the LTS clock
bound to the Channel that the Track is asso-
clated with. As illustrated in (Figure 18), the
first action is used to prestart the stream to
account for access delay and ensure that
data arrives when the start time arrives. The
second action corresponds to the start time
of the Track. The third action corresponds to
the end time and is used to stop the stream.
After receiving' the first action callback and
starting the stream, the Stream object deliv-
ers frames to the Track at a constant rate.
When the Track receives a frame, it process
the frame by converting the timestamp asso-
ciated with the frame into Channel’s time do-
main and enqueues it in the time-based
queue for retrieval at a later time by the

Mixer. In order to do this time conversion, it
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Is necessary to know the real-time in which
the track is started. This is the purpose of
callback. When this
callback 1s received, the current time is cap-

the second action
tured and used for subsequent time conver-
sions. Finally, the third action caliback is
used to stop the stream. In addition, when
this call back 1is received the time-based
queue 1s flushed to ensure that no residual

frames are used.
4.2.2 Inter-Stream Synchronization

A channel is a logical construct that inte-
grates a group of media into one logical /O
stream such as left audio channel (left ear)
and right audio channel (right ear). To facili-
tate this integration, a channel bundles to-
gether a group of tracks that contain a se-
ries of clips from a medium stream. A chan-
nel integrates and synchronizes the composi-
tion and presentation of each of the tracks
to a destination via the mixer. It defines a
common logical time domain for specifying
the timing relationships of the set of streams
being Iintegrated. A channel also defines the
interrelationship between the streams, includ
ing stream ordering and processing within a
mixer. A channel has a time-based presenta-
tion context associated with it, which speci-
fies state variables and is applied in a hierar-
chical fashion to each of the tracks associat-
ed with the channel. In general, a Channel 1)
groups tracks together, 2) directs tracks tlo
the mixer, and 3) controls presentation of the
integrated stream.

A Channel contains a PC which controls
the presentation of the Channel’s output.
Since actual mixing of the data is done by
the Mixer associated with the Channel, the
Mixer is given a reference to the Channel’s
PC. This PC is associated with the root
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(Figure 19) Channel Mixing Operation

group within the Mixer.

The Channel’'s LTS clock is used to control
the synchronization of the tracks as well as
control the mixing of the input streams and
presentation of the result to the output
stream. The start and stop times are con-
trolled using “action”® events from the LTS
(see Figure 18). The actual mixing of the
streams is execulted from a tick callback
from the LTS. The process of mixing an indi-
vidual frame is illustrated in Figure 19.
When a tick callback is Teceived from the
[.TS, the Channel executes a Mixer: Mix( )
member function call that performs the
actual mixing of the stream. To execute the
mix the Mixer in turn dequeues the appropri-
ate frames from the TQueues associated with
each track. After the frames have been col-
lected, they are mixed together as defined by
PCs and returned to the Channel. The Chan-
nel then delivers the mixed frame to the out-
put stream by executing a Stream!:
ReceiveData( ) member function call. The
output stream then proceeds to deliver the
data to its final destination.

The Time-Base Queue (TQueue) provides
a queue with some special and important
properties. In addition to providing the typical

enqueue and dequeue operations, a TQueue

3) An action is a single timing event. At the time speci-
fied when the action is registered with the LTS, a
callback is executed which effectuates the action.

provides the ability enqueue and dequeue ob-
jects according to a logical time associated
with the object. When a object is enqueued
into the queue, a logical time is associated
with the object, for example, 14. This object
will not be dequeued unless an object of time
14 or greater i1s requested (assuming that the
direction of the queue is "forward”). Further,
for times which are greater than 14, the ob
ject associated with the time 14 will be re
turned from a dequeue request until another
ohject that has a higher logical time than 14
is inserted, and less than or equal to the re-
quested time.

The best way to describe this is through a
simple illustration. For example purposes, let's
say that objects are enqueued with the fol-
lowing sequences of logical times assoclated
with them: 3, 4, 6, 9, 10, 11, 14, Given this
sequence of enqueues, if dequeue requests are
made for 1 through 14 in linear sequential
fashion, the result would be the following:
NULL, NUILL, 3, 4, 4, 4, 6, 6, 6, 9, 10, 11,
11, 11, 14. This sequence may vary slightly
depending upon the timing between when the
objects are enqueued and when they are
dequeued.

