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Elimination of Redundant Input Information and Parameters
during Neural Network Training

Yonggwan Won' - Kwang-Kyu Park'!

ABSTRACT

Extraction and selection of the informative features play a central role in pattern recognition. This paper
describes a modified back-propagation algorithm that performs selection of the informative features and trains a
neural network simultaneously. The algorithm is mainly composed of three repetitive steps : training, connection
pruning, and input unit elimination. After initial training, the connections that have small magnitude are first
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pruned. Any input unit that has a small number of connections to the hidden units is deleted, which is
equivalent to excluding the feature corresponding to that unit. If the error increases, the network is retrained,

again followed by connection pruning and input unit elimination. As a result, the algorithm selects the most im-

portant features in the measurement space without a transformation to another space. Also, the selected features
are the most informative ones for the classification, because feature selection is tightly coupled with the classifi-
cation performance. This algorithm helps avoid measurement of redundant or less informative features, which
may be expensive. Furthermore, the final network does not include redundant parameters, i.c., weights and

biases, that may cause degradation of classification performance. In applications, the algorithm preserves the

most informative features and significantly reduces the dimension of the feature vectors without performance

degradation.

1. Introduction

The first step in designing a pattern recognition sys-
tem is to measure features and to determine the best
set of features. Selection of the best set helps realize a
more efficient and accurate classification system. Pre-
vious works such as clustering transformation, en-
tropy methods, K-L transform, and functional ap-
proximation focused on dimensional reduction of the
patterns by means of a linear transformation (1, 21
Since the dimension of patterns is reduced in the new
space, it is still required that all features in the
measurement space have to be measured when the
system is in lesting or operaling mode. It should be
inhibited specially when the features are not easily
measurable and measurement cost is high. Further-
more, there is a trade-off between feature reduction
and classification performance. In general, the classifi-
cation performance is degraded with the dimension-
ally reduced pattern vectors. Therefore, selection of
the important features in the measurement space is
desirable, while retaining the classification perform-
ance as possible.

Major concern in the use of the artificial neural
networks is the generalization capability. Among many
factors that affect the generalization capability [3], the
size of the neural network is the most important one
because its relationship to the number of training ex-
amples, training time and problem difficulty mainly

affects the generalization capability [4]. In general, the
smallest network that fits the given data produces
good generalization. However, choosing an appropri-
ate network size is still not an easy task. Some resear-
chers used learning theory to estimate the appropriate
size of the network [5, 6, 7]. On the other hands.
there is redundancy in a fully connected feedforward
network, and this degrades the generalization capa-
bility [8]. There are several methodologies to improve
the generalization capability through constraints on
the weights, such as weight elimination [9, 10, 11, 12,
13}, complexity regularization [14, 15, 16, 17], and
structural constraints [18, 19]. It was shown that a
network without redundant parameters(connections
such as weights and biases) produced better perform-
ance for the classification of simulated random signals
than the fully connected one [20].

In this paper, we describe a methodology to per-
form selection of the informative features and train a
neural network simultaneously. Unlikely to other
approaches, the selection of informative features is a
classification-performance-dependent method, i.e., the
selection of features is directly related to the classifi-
cation performance. A modified back-propagation al-
gorithm [13] that iteratively trains the network and
eliminates the redundant connections is employed to
eliminate input units that correspond to less informa-
tive features for the classification. After the connec-
tion pruning stage, the algorithm deletes any input



unit that has no or small number of weight con-
nections to hidden units and does not degrade the
performance with its elimination. Therefore, the di-
mension of the pattern vectors are reduced in the
measurement space, while retaining the classification
performance. This property helps avoid expensive
measurement of redundant or less informative featur-
es. Furthermore, the final network does not include
redundant connections, which makes the network ar-
chitecture simpler.

This paper is composed of four sections. In section
2, we first introduce the training algorithm that re-
duces the redundant features and connection para-
meters as well. The connection pruning algorithm and
its motivations are also described. Experimental re-
sults of this algorithm is reported in section 3. Three
data sets, iris data, handwritten digits, and simulated
random signals were concerned. Finally, in section 4,

conclusion and possible future works are described.

