PREMOE 7I81Q 2 8l= A ZHM EIR) 241 R BIIE ZW M 785

PREMO<E 7|2 2 3t 2L AA) e
4 2 ude 29 AA

o o &'

2 e &M

IRETIE AL

2 o

2 EE AE 994384 = PREMO(PResentation Environment for Multimedia Object)9] 91¢] ul¢l g oA
A718 ZAAE AA Agte] dojrlide) EEE AT o7 B4 dojof @A g udld &
49 477} AgFoich. PREMOS wielqg 2dels 292 vy 2§ A A3} 43t PREMO 44
S| AN REE RASEZ, AN-Z