The important aspect about this queue is
that it has the ability to smooth out jitter
within the system and prevent drop-outs.
These properties are particularly useful when
the presentation parameters of the data ob-
jects may be changing even though some
data object have been lost or dropped for

Vvarious reasons.
4.2.3 Time Conversions

The MuX system handles four time do-
mains, Including logical time, real time,
SMPTE time (an 80 bit field standard that
defines time in hours : minutes : seconds. fra-
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mes), and UNIX time-val structure. It also
provides operations for converting between
the various formats. The synchron-ization be-
gins at the source where data is marked
and Shephaerd 1990] or time
stamped which is specified in real time, or
UNIX time-val structure, or SMPTE time
code. The time stamp is carried with the

[Salmony

data to the point of synchronization. When
data is exchanged between site, the time
stamp is corrected, within a margin of error,
relative to the site where the data is being
synchronized. After a stream delivers the
data to a track, the track mechanism con-
verts the time stamp into logical time relative
to its channel’s logical time system and plac-
es the data in a uUme-based queue where
beffering occurs.

4.2.4 Hierarchical Mixing for Media Integra-
tion

A Mixer is responsible for performing the
mixing operations on a set of input streams
In order to generate a single output stream.
The Mixer class itself is intended to be an
abstract superclass that i1s subclassed In order
to support mixing of media specific streams,
such s audio and visual streams. The Mixer
base class provides several important func-
tions, including 1) grouping of input Tracks
together to form hierarchical relationships be-
tween the tracks, as illustrated in Figure 20;
2) assoclating a presentation context with

(Figure 20) Hierarchical Mixing
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each of the groups that is used to control the
mixing operations performed for each of the
groups, and 3) collection of frames of data
to perform mixing operations. The subclasses
of the Mixer class perform the actual media
specific mixing operation which is localized
into the Mixer::Composite() member func-
tion. This member function is designed to be
overridden by subclasses to the Mixer class.

5. MuX SYSTEM ARCHITECTURE

The general architecture of the MuX sys-
tem is illustrated in (Figure 21). The central
component of the MuX architecture is the
MuX server. Media integration and sync-
hronization, and multimedia processing ser-
vices are provided by the multimedia /0O
server. In addition, the server provides pre-
sentation control mechanisms; however, man-
agement and access to these mechanisms are
provided by the presentation manager. In our
approach, the presentation manager is a sepa-
rate process from the server to allow tailo-
rability and flexibility. Access to the capabili-
ties of the server are provided by the multi-
media  application programmer's interface
(API), which is implemented as a client li-

brary.
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(Figure 21) MuX System Architecture Overview
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5.1 Virtual Object Interface

A very important aspect of the system is
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providing network transparent access to the
services provided by the system, allowing ap-
plications to operate independent of the ma-
chine they are running on. The client-server
approach to the system architecture provides
the basis of this capability.

Since many of the multimedia applications
being developed use an object-oriented ap-
proach to design and implementation, it is
also desirable to provide an object oriented
interface to the system. In an effort to com-
bine network transparent service access and
object-oriented programming the MuX archi-
tecture provides support for “virtual objects.”
Optimally an application would like to be able
to communicate between objects with a mini-
mum amount of programming effort. The
simplest way tc communicate between two
objects is with a member function call in the
same process address space. However, in a
distributed environment where services may
be located on other machines, this is not fea-
sible and hence object messaging must occur
across process boundaries. For a programmer,
the concept of virtual objects simplifies inter
--process object messaging significantly. With
virtual objects, an proxy object interfaces be-
tween objects within one address space and
the actual object which operates in another
address space. The proxy object takes care of
the interprocess communication aspects and
hides the details such that the application
programmer does not have to worry about it.
To this goal, the MuX system employees dis-
tributed lightweight object messaging and
utilizes this within the client-server domain.

The distributed object messaging services

provide the ability to dispatch messages to-

appropriate objects within the network. To
achieve this a run-time database of objects
available within the system is maintained.
When objects are created they are registered

in the run-iime database based on an as-
signed object id. Object messaging uses thi:
id for object look-up, which is done via a di-
rectory service.