2. Redundancy Elimination

This section describes the modified back-propa-
gation (BP) algorithm that can reduce the number of
connections [20] as well as eliminates the input units,
which is equivalent to dimensional reduction. We first
briefly introduce the motivations for the connection

pruning algorithm [13].

2.1 Motivations for weight elimination algorithm

An algorithm that eliminates redundant connections
was developed based on the distribution of weight
magnitudes for different network sizes, effects of
eliminating the connections on the classification
boundary, and the nonlinearity of the neural network
units [13). As the network size increases for a certain
problem, the number of connections with small mag-
nitude increases in the trained network. This finding
suggested that connections with a small magnitude
should be eliminated. A small tilt of boundaries,
which is equivalent to a small change on the connec-
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tion values, does not degrade the classification per-
formance. It sometimes improved the performance by
reducing the overfitting and pattern memorization
problems [20]. Nonlinearity of the sigmoid activation
function also allows us to eliminate the connections
with a small magnitude. In a situation that the output
of a unit is close to the extreme value, ie., O or 1, a
small change on its netinput makes an negligible ef-

fect on the output value.

2.2 Training Algorithm for Pruning Redundant Con -
nections

Based on those speculations described in the pre-
vious section, the connection pruning was developed
(13]. The algorithm first trains the network using the
standard back-propagation (BP) learning scheme to
adjust all weights (initial back-propagation training).
When this initial training reaches either the specified
error or number of maximum training epochs, all
weights and biases with a magnitude below a specified
threshold value are set to zero (i.e., pruning). If this
pruning does not increase the error, the algorithm
terminates; otherwise it resumes training (i.e., retrain-
ing) by again adjusting all the connections, also using
the back-propagation learning scheme, until the net-
work reaches either the error obtained by the initial
back-propagation training or the specified number of
epochs for each retraining cycle. This two-step pro-
cess, retraining and pruning, continues until the error
caused by pruning is less than that obtained by the
initially trained network or until the total number of
retraining epochs reaches its predefined value. The al-
gorithm is summarized with the following pseudo
code:

Initialize the Network.

DO update the weights by BP learning.

UNTIL the number of epoch reaches a specified value
OR the error become less than a specified
value.

Prune the weights.
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WHILE the total training epoch does not reach a
specified number AND the error with pruned
network is larger than the error at the end of
the initial BP learning.

DO update the weights by BP learning.

UNTIL the specified number of retraining
epochs per retraining cycle is reached
OR the error becomes less than or
equal to the error at the end of the
initial BP learning.

Prune the weights.

ENDWHILE

In applications, this algorithm produced the mini-
mum network for the XOR problem and pruned un-
necessary connections to learn a Boolean function,
Rule-and-Exception [13). Furthermore, it pruned some
redundant connections from the minimum-sized net-
work, producing better performances for the classifi-

cation of the simulated random signals [20].

2.3 Training Algorithm for Feature Reduction

We modified the connection pruning algorithm in
order to meet the feature reduction purpose. The al-
gorithm is mainly composed of three repetitive steps:
training, connection pruning, and input unit elimin-
ation. This three-step procedure is repeated until no
input unit is eliminated and the degree of training is
acceptable.

After pruning the connections, the algorithm eli-
minates any input unit which has no or a small num-
ber of weight connections to the first hidden layer.
The input units to be eliminated are ranked by the
summation of the magnitudes of the unpruned wei-
ghts associated to the units. The unit with a larger
value is ranked first. The hidden unit, if any, that
does not have any weight connections to the input
units is also eliminated. It is possible that, with the
dimensionally reduced pattern set, retraining may not
achieve reasonable degree of training. This possibility

is measured by the difference between the error

obtained at the end of the initial training and that
obtained after input unit elimination. In this situ-
ation, the feature associated with the input unit which
is in the first rank is included in the next retraining
stage (i.e., undeleting the input unit). For the retrain-
ing process, all connections to remaining units are
involved. The algorithm is summarized by the flow
chart in Figure 1.

** Refer to the nested DO/UNTIL in the pseudo code.

(Fig. 1) Flow chart of the feature reduction algorithm.

