606 BXFEKCIER =X M5 Xl 3%(98.3)

2 o

B ERdMe Aoz 40 e AHFEDA FERAUE 7HE8A e o #dANA T# FFF
3] AR(ACE: Application sharing Collaboration Engine)§& 4 A 32 72U HAt ojEANN TR QI =
E 2 oj4e AlgAEe] M AFE A2 FodA A2 AE AL ojFAIAE 48 A AEH? B
A ZHASE e Jgolth e AT AEYANA FH7E 7He =& ASO(Application Sharing Ob-
jec) ZAMS} 2 WS EE FAHRAUD, TEFY AV L ASO AN E L o] 8310 L4E A 29470o] FR7158
APt ASO AMe A5 AM(activateASO), 3 AN (updateASO), & AM(inputASO) 28] Mo}
Z4 M(controlASO) B2 TS0l fth ASO A9 & 71RE Q¥ nhg-2 Y3 P BY £ @dHE
oM ES} ¥ olujx}) Z& oju &3t §AR & Ae Vel E Wsiol o) 8to] ¢4 ot FUH ojEYANM
ZH FEHY AAL dojgl 89 A2, 9 2], 22T AU # ¥ T2AME FFAY Fo H4W
F Aot

The Design and Implementation of ACE(Application sharing
Coliaboration Engine) for Collaboration Work

Ju Byoung Oh' - Jin Suk Kim' - Hye Kyu Kim'"

ABSTRACT

In this paper, we have designed and inuplemented ACE(Application sharing Collaboration Engine) which is pes-
sible an application sharing to collaborate among peoples who are geographically dispersed. The application shar-
ing is a technology whereby two or more users collaborate to share the output of single application running on one
computer system to the other users, and to provide input to the applications. We defined ASO{Application Sharing
Object) object and its behavior to share applications in real time and ACE processes a sharing using ASO object
among the distributed systems. ASO is classified into activateASO, updateASO, inputASO, and controlASO. The
each ASO's behavior involves both events which occur at specific moments such as keystrokes and mouse clicks
and more persistent status which can be observed at any time such as the image on the screen. The implemented
ACE can be applied to the data conferencing, distance education, and project collaboration for engineer in distri-
buted environments.

138 @348 derd ugstded
11 A3 8 L AFAAZFUATY FRA 292 R
EEHF19979 79 39, AAGRE 19979 124 199

1. Introduction

People do interact in group or organization. Inter-
action between peoples implicates collaboration. A
vollaboration described the following:the process of
shared creation-two or more individuals with comple-
mentary skills interacting to create a shared under-
standing that none had previously possessed or could
have come to on their own{10]. The collaboration was
possible only if people shared a workspace. If coll-
aborating peoples are situate. at the same place, the
workspace is, for example, a room, a table or white
board which they share. But as organization grows
and becomes more geographically dispersed, it is diffi-
cult for people to collaborate. In this environment, an
application sharing[3]6])[7) will become one of the
most important technology for collaboration.

In the case of affiliated location of people, the
shared application will becomes a shared workspace
for their collaboration. So two or more users can
communicate and collaborate as a group in real time
through an application sharing. An application shar-
ing can possible peoples who are geographically separ-
ated share text, graphics, image and applications and
other information.

Each person can provide input, update text, or zvap-
hics, and discuss a problem to solve details. When we
do collaborate, the shared information is able to be
frequently updated. To achieve more better perfor-
mance in application sharing, we define ASO(appli-
cation sharing object) and its behaviors. Also we de-
veloped ACE(Application-sharing Collaboration En-

gine) to interchange and presented the shared infor-

mation in real time. The structure of this paper is as
follows: In section 2, we introduce the related work.
In section 3, a collaboration system component will
be presented. In section 4, we introduce Application
Sharing Component. In section 5, we define ASO and
the behavior of ASO. In section 6, we implemented
ACE. Finally, we present our conclusions in Section 7.

HE 21D OECIAIOIN B SSTUY AN MH L 2

e

607

2. Related Work

CSCW(Computer-Supported Cooperative Work) is
the study of how people work together using computer
technology[1]. Typical topics include use of email,
hypertext that includes awareness of the activities of
other users, videoconferencing, chat systems, and real
time shared applications, such as collaborative writing
or drawing. CSCW is often divided into the domains
of synchronous (or real time} work, which considers
peoples who are working together at the same time
(such as with videoconferencing), and asynchronous
work, which considers people coordinating their ef-
forts across longer periods of time (such as with email).
An ACE(Application sharing Collaboration Engine)
sharing application is the domain of synchronous.
Also, CSCW discipline can be placed on a grid with
the time dimension running on the X-axis and the
place dimension running along the Y-axis. Four major
divisions are noticed:same place at the same time,
different time at the same place, same time at the dif-
ferent place, and different time at the different place.
Our collaboration engine is a . ne time different
place. The same time different place method is a
popular field of study within CSCW, since it looks at
how to assist in the business need of cross-distance
meetings. Shared workspaces use the concept of
WYSIWIS to allow people in geographically distributed
locations to work together at the same time and see
what other participants are doing. Video teleconfer-
ences allow participants to see and hear each othe.
across great distances and give the user more >f a
feeling of being in the same meeting room as the
other participants.