The MuX client library is layered on top of
the distributed virtual object interface (Figure
22). This interface layer translates API mes-
sages into Object Message Protocol (OMP)
packets. The encoded OMP packets are sent
via an [PC mechanism to the MuX server,
where they are translated into messages for

server side objects.

APPLICATION
TOOLKITS
MuX LlBRA!ZY MuX SERVER .
i OBJECT INTERFACE OBJECT INTERFACE

(Figure 22) Distributed Object Messaging

The Object Message Protocol encodes mes-
sages and their parameters into packets that
contain the object type, the identification code
for the object Instance, and the size of the
data being passed to the server. The format
of the OMP packet is shown in (Figure 23).

OBJECT CLASS | OBJID MESSAGE

SIZE rDATA

(Figure 23) OMP Packet Format
5.2 Service Management

The objective of service management is to
provide the ability to readily extend the be
yond its initial capabilities, and allow the
system to operate on multiple platforms with
varying levels of support capabilities. Essen-
tially, the basic sysiem provides the core or
essential set of “substrate” functionality, and
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“slots” allow the system to be extended. In
this environment, non-core services are regis-
tered with the system providing extensibility,
configurability, and portability.

Within the MuX system the types of ser-
vices that we plan to support with service
management include

C Media handling services, including file

handling and communication protocols

C Device drivers or inlerfaces

O Filters, and

C Mixers.

5.3 Session Management

Session management provides the capability
to control groups of streams and presenta-
tions in a coordinated fashion. Session man-
agement also facilitates external users or ap-
plications o join a session and utilize the In-
formation that is being exchanged within a
session. These types of services should be
provided at both the local and the global
level. At the local level, streams and presen-
tations are managed within a single station.
The types of functions provided at the local
level include managing the allocation of
system resources to achieve the common ob-
jective of a group of streams or presenta-
tions, and “publishing” publicly available
streams and presentations for use by remote
apphcations. At the global level, streams and
presentations are managed across multiple
platforms. Global session management provide
the ability of application to query what ses-
sions are available at any given time and fa-

cilitate establishment of sessions.
5.4 Directory and Name Services

The directory and name services provided
by the MuX system are primarily intended to
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be a database of run-time objects within the
system. The objective is to provide the ability
to register object in the database using the
object id, a name or label, a class specific
key, or an arbitrary key. After an object has
been registered by one application, another
application an look it up and utilize it’s ser-
vices. Additionally, applications can register
with a directory to receive notification of
changes to the object directory, specifying
what types of changes they are interested in.
We envision that the types of directories pro-
vided could include
O Service directory of physical devices, fil-
ters and media services
O Stream directory of currently active
streams that an application could tap
into and  receive a split version of
O Multimedia presentation directory of
presentations that are active within the

svstem

]

HyperPresentation directory of links and
triggers that could be used for navigatio-
nal purposes

¢ Session directory of currently active ses-
sions that would allow remote parties to

join into a session.
5.5 Presentation Management

Presentation management is also an impor-
tant aspect of the MuX system. A presenta-
tion manager allows a user to adjust how
media streams and multimedia presentations
are being presented. This type of control can
be applied at both the
adjusting the master volume and managing

"master’ level,

multimedia windows, and at the local level,
controlling individual presentations, channels
and tracks. The presentation management
function could also allow users to select one

media over another, providing focus control
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facilitated by dynamic resource management.
The presentation management roles could also
encompass adjusting system resource manage-
ment parameters. This type of capabilities
would provide users with the ability to tailor
their environment (o their specific needs or
desires.

5.6 Buffer and Frame Management

Buffer management is a very important as-
pect of multimedia information systems due
to the magnitude of the data that is being
handled. To provide efficient management of
data buffers, we implemented two object
classes: a Buffer containing a block of data,
and a BufferPool which manages a set of
Buffers. There i1s only one BufferPool for the
system. The BufferPool currently manages
buffers or me;nory associated with the CPU,
providing allocation and deallocation opera-
tions. In the future it will manage buffers
through the system, including peripheral de-
vices.