3. Experimental Results

This section provides the application results of our
feature reduction algorithm. We concerned three clas-
sification problems : classifications of the iris data set,
the handwritten digits and the simulated random
signals,



3.1 Iris data set

The iris data is originally composed of three classes
of Iris, namely, setosa, virginica, and versicolar, 50 pat-
terns from each class with four-dimensional features.
For our study, we only considered the class 2 and the
class 3. Figure 2 shows the 2-dimensional plots of the
patterns in these classes with different pairs of feat-
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ures. Patterns in class 2 are indicated by o and those
in class 3 by x. It is obvious that the pair of feature 1
and feature 2 makes the classification the most diffi-
cult. Therefore, it is adequate that a classifier uses
features other than only this pair of features.

We performed several experiments with this data
set. All patterns were used only for training. The
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(Fig. 2) Plot for the class 2 and 3 of the iris data
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feedforward neural network had a single hidden layer
with three hidden units. The network was trained in-
itially until the RMSE was less than 0.1 or the train-
ing epochs reached 500 with the learning rate 0.05
and momentum 0.9. The network was trained well
through the initial training by producing a very low
error such as the correction rate 94% and the RMSE
0.15. Initial threshold for connection pruning (T) was
0.7 and increased by 0.1, if necessary. Any input unit
that had weight connections less than three was de-
leted at the input unit elimination stage. The input
unit in the highest rank was undeleted if DelErr was
1.7 times larger than IniErr.

Maximum retraining epoch was set to 50 and entire
training took about 650 epochs. The RMSE and the
correction rate produced by the final networks were
similar to those at the end of the initial training. Our
algorithm mostly preserved two features, favorably
feature 3 and feature 4. In very few cases, only one
feature was eliminated. The pair of feature 1 and fea-
ture 2 was never solely remained. The results justify
that our algorithm selects the most informative
features. Furthermore, the training results were simi-

lar to those obtained with all four features.

3.2 Handwritten digit data set

From the handwritten digit data base which were
extracted from the USPS mail pieces [21], 500 digits
for each class were collected. The digit images were
then normalized to the fixed size of 24 X 18 using mo-
ment normalization [22]. Some samples of normalized
handwritten digits are shown in Fig. 3. Among the
collected digits, 400 per class were used for training
and 100 for testing the network.

We first extracted numerical features from the nor-
malized digit images. Note that goodness of the fea-
ture extraction method we used was not evaluated.
Development of a good feature extraction algorithm
is outside the scope of this study. A 5X5 window
scanned the images, downsampling both horizontally
and vertically by two, and the number of black pixels
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(Fig. 3) Some examples of the size-normalized handwrit-
ten digits.

inside the window was counted. The result was
normalized between 0 and 1. Finally, a row-ordered
pattern vector in 84 dimensions was obtained from
each binary digit image. This pattern vector was used
as the input pattern for the neural network.

A feedforward neural network that had a single
hidden layer with 30 hidden units was used. The net-
work was initially trained with learning rate 0.02 and
momentum 0.8 until the RMSE was less than 0.05 or
the training epoch reached 20,000. The maximum re-
training epoch for each retraining cycle was 2,000.
The initial connection pruning threshold T and its in-
crement were the same as those for the iris data set.
The input unit in the highest rank was also undeleted
if DelErr was 1.7 times larger than IniErr.

We conducted several experiments with different in-
itial weights. Total training cycles were about 30,000.
The initial training generally produced very low
RMSE and about 99% classification for the training
set and 93% for the test set. Our feature reduction al-
gorithm significantly reduced the number of features
without performance degradation in both training
and testing. The reduction ratios were between 42%
and 51%.

Figure 4 shows a 2418 grid map in which each



cell indicates a pixel in the images. A shaded cell in-
dicates the pixel that was not involved in numerical
feature extraction. The cell in black indicates that the
feature extracted from the corresponding pixel was
left after training with our feature reduction algor-
ithm. Note that most of the features extracted from
the pixels around the edge of the images is not useful.
In general, the edge of the most images does not have
strokes. This result also justifies that our feature re-
duction algorithm preserves the most informative fe-
atures. Furthermore, it suggests that, in testing stage,
feature extraction be performed at the location where
the extracted feature is left after feature reduction

training.

(Fig. 4) A grid map that shows the pixels from which the
most informative features were extracted.