Sharing applications are recognized as a vital mech-
anism for supporting group activities more effectively
and on a more widespread basis[7][11){12]{13]. Sharing
applications mean that, when application programs
execules any input from participants, all executions
results of the applicati...i are shared among all part-
icipants. One approach to application sharing is to

608 BTIRHEMRIEZ] =2X| M5 X 3%(98.3)

develop special-purpose (collaboration-aware) applic-
ations designed for multiple users[14]. In many cases,
however, it would be better for participants to simply
share existing single-user (collaboration-transparent)
applications, which only support the interaction be-
tween a user and the system [7][12]. It was called the
GUI sharing method. The next is the replicated coll-
aboration aware method in which it has an instance
of the tool under distributed environment, each has
local interface, collaboration is accomplished by ap-
proaching the sharing task, and input/output con-
formity and driving conformity for application are
guaranteed[11].

MMConfl12], LIZA, and GroupKit provide a func-
tion for implementing the replicated construction sys-
tem, of which typical systems include Rapport[15),
Diamond, etc. This method is advantageous in that
implementation of speaking right control mechanism
in the tools is possible, and interaction among multiple
users is feasible at the same time. It is disadvantage-
ous in that it becomes more complicated in maintain-
ing sharing state and interaction state, its approach-
ing control becomes difficult at the same time, and
there may be problems in performance speed as the
number of users is increased.

Monet, Rapport{15], Ceced, and Mermaid (2] pre-
sented the results of their study on sharing multimedia
environment in the cooperative work field[2]. Audio
file, which is the network transparent system with re-
spect to distributed computer audio application using
X window, provides abstract audio instrument inter-
face with respect to simple network protocol(16]. The
inter-application protocol based KWrite system of
Apple Maclntosh system 7 has an open-type structure
for multimedia documents which enable interactions
among the users in the form of picture file for sharing
documents. Gibbs, which has muitimedia object con-
cept applied which provides multimedia information
delivery function for exterior entities such as screen or
network, suggests the prototyping method of multime-
dia application and adopts component-directed view.

There are also Standalone network-based video infor-
mation capture as well as VidBoard system processing
external instruments equipped with capture of televis-
ion screen and transmission capacity{17]. In a GUI
sharing, a single copy of the shared application runs
at one site{7). In a replicated method, a copy of the
shared applications runs locally at each site{11][12).
The first is the centralized collaboration aware method
in which multi-party software instance is shared by
multiple parties by driving various interfaces. Its typ-
ical systems include systems such as Rendezvous [16]
and Weasel, of which advantage is that interaction
among multiple users is feasible by having the tool
implement speaking right control mechanism intern-
ally. It is disadvantageous in terms of network traffic
since it becomes more complicated under heterogene-
ous distributed environment because of hardware-de-
pendent characteristics and all events are processed
through the central system. For the replicated method,
a distributed multiparty desktop conferencing system,
called MERMAID, was developed for supporting a
wide range of group cooperative work through effec-
tive integration of communication technology and in-
formation processing technologyl71[8][9].

3. A Collaboration System Component

A collaboration involves multiple participants with
shared goals and requires reciprocal exchange of ideas
and extensive information sharing {10]. We define the
collaboration system in (Fig. 1), which consists of user
interface, collaboration manager, application sharing,
and communication channel component. The colla-
boration manager component supports functions for
establishing and joining a conference. The user selects
the conference to join from a list of existling confer-
ences, or create a new one by giving it a new name. It
has a role of maintaining and managing information
on all sessions occurring in connection with multim-
edia conferences which are progressed on networks. It
manages session information and session status of

0h

each session. It has a role of connecting and discon-
necting a session among users at the time of collabor-
ation through multimedia application sharing. The
collaboration manager broadcasts the names of partic-
ipants, conference titles and conference subject for all
participants who wish to share multimedia appli-
cation. When a conference is begun by sharing multi-
media application, information on all users who are
in the conference is shown in its collaboration man-
ager. Then a user selects a conference by choosing
one of them and constructs a session.

The application sharing component is a process
whereby two or more user collaborate to share the
output of applications running on one or more com-
puter systems to the other systems and to provide in-
put to the applications[7]. The application sharing
component provides methods for sharing and unshar-
ing the application. The communication channel
component transfers the application sharing messages
between peer application sharing components. Each
conference for collaboration that is created automat-
ically gets all default channels for a normal confer-
ence. A communication channel component has a fun-
ction of multicast to group which is all participants to
share application. A multicasting is a powerful par-
adigm for the development of the distributed applic-
ations and for CSCW groupware and multimedia
applications. A multicast group is identified by the
logical name assigned to it when the group is created.
Each message targeted to the group’s logical name is
guaranteed to be delivered to all the currently connec-
ted and operational group’s members Group com-
munication systems,(e.g., Hours and totem, Ensemble,
ISIS, Phoenix) provide group multicast and member-
ship services. And data information and control in-
formation are differentiated and exchanged when in-
formation on application sharing is exchanged be-
tween the host and a server through networks. An ap-
plication can include all tools(e.g. editor, drawer,
OMT and compiler etc.) A user is any potential part-

icipant in a conference.