The BufferPool keeps track of the number
of references to a Buffer. The actual location
of the Buffer that contains the data Is main-
tained by the BufferPool that allocates space
for incoming data and manages the data as

Application
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(Figure 24) Buffer Management within the
System

it is processed through the system, as illus-
trated in (Figure 24). With this scheme, data
copying only occurs when it is written, such
as in the decoding phase. Copying may also
occur when the data is moved from main
memory to device memory, such as frame
buffer memory. With this technique only a
reference to the data is passed through the
system. When the number of references drops
to zero, the Buffer is freed. This buffer man-
agement is a very important aspect for real-
time processing as memory allocation and
copying are expensive operations.

Data is transported through streams in
packets called frames. In the current imple-
mentation, a frame i1s a structure which con-
tains a time stamp for the data, the format
and type of the data, a pointer to the origi-
nating medium, a pointer to a PC for the
data (see discussion of the Presentation
Layer for details on the PC), and handles
for the data and header information con-
tained in the frame. The handles are refer-
ences to control blocks in the BufferPool.
The size and contents of the data and header
blocks are unique to each format and type of
frame. In most cases, these blocks of memory
can be treated as opaque.

6. CONCLUSIONS

In this paper, we discussed a multimedia
data processing model that supports a wide
variety of applications based on multimedia
production model. This model supports net-
work-transparent access to stored multimedia
data, real-time multimedia input devices, and
multimedia processing. The model addresses
real-time data switching and delivery, as
well as acquisition, processing, and output.
Most translation, compression, and synchroni-
zation services are integral to the model.
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A fundamental difference between our
model and others [Little 1990; Nicholaou
19907 is that our model is based on a full
complement of generalised data abstractions
of muitimedia objects, namely streams, multi-
media presentations, and hyperpresentations,
rather than focusing primarily on data pro-
cessing and synchronization. In our model,
the data abstractions provide a framework
for defining relevant and necessary process-
ing and synchronization services and the
mechanisms for providing those services. This
leads to a model that is more intuitive to ap-
plication developers and end-users, while still
being powerful enough to accommodate real-
time multimedia scheduling and integration
services across a network of co-operative
processors. A result of this approach is that
much of the implementation details are hid-
den from the application developers, allowing
them to focus on application-specific issues.

We believe the most of services provided
by the model should be implemented at the
system level on an object-oriented micr-
okernel, with high-speed messaging to sup-
port the interactive real-time demands of
time-critical media. Barring this ability, these
services should be implemented via a single
server located on each machine to provide In-
tegrated and central control of multimedia de-
vices within a site, and efficient handling of
1992].
Efficiciency considerations include support for

multimedia data [Rennison et al.
copy-on-write and optimizations for efficient
whereby  the

system provides real-time data flow control

support data management,
between buffers located on devices and in
system memory. And also a best-effort real-
time scheduler [Northcutt 19917 to provide
umely acces, processing, and delivery of data
to the compositors and devices should be sup-

ported by operating systems.
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In the future, we plan to continue investi-
gation into real-time communication support
within the model, including multicasting in
heterogeneous environments [Shacham 1992],
Quality-of-Service  control for  parallel
streams. And we also plan to specify primi-
tive supports from operating system for the
MuX system and to explore to Incoporate
these requirement into non real-time micro-

kernels.

REFERENCES

[ 1] Accetta, M., R. Baron, d. Golub, R.
Rashid, R. Tevanian, and M. Young.
1986. “Mach: A New Kernel Founda-
tion for UNIX Development,” Technical
Report, School of Computer Science,
Carnegie Mellon University, Pittsburgh
(August). Also in Proceedings of the
Summer 1986 USENIX Conference, pp.
§3-112 (July).

[ 2] Anderson, D.P., and G. Homsy. 1991.
“A Continuous Media I/O Server and
Its Synchronization Mechanism,” Com-
puter, Vol. 24, No. 10 (October).

[ 3] Beier, T, and S. Neely. 1992. “Feature
-Based Image Metamorphosis,” Com-
puter Graphics, Vol.26. No. 2 (July).

[ 4] Blakowski, G., J. Hubel, and U.
Langrehr. 1991. “Tools for Specifying
and Executing Synchronized Multimedia
Presentations,” Second International
Workshop on Networking and Opera-
ting System Support for Digital Audio
and Video, Heidelberg, Germany (No-
vember).