3.3 Simulated Random Signals

A random signal generation process produces a set
of class patterns using a mathematical model which
generates pulse patterns with exponentially damped

oscillatory edges [23]. This model is described by

yO =A[x(t—To) —x(t—To—Tu}] )]
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where

x(®)={1—-e" sin(2Ft)] u(t). (2)

There are five parameters: amplitude(A), starting time
(T,), pulse width(T,), exponential coefficient(C) and
frequency of oscillations(F).

For each pattern, the process first selects the para-
meters with which the classes are distinguished. The
values for the distinguishing parameters are obtained
from a Gaussian distribution with a specified mean
and variance. In multiple-class problems, separated
processes represent each class, and at least one of the
parameters has to have a different distribution for
each class. In other words, the classes are dis-
tinguished by the mean vectors of the parameters
among which the distinguishing ones have random
values. Figure 5 illustrates the process and the con-
tinuous pulse signal. The pulse signal is then sampled

to obtain the pattern vector.
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(Fig. 5) (a) Random signal generation process and
(b) the pulse signal.
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The problem difficulty is determined by the statisti-
cal difference between processes, which is described
by the Mahalanobis distance (R) between the par-
ameter distributions. Let m; and m: be the mean vec-
tor of the parameters and C be the covariance matrix.

Then, the problem difficulty is measured by

R=[(m—m)' C™' (m —my)]' 3

Therefore, the larger value defines an easy problem.
We assumed that random variables are independent
and variances are identical for each distribution. Un-

der this assumption, the measurement is simplified to

R=0"2[(m; —m)" (m; —my)]'"2. 4)

where ¢ is the identical variance.

We considered two-class problems. The statistical
difference between two classes was 5. 300 signals were
collected from each process with the exponential coef-
ficient and the frequency of oscillation as the disting-
uishing parameters. We selected the values for those
parameters in order for the head and the tail of the
signals to be identical. The continuous signal was
then uniformly sampled to have 200 dimensional pat-
tern vectors.

A network that had a single hidden layer with four
units was used. 200 patterns from each class was used
for training the network. The network was initially
trained with learning rate 0.02 and momentum 0.8
until the training epoch reached 500 or the RMSE
was below 0.05. The maximum retraining epoch for
each retraining cycle was 50. All the other training
parameters were the same as those for the other data
set.

In general, total training cycles were about 700.
The network trained by the standard BP algorithm
produced about 94% classification rates for the train-
ing set and 86% for the test set. Our feature re-
duction algorithm significantly reduced the number of
features without performance degradation in both

training and testing. Furthermore, all of the features
corresponding to the head (before To) and the tail of
the pulse was eliminated all the time. This is obvious
since the head and the tail of the pulse signals were
identical. This result again justifies that our algorithm

eliminates redundant information.
4. Conclusion

We have introduced an algorithm that reduces re-
dundant information during training a neural net-
work. Our algorithm is a classification-performance-
dependent method, i.e., the selection of features is di-
rectly related to the classification performance. In
other words, training a network and performing fea-
ture reduction are tightly coupled. Therefore, the re-
maining features can be considered a better set in
term of classification with the neural network. Fur-
thermore, the final network does not include redun-
dant connections (i.e., weights and biases), which
makes the network architecture simpler.

Unlikely to other feature reduction approaches that
use a transformation to another space [1, 2], thus lo-
ose meaning of the original feature, our algorithm
preserves the description of the features, since it
reduces the dimension of the pattern vectors in the
measurement space. This property is very important
because one can avoid expensive measurement of re-
dundant or less informative features.

In applications, our training algorithm eliminated
redundant information, while preserving the most in-
formative features. With the iris data set, it mostly
reduced two features out of four without degradation
of performance. A pair of features that makes the
classification problem the most difficult never rema-
ined. In the handwritten digit recognition, it signifi-
cantly reduced the dimension of the feature vectors.
With the simulated random signals that included use-
less information in the head and the tail, the algor-
ithm always eliminated the corresponding features.

Our feature reduction algorithm seemed to be sensi-



tive to selection of connection pruning threshold T
and its increment. More work is required to develop a
systematic method to select these values. It is closely
related to training time and reduction performance.
In general, our algorithm took longer training time
than the standard algorithm. Therefore, we need to
employ a methodology for fast convergence [24, 25,
26].
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