S AT (EZ(HOIMY S5 SSAY AN HH L 728 609

[User_Intorfsos]
=3

Oolldm:@___,
Nanager

L Commuraication Channe! l

(Fig. 1) Collzaboration based system

4. Application Sharing Component

The application sharing component enables muiti-
point application shariing by allowing a view onto an
application executing, at one site to be advertised to
other sites[2, 3, 6, 7). Each site can, under certain cond-
itions, take control of the shared application by send-
ing remote keyboard and pointing device information.
An application shziring component implemented as an
ACE(Application- sharing Collaboration Engine).

ACE interacts 'with the collaboration manager com-
ponent and the communication channel component to
implement application sharing. An information is
interchamged among ACEs in each sites using ASO
message when events occur and/or status changes.
Within an application sharing, windows are con-

sidered to be one of the following types|6].

* Local: Local windows are not shared, that is, their
outpuf; are only visible on the local system and the
window can be controlled from the local system.

® Hosted: Hosted windows are owned by an appli-
cation executing on the local system and are shared
among another systems. The window’s contents are
replicated to peer ACEs and the window can be

610 SIHHK2|A3) =X 5N X 3%5(98.3)

controlled by ASO supplied by peer ACEs.

* Shadow : Shadov windows are drawn by the ACE
and correspond ©© a hosted window on a particular
peer ACE. The vindow's contents are rendered by
the ACE using information supplied via the ASO
message by the peer ACE on the hosting display.
An input event directed to the shadow window is
redirected to the peer ACE on the hostir‘ng system
via ASO message. -

(Fig. 2) shows an :xample of an application shar-
ing. ACE A is viewing and hosting, it can both shares
windows and displays shadow windows shared from
other ACEs.

ACE A is managing ashadow window correspond-
ing to the hosted windowon ACE C, a hosted window
which is shared. ACE B is viewing only, it displays
shadow windows shared krom other ACEs but does
not itself share windows. ACE B is also managing
two windows :a shadow witdow corresponding to the
hosted window on ACE A,a shadow window corre-
sponding to the hosted windw on ACE C. ACEC is
hosting only, it shares windcws into the application
sharing, but does not display shadow windows. ACE

B Display C Cisplay
(Fig. 2) Example of an application sharing

C is managing one window : a hosted window which is
shared.

5. ASO: Application Sharing Object

In ACE, an event action is performed by the event
processor which is composed of ASOs. An ASOs be-
come active when they receive messages. Each ASO in
ACE has its local event action processor and it may
have its local state memory, the content of which can
be accessed only by itself objects. The state of an
ASOs at a given time is defined as the contents of its
local memory at that time. Upon receiving a message,
an object executes a following actions:1) creating of
obijects 2) referencing and updating of the contents of
its local memory 3) acting event.

5.1 ASO object modes

An ASO object is always in one of three modes such
as (Fig. 3):inactive, pending, or activel6]. An ASO is
initially inactive. An ASO becomes active when it
receives the message that defined in the specific
messages. An active object can perform event action
in ACE, and present the same result among ACEs.
When an active object completes all actions that are
performed in response to an accepted message, if no
subsequent messages have arrived yet, it becomes
pending state. An object in active mode sometimes
needs to stop its current execution in order to wait
for a message with specific message to arrive[9]. In

end of event actiy

deletion of the object

message acceptance
(Fig. 3) ASO object modes

such a case, an active object changes into pending
mode. An object in pending mode becomes active
again when it receives a required message.

Each object is assumed to have a conceptually
queue for storing messages in the order of arrival(4].
These messages wait in the queue to be proceed by
the object. The queue is considered to exist outside
the object so that messages arrives regardless of the
operation being currently performed inside the objects.

5.2 Message passing
The general characteristics of message passing[4]{[9]
among in ASOs in ACE are given as follows.

¢ Broadcasting: An ActiveASO can send a broadcast
message to all ASOs messages.

* Asynchronous: When an ASO sends a message to
an another ASO, one ASO can send the message
anytime, irrespective of the current state and modes
of ASO

¢ Guaranteed Arrival and Buffered Communication:
A message sent by an object always arrives at the dest-
ination within a finite time, and arrived messages

are stored in a queue associated with the object.