[5] Brondmo, H.P., and G. Davenport.
1990. “Creating and viewing the Elas-
tic Charles-a hypermedia journal,” in
Hypertext: State of the Art, R.
McAleese and C. Green, eds., Intellect,



30 SRR X2 =2 H3IH H12(%.1)

(6]

(7]

[8]

(9]

Lid., Great Britain.

Crowley, T., P. Milazzo, E. Baker, H.
Forsdick, and R. Tomlinson. 1990.
“MM Conf: An Infrastructure for
Building Shared Multimedia Applica-
tions,” Proceedings of the Conference
on Computer-Supported Interactive
Work, October 7-10 1990, Los Ange-
les, California, pp. 329 ff.

Duff, T. 1985. “Compositing 3-D Ren-
dered Images,” Computer
Vol. 10. No\x113(July).
Foley, J.D., A. van Dam, S.K. Feiner,
and JJF. Hughes. 1990.
Graphics  Principles and
Addison- Wesley, New York.
Halasz, F. 1988.
NoteCards: Seven Issues for the Next
Hypermedia Systems,” Communications
of the ACM, Vol. 31, No. 7, pp. 836-
852.

Graphics,

Computer

Practice,

“Reflections on

[12] Ishii, H., and N. Mikaye. 1991. “Toward

[13]

an Open Shared Workspace: Computer
and Video Fusion Approach of Team
WorkStation,” Communications of the
ACM, Vol. 34, No. 12, pp. 36-50 (De-
cember).

LeGall, D. 1991. “MPEG: A Video
Compression Standard for Multimedia
Applications,” Communications of the
ACM, Vol. 34, No. 4 (Apnl).
Leydekkers, P. 1991. “Synchronization
of Multimedia Data Streams in Open
Distributed Environments,” Second In-
ternational Workshop on Networking
and Operating System Support for Dig-
ital Audio and Video, Heidelberg, Ger-

many (November).

[14] Leydekkers, P, “Synchronization of Mul-

timedia Data Streams in Open Distrib-

uted Environment,” Second Interm-

ational Workshop on Networking and

[15]

[16]

(17]

Operating System Support for Digital
Audio and Video, Heideberg, Germany,
November 1991.

Little, T.T.D., and A.Ghafoor. 1990.
“Synchronization and Storége Models
for Multimedia Objects,” Journal on Se-

lected Areas of Communications, Vol.
8, No. 3 (April).
Little, T.T.D., and A.Ghafoor. 1991.

“Spatio-Temporal Composition of Dis-
tributed Multimedia Objects for Value
- Added Networks,” Computer, Vol. 24,
No. 10 (October).

l.oeb, S. 1992. “Delivering Interactive
Multimedia Net-
works,”, IEEE Communications Maga-
zine, Vol. 30, No. 5.

Documents  over

[18] Michon, B. “Highly Iconic Interfaces,” in

[19]

Multimedia Interface Design, Blattner,
Meera M. and Dannenberg, Roger B.,
eds. ACM Press, 1992,

Mullender, S. J,,
Support for Distributed Multimedia,”
Usenix Summer Conference, 1995.

“Operating System

[20] Nicolaou, C., “An Architecture for Real

[21]

(2z]

Multimedia ~ Communications
IEEE.  Journal

Areas of Communications, Vol. 8, No.

3, April 1990.

Northcut, J.D., and E.M. Kuerman.

1991. “System Support for Time-Criti-

cal Applications,” Second International

-time

Systems,” on Selected

Workshop on Networking and Opera-
ting System Support for Digital Audio
and Video, Heidelberg, Germany (No-
vember).

Ogawa, R., Harada, H., and A.
Kameko. 1990. “Scenario-based hyper—
media: A model and a system,” in
Hypertext: Concepts, Systems and Ap-
plications, A. Rizk, N. Streitz and J.
Andre, eds.,

Cambridge University



2o HEDICI0 AINEE @

Press, Great Britain.

[23] Poltrock, S., and J. Gudin. 1992. “Com-
puter Supported Cooperative Work and
Groupware,” Tutorial Notes, CHI92,
Monterey, Calfornia.

[24] Rennison, E., Rusti Baker., Doohyun
Kim, and Young-Hwan Lim. 1992.
“MuX: An X Co-Existent Time-Based
Multimedia 1/0 Server,” The X Reso-
urce, Issue 1, pp.213-33(Winter).