5.3 The internal structure of an ASO Object

An ASO object consists of ASO-EP(Event Proces-
sor) and ASO-EA(Event Actor). Since each object has
an event processor, it executes an event action one at
a time in event actor. Although messages can be rece-
ived by an object which is in active mode, the ex-
ecution of the event action for the messages must be
postponed until the current event action execution
completes. Therefore each object has a message queue
to store incoming ASO messages. (Fig. 5) illustrates
the definition of ASO.

A member function such as AddTail(), Remove-
Head(), GetHead(), IsEmpty() and ClearList() is
the function which is concerned by queue. Also a
member function Put() writes data the socket. Get()
read the data from the socket. A parameter is follow-

14
o
his
ot
=
]
jc
3
(=]
r_>
OH
1]
OH
o
1A
114
2
™
10
e
)
$e
4
o
<

(Fig. 4) ASO object structure

Class ASO {

//Member Variables on;
queue = a-message-quele;
ASO state : = a-state-object;
messageset:= a-set-of-messages ;
event actor:= an-evaluator-object;

//Member Functions on;
/hnitialize;

create;

destroy;

//message arrival and reception through queue

AddTail(int flag, PACKETHEADER header, char
*pData)

RemoveHead(int flag, LPPACKETHEADER pHeader)

GetHead(int flag, LPPACKETHEADER pHeader)

IsEmpty(int flag)

ClearList(void)

//Get message from local queue or put message to local
/lqueue. if mode is inactivc or pending then mode is
Hlactive;

Get(LPINT pnType, LPINT pnDescript, LONG *plLen,
char *pData)
Put(SESSION Sid, int nType, int nDescript, LONG ILen,
LPVOID pData)

/f interpreter and event actor execution on
/1 interpreter acceptance message to local message;
/1 if matched message found execute event action;
/1 if queue is empty then terminate of the
// execution;)
Interpreter(int nMsg)
activateASO();
inputASO();
updatcASO();
controlASO();
L
(Fig- 5) ASO object

612 SFEXCIEZ =2 X MsH M 355(98.3)

ing. NType is the type of sending data. NDescript is
the descript of sending data. LLen is the length of
sending data. PData is the point of sending data.

(Fig. 6) is an algorithm of interpreter. An inter-
preter classify message which is received another sites.
After message interpreter, if interpreter found matched
message, send the message call to the proper ASO such
as activateASO, inputASO. controlASO, updateASO.,
and execute event action. A each ASO object encap-
sulates member variables and the member functionson
the data. The ASO can be classified in four categories
objects as the following;activate ASO, update ASO,
input ASO and control ASO.

Interpreter(int nMsg)

{

switch (nMsg) {
case WS_READERROR : {...};
case WS_WRITEERROR :{... };

This is activateASO message
case WS_BROADCASTERROR :{ };
case WS_READYTOACCEPT :
AcceptClient();// accept client’s connection.
break;
case WS_CONNECTED :
break;
case WS_SESSIONID_DATA :
{ nGetSessionIDData(&nID);
NetworkConnected();)
break;
case WS_LOSTCONNECTION :
NetworkCloseSession();
break;
case WS_CLIENTNAME_DATA : { ... } break;

This is controlASO message
case WS_USERDEF_DATA :
{1 Get control data defined by user.
GetUserDefineData();
break;
case WS_CONTROL_DATA :
/ Get control data
GetControlMsg();
break;
This is updateASO message
case WS_SCRBMP_ARRIVED :
// receive screen bitmap from server.
break;
case WS_SYSPALETTE_DATA :
/1 system palette data arrived.
GetPaletteData();
break;

case WS_SCRBMP_DATA :
break;

case WS_DIBCELL _DATA :
// Update the received DIB cell to Original DIB.
GetDIBCell(&DIBCell);
case WS_VALUE_DATA :
GetValueData();
break;
This is inputASO
case WS_WNDMSG_DATA :
// Process remote control message
GetWndMsgData();
break;
This is extra message
case WS_OVERTRAFFIC :

MessageBeep(0);
default :
DefWsockProc(nMsg);
break;

}

(Fig. 6) Interpreter

¢ activateASO

This object is used for the activation of ACE. The
ACE that wishes to become active shall send either a
DemandActive or RequestActive to all ACEs within
the conference. An ACE should initially send a Requ-
estActive to determine if there are other active ACEs
in the conference. If no active ACEs respond to the
RequestActive, then the ACEs should subsequently
send a DemandActive when it wishes to start sharing.

On receipt of a DemandActive, an ACE may send
ConfirmActive to all ACEs within the conference. An
inactive ACEs is not required fo response to a
DemandActive, it may choose to remain inactive. If
an inactive ACE responded to aDemandActive, then
it enters the active state. If an ACE is already active,
then on receipt a requestActive, an ACE shall send
ConfirmActive to all ACEs within the conference.

(Fig. 7 illustrates the use of RequestActive, De-
mandActive and ConfirmActive in the activation of
ACEs, where initially no ACEs are active and ACEI
uses RequestActive to determine the activation state
of other ACEs within the conference. ACEl then
starts sharing and uses DemandActive to initiate the
activation of the other ACEs within the conference.

OH

To deactivate another ACE, an ACE shall send a
DeactivateOther. On receipt of a DeactivateOther, an
ACE shall become inactive.

¢ UpdateASO

UpdaieASO is the object that results in rendering
to chadow windows. An ACE sends bitmup update to
all ACEs within the conference by sending an Update-
Bitmap message containing bitmap data. An ACE
shall send uncompressed bitmap data or compressed
bitmap data. On receipt of an UpdateBitmap{or palet-
te) containing bitmap data, the receiving UpdataASO
perform a copy from source bitmap data to desti-

nation window.

¢ InputASO

InputASO is the object that provides input to hosted
windows. An ACE may provide input to peer ACEs
within the conference by sending an Input message
containing input events. Input events may be of one

of the following two type:pointing device event or

keyboard event.

No responce to ACE1

ACE1 starysharin
9 DemandActive

OS>

(Fig. 7) The flow of ActivateASO

¢ ControlASO

ControlASO is considered to provide floor control.
Floor control is a major determinant of application
sharing usability. ControlASO is based on managing
the rights to provide input to hosted and/or shadow

P-4

SNUB 21T 0IB2AHOIN BR B AFIQ| MH| Y 7B 613

window. When an ACE wishes to obtain the floor
control, it shall send a RequestControl message to all
ACEs. On receipt of a RequestControl message, the
ACE holding the floor control shall send a Grant-
Control message with the current floor control. (Fig. 8)
shows the ASO hierarchy. An activeASO, inputASO,
ControlASO and UpdateASO is inherited by ASO
object,

(Fig 8) is the type definition which is used by ASO
object. We define some typedef for sharing appli-
cation. It is a PACKETHEADER, WndMsg, DIB-
CELL, and SESSIONINFO. All messages include
PACKETHEADER for changing information. A WND-
MSG is a defined message which is used for sending
of input information such as a mouse or a keyboard
for remote control. In continuous transmission, we
send cell which is changed. DIBCELL is the structure
of cell information. SESSIONINFO is a session infor-
mation of participant. This is used for the list of
session participants.

typedef struct tagPACKETHEADER {
SESSIONID FromSid ; //The session ID of packet sender
SESSIONID ToSid; // The session ID of packet receiver

int nType ; /l Type The type of packet
int nDescript ; /] Packet description

long ILen ; // Packet lengh

} PACKETHEADER

typedef struct tagWndMsg {
UINT uMsgType ; 1/ The type of message
WPARAM wParam ; // wParam parameter of message

LPARAM IParam ; // IParam parameter of message
} WNDMSG

typedef struct tagDIBCELL {

int nStartX, nStartY ; // The start point of DIB Cell

int nLenX, nLenY ; // The length of DIB Cell

int nLineBytes ; /! The bytes per line of DIB Cell
buffCELLHEIGHT*CELLWIDTH*MAXPIXELSIZE]
; The content of real DIB cell

} DIBCELL

typedef struct tagSESSIONINFO {

SESSIONID SID ; // The session ID of participant

intnMode ; // The current mode of sessionparticipant

SOCKET DataSocket ; // The socket handle for sending
data

614 SIS FPEN2IE S| = 2K M5 X 3385(98.3)

SOCKET CtriSocket ; / The socket handle for sending
control
char szAddressfADDRESSSIZE] ; // The address of
Sessionparticipant
char szAlias{NAMESIZE]) ; // Sessionparticipant name
char szHostName[NAMESIZE)] ; // Host name of session
} SESSIONINFO;

(Fig. 8) The ASO type definition

(Fig. 9) explains some API which is implemented in
our system. This is a dynamic link library. These API
are important functions which are necessary for im-
plementing an application sharing system. The devel-
opers can implement an application sharing system
using it. We don’t explain about these function be-
cause the name implys theirs function.

ProcessMouseRemoteCoritrol(WNDMSG WndMsg,
RECT rcScrSize)
ProcessKeyboardRemoteControl(WNDMSG WndMsg)
GetMouselnfoSize(HCURSOR hCursor, LPDWORD
lpdwMask, LPDWORD IpdwColor)
DisplayCapturedBMP(pDC->m_hDC, &rcClient,
CompareClient, DibNew);
BitmapCapture(&nLeft, &nTop, &nRight, &nWidth,
&nHeight, &wBitsPerPixel,&bCompressedFlag,
IpBitmapData);
ShowScreenImageData(HWND hWnd, HDC hDC,
HDIB hDIB, RECT rcUpdateDIB)
ReqRemoteControl(WPARAM wParam, LPARAM
1Param)
Send_BitmapMsg(char *Msg, int size)
Send_UserJoinMsg(char *Msg, int size)
SendServerScreen(SESSIONID SID, RECT rect)
SendDIBitmap(SESSIONID Sid, int nDescript, HDIB
hDib)
SendSystemPalette(SESSIONID sid)’
SendInitServerScreen(SESSIONID Sid, RECT rect)
int nGetDIBScanLineBytes(HDIB hDib)