[25] Schwartz, F. 1992. “An Introduction to
MiSC: Multimedia Glue for Bonding
the Pieces,” presented at the IEEE Mi
crocomputer Conference, Asilomar, Cali-
fornia (March).

[26] Shepard, P., and M. Salmony. 1990.
“Extending OSI to Support Synchr-
onization Required by Multimedia Ap-
plications,” Computer Communications,
Vol. 13, No. 7, pp. 399-406 (Septem-
ber).

[27] Steinmetz, R., “Synchronization Proper-
ties in Multimedia Systems,” Journal
on Selected Areas of Communications,
Vol. 8, No. 3 (April) 1990.

[28] Stenmetz, R, “Analyzing the Multimedia
Operating System,” IEEE Multimedia,
Spring 1995.

[29] Wallace, G.K. 1991. “The JPEG Sull
Picture Compression Standard,” Com-
munications of the ACM, Vol. 34, No.
4 (April).

[30] Watanabe, K., S. Sakata, K. Maeno, H.
Fukuoka, and T. Ohmori. 1990. “Dis-
tributed Multiparty Desktop Confer-
encing System. MERMAID,” Proceed-
ings CSCW ‘90 Conf. on Computer-
Supported Cooperative Work, Los An-
geles, California, pp. 27-38 (October).

[31] Yavatkar, R. 1992. “Issues of Coordina-

tion and Temporal Synchronization In

HE LEDITIN Me) 2do| HHXE, Set0IAE-MY 7T 3

Multimedia Communication,” Multime-
dia ‘92, Monterey, California (April).

[32] Zellweger, Polle T. 1992, “Toward a.
Model for Active Multimedia Docu-
ments,” in Multimedia Interface Design,
M. Blattner, Meera M. and R. Danne-
nberg, eds. ACM Press, US.A.

[33] Interactive Multimedia
“Multimedia System Services, Version
1.0,” contributed by Hewlett-Packard
Company, IBM Inc., and SunSoft Inc.,
June 1, 1993.

[34] Microsoft, *“Multimedia Programmer’s

Association,

Reference for the Microsoft Windows
Operating System,” Microsoft Windows
Software Development Kit, 1992

[35] Microsoft, “Digital Video Command Set
for the Media Control Interface, Revi-
sion: 1.0,” August 7, 1992

[36] Parallax Graphics, Inc., “XVideo Techni-
cal Overview Release 1.0,” 1991.

(37] Ehley, L., B. Furht, and M. llyas, “Eval-
vation of Multimedia Synchronization
Technique,” Proc. of IEEE Int’l confer-
ence on Multimedia Computing and
Systems, May 14-19, 1994, DBoston,
MA, USA, pp. 514-519.

[38] Arman, F., R. Depommier, A. Hsu, and
M.-Y. Chiu, “Content Based Browsing
of Video Sequence,” Proc. of ACM
Multimedia 94, Oct. 15-20, 1994, San
Francisco, CA, USA, pp. 97-104.

[39] Mathur, A. G., A. Prakash, “Protocol
for Integrated Audio and Shared Win-
dows in Collaborative Systems,” Proc.
of ACM Multimedia 94, Oct. 15-20,
1994, San Francisco, CA, USA, pp.
381-388.

[40] Tobagi, F. A, “Distance learning with
Digital Video,” IEEE Multimedia, pp.
90-93, Spring 1995.



32 B2XE H2|EE =2 M3 H1S(9%61)

) =y
FAREE S §

1987d stZAetyied WiLE
¢ (o8 A

19853 Mgty HWFEF
7 F (FEAH

19873 ~ & FZTAARELNAT
2, HdHE+4

1991 d~93d  2RFEE=ATL
NYPATH

A Lok B4 HE|ut]o] xial FEejojcjo] &G

-3
n
i)
¥
_9.
o}m
za
H
fu
bl
HJ

d 94 %

19773 ABdgta 3z &4
(o]gAt)

19793 g=neried HAu
7} EA ()AL

19853 Northwestern Universi-
ty Y (o)gakA})

1979 ~ 4 FZAANFNAETF
£ 4YA7 Y

Ayor: denmrjo], 204 FAR A A" &

zEQo], olo] HE