SendWndMsg(SESSIONID Sid, UINT uMsgType,
WPARAM wParam, LPARAM 1Param)
GetServerSysPal(LPLOGPAL pal)
SendDIBitmap(SESSIONID Sid, int nDescript, HDIB
hDib)
SendSystemPalette(SESSIONID Sid)
SendInitServerScreen(SESSIONID Sid, RECT rect)
GetDIBScanLineBytes(HDIB hDib)
SendWndMsg(SESSIONID Sid, UINT uMsgType,
WPARAM wParam, LPARAM IParam)

SendValue(SESSIONID Sid, int nDescript, int nValue)
SendString(SESSIONID Sid, int nDescript, char *str)
GetServerSysPal(LPLOGPAL pal)
SendNextServerScreen(SESSIONID Sid, RECT rect)
SendNextCellTHREADINFO *pThreadInfo)
CompareCell(HDIB hDibOld, HDIB hDib, int Sx, int sy,
int xLen, int yLen)
SendDIBCell(SESSIONID Sid, HDIB hDib, int sx, int sy,
int xLen, int yLen, int nDescript)
GetDIBCell(DIBCELL *pDibCell)
UpdateDIB(LPDIBCELL pDibCell)
GetModifiedDIB(void)
InitRect(LPDIBCELL pCell)
GetSystemLogPal(LPLOGPAL pLogPal)

(Fig. 9) The implemented major API for ASO

54 The scheme of ASO object processing

In this section, we present a scheme of ASO object
processing(see (Fig. 10)). When user inputs events, an
ASO message may be created by ASO message gener-
ator and it is interchange between sites.

(Fig. 10) The scheme of ASO object processing

ASO become active when they receive messages,
and an event processing proceeds as ASO message
transmissions among objects. An ASO messages are
the unit of information to be interchange and a coded
representation of an instance in application sharing.

The ASO messages are defined only at the inter-
change point between the active site A and site B.
When site A wishes to send an ASO message to site

Fs
€

B, it calls an ASO message generator which converts
the internal format used by ACE. When site B rece-
ives an ASO message, the object is decoded by an ASO
interpreter. The value within the object are passed by
the ASO interpreter which may convert them to the
internal format used by ACE.

5.5 The behavior of ASO objects

An ASO behavior involves both events which occur
at specific moments(e.g. keystrokes and mouse clicks)
and more persistent status phenomena which can be
observed at any time(the image on the screen). Events
are atomic, non-persistent occurrences in the windows.
As the mouse cursor moves across the boundary of a
window, that window can be activated as the focus.
Events can trigger status changes.

- Telepointing: The telepointing[1, 2, 3] provides a
user with a set of globally visible pointers. When a
telepointer is moved into a shared window, it becomes
visible to all participants. Therefore, The telepointer
behavior tracks the movements of locally used telepoin-
ters and distributes these movements to the remote
sites.

-Control Behavior: A control assignment policy
must be set down so that only one participant has the
floor at a time during a conference. The floor user
has the right to provide input to the application being
shared. There is a distinction between floor policies
and floor mechanisms. Floor policies describe how
participants request the floor and how it is assigned
and release.

- Update Behavior: Updates to shared information
objects may affect presentation. An ACE sends bitmap
updates to all ACEs within the conference by sending
an UpdateASO containing bitmap data.

- Remote Sharing Behavior:In some application
sharing scenarios, it is useful for sharing of applicat-
ions and/or windows to be initiated remotely, that is,
applications running on the local terminal are shared
not by a local end-user or programmatic action, but

2 RS HE2IAOIM SR SSEY AT MA X 78 615

rather as a result of a request from a peer ACE.

-Dynamic Sharing Behavior: Dynamic sharing
allows you to share an already running application to
a new display. Sometimes this is also called accom-
modation of latecomers.

- Activation: This situation may occur at initial
point of application sharing. An hosting ACE that
wishes to active another ACEs shall send ActivateASO
to all other ACEs.

5.6 Scenario and character of ACE

1)Creation of conference

A conference helding is clicked for initiating a con-
ference. In case of helding a conference, a conference
helding radio button is selected and the names of
participants, conference title, conference subject, efc.
are inputed. In case of participating in a conference, a
conference participation button is selected, the names
of participants are inputted, and the conference title
of a conference to participate among the contents in
the conference list is selected and clicked when there
is a conference being held.

2) Establishment of transmission region

A conference holder may set the transmission region
in its screens. The transmission region is set in the
following methods: 1) Specific window 2) User define
area 3) Entire screen. A specific window is used when
one window among many application programs on its
screen is selected and transmitted. A user define area
method is used when a user wishes to transmit in an
arbitrary size. A region to be transmitted is set by
moving a mouse. An entire screen transmission
method transmits an entire screen at present. Since a
large amount of data are transmitted at this time,
speed may be affected.

3)Screen transmission
Transmission can be begun when designation of a
transmission region is completed. There are two forms

of transmission as follows:

616 SIDFEXLISE =F X HISH M 3%5(98.3)

¢ Continuous transmission
A screen is transmitted continuously. This is a mode
of continuously transmitting the present screen to
participants in the conference connected. It is selec-
ted to be in the basic mode at present.

* Non-continuous transmission
This is a mode of transmitting the present screen
when transmission initiation is selected and then
waiting until the next transmission initiation is
selected.

¢ Transmission starting
After cstablishment of transmission region and tr-
ansmission mode is completed, the image of a
screen can be transmitted actually. Transmission is
begun when transmission initiation is selected.

¢ Transmission stopping
This menu is selected when temporary stopping of
transmission is desired. Then transmission is stop-
ped and a picture showing stopping of transmission
appears on the screen.

4) The assignment of presentation

When a conference is held for the first time, a con-
ference holder becomes a presentation manager. A pre-
sentation manager is a term referring to a conference
participant who transmits its screen. It is possible to
have another conference participant transmit the
screen. This can be done by selecting presentation as-
signment in the menu. A conference holder selects a
desirable participant. To the selected participant, a
message box asking “Presentation assignment request”
is received. Presentation assignment message box ap-
pears. If “Yes” is selected, the presentation manager
is changed into a participant assigned to the confer-
ence holder and a picture indicating the change is
shown as follows: The present presentation manager
may be released forcefully. If the present presentation
manager is another participant other than a confer-
ence holder, the conference holder may release the
present presentation manager forcefully and become a

presentation manager. “Presentation release” is select-

ed in the menu.

5)Request and release of floor control

When controlling of application program(s) in a
screen being transmitted by the present presentation
manager is desired, floor control request may be
made. Release of floor control may be done by the
person who requested it or may be done forcefully by

the presentation manager.

6. ACE engine

ACE(Application-sharing Collaboration Engine)
enables application sharing by allowing a view onto a
computer application executing al one site lo be
advertised within a conference to other sites. Each site
can take control of the shared computer application
by sending remote keyboard and pointing device in-
formation.

ACE can cooperate via the ASO messages to share
one or more applications within the conference. ACE
provides an interface to a collaboration manager com-
ponent and to a communication channel component
to implement application sharing. Data is exchange
between peer ACE using ASO messages.

ACE consists of an event capture. ASO message
generator, distributor, ASO message fetcher, ASO
message interpreter and an event processor as shown
in (Fig. 11) By being able to be converted from a ser-
ver to a client and vice versa according to the type of
work (existence of application), it implies both aspects
of server and client.

An event capture takes all output stream from the
host windews or shadow windows. An output streams
are segregated into two categories:bitmap data and
input event. When an ACE is hosting a window, it is
responsible for constructing an bitmap data for that
window which will allow other ACEs to faithfully
draw corresponding shadow window.

When an ACE is shadowing a window, it is respon-

sible for sending an input event from shadow to host.

ASO message generator create ASO message to inter-
change among ACE. It have a ASO intermal message
format and converts output stream into ASO internal
message format used by ACE. All ASO messges are
multicasted via the communication channel by a dis-
tributor.

ASO message fetcher takes ASO messages from the
ACE queue, forwards them to the ASO message in-
terpreter. ASO message interpreter decodes the ASO
message. An event processor executes the event which
is translated from the ASO message interpreter.

The event processor consists of four ASOs:Acti-
vateASO, UpdateASO, InputASO and ControlASO,
each of which is activated in accortance with the ASO
message.

, Collaboration Based System

(Fig. 11) The architecture of ACE

¢ Evenl Capture
This is a module capturing initial image state of
sharing application in the Host and Shadow, input
event, and GUI image with respect to input event
processinig.

® ASO Mes:. i

This is a module ciassifying the events captured in

rencrator

the event capture ai:d producing ASO Messages for
each event.

¢ Distributor
This is a -vodule wssuming a role of distributing

o T7mes made 10 i ASO Message Generalor to

DX
oo%

ot 0iEZ|A0IM S5

the sites of all developers.

* ASO Message Fetcher
This is a module assuming a role of bringing each
message delivered from the Host or Shadow in the
order of storage one by one.

¢ ASO Message interpreter
ASO Message interpreter decodes the ASO Mess
age which is created by the ASO message gener-
ator.

* Event processor
An event processor executes the event which is
translated from the ASO message interpreter. It
uses the presentation library and window manager.

» Presentation library
This is composed of a dynamic library related to a
window for displaying the same result as the appli-
cation performance of the Host side.

¢ Window manager
This is a portion defining the structure of identifiers
of the windows being performed at the correspon-
ding site. It has the mapping information on the
corresponding ID being performed of the Host in
the delivered message of the Host and on ID to be
performed at the Shadow.

7. Conclusion

We designed and implemented ACE(Application
sharing Collabor:ton Engine) to share application in
real time for collaboration work. Application sharing
is divided into GUI sharing and replicated sharing.
Our collaboration engine supports GUI sharing to
collaborate in distributed cnvironment. We have de-
fined ASO(Application Sharing Object) object and its
behaviors to share application to real time. ASO is an
unit of information to be interchanged and a coded
representation for application sharing. We have class-
ified ASO into four objects : activateASO, updateASO,
input ASO and controlASO. This approach confines
ASO'’s behaviors to within the object and allows the
action to handle the object. ACE processing ASO ob-

618 SIDHIK2IET| =X M5 M 325(98.3)

Ject in distributed environment consists of event cap-
ture, ASO message generator, distributor, ASO mess-
age fetcher, ASO message interpreter and event pro-
cessor. We are currently implementing ACE based on
T.120 for the interoperability in application sharing.
At a conclusion, two or more users can communicate
and collaborate as a group in real time through ACE
processing ASO object.

Reference

(1] Walter Renhard, Jean Scweitaer, Gerd Volksen,
and Michael Weber, “CSCW tools : Concepts and
architecture”™, IEEE Computer, pp. 28-36, May
1994.

[2] K. Watabe et al. “Distributed Multi-party Desk-
top Conferencing System:MERMAID.” Proc.
CSCW 90, ACM Press. New York. 1990. pp.
27-38.

{3] K. Strinivas etc, “Monet: A Multimedia System
for Conferencing and Application Sharing in
Distributed System”. Proc. First Workshop on
Enabling Technologies for Concurrent Eng. en-
abling Technologies Group, CERC, WestVa,
Univ., Morgantown, W. Va., 1992, pp. 21-37.

[4] Vittal, John, “Active Message Processing: Mess-
age as Messanges”, in Computer Message Sys-
tems, R.P.Uhlg, editor, North-Hotland Publishing
Company, 1981.

[5] ITU-T Recommendation T.120 (1996) Data Pro-
tocols for Multimedia Conferencing.

[6] ITU-T Recommendation T.Share (1996) Appli-
cation Sharing,

[7} S. Greenberg, “Sharing views and interactions
with single-user applications,” Proc. Conf. On
Office Information System, pp. 227-237, April
1990.

[8] G. Agha, “Actors:a model of concurrent compu-
tation in distributed system”, MIT Press, 1986.

[9] A. Yonezawa, “ABCL:An object-oriented con-
current system”, MIT Press, 1990.

[10] Hsinchun Chen, “Collaborative System”, IEEE
Computer, pp. 58-66, May, 1994.

{11] J. C. Lauwer,et al., “Replicated Architecture for
Sharing Window System : A Critique,” Proc. Conf.
On Office Information System, pp. 249-260, April
1990.

[12] T. Crowley, et al, “Mmconf: An Infrastructure
for Building Shared Multimedia Applications,”
Proc. Conf. On Computer Supported Cooperat-
ive Work, pp. 329-342, October 1990.

[13] S. R. Ahuja, J. R. Ensor, and S. E. Lucco, “A
Comparison on Application Sharing Mechanisms
in Real-Time Desktop Conferencing Systems,”
Proc. Conf. On Office InformationSystems, pp.
238-248, april 1990.

[14] M. D. P. Leland, R. S. Fish, and R. E. Kruat,
“Collaborative Document Production Using
QUILT,” Proc. Conf. On Computer Supported
Cooperative Work, pp. 206-215, September 1988.

{15] S. Ahuja, J. Ensor, and D. Horn, “The Rapport
Multimedia Conference System”, Proc. ACM Con-
ference on Office Information System, 1988, pp.
1-8.

[16] T. Levergood, A. Payne, J. Gettys, G. Treese, and
L, Stewart, “AudioFile: A Network Transparent
System for Distributed Audio Application”, Proc.
Usenix Summer Conference, 1993, pp. 22-33.

[17] J. Adam and D. tenneenhouse, “The Vidboard: A
Video Capture and Processing Peripheral for a
Distributed Multimedia System”, Proc. ACM
Conference on Multimedia, 1993, pp. 113-120.

e F 4
1992d 2otz Eade
FE 2D
19949 gz g PF
EELETER
19949~ FIHAENATF
D TEL T EV P
- A7e
BAR: A E A2, ARG 2Y, Dejo)
o], CSCW

DEXYUS 2/3 01FAH0IN SR SSHY AT MAH K 7 619

4 TN 4d 8
19828d A gt A ApA A} 19733 A e FH0Y &
I Z4(@FAD B2 933D
19889 FIdi gt A AA L 1985 Mot Fgete
F EQEFHHAD A G 3HA D
1992 AEA I 71eA 19943 Aot FFAAY
1982 ~8A FIFAANFAAF . B e qA(HAD
A AnFedTd 4% 19799 ~8A] FFARAFTAATF
(AYA74) Q, ARA2AATER
& B)]

BABF:CSCW, HEv|t]o] dojgpulo] L, £XE
qol A Eof: LAY F A, deln o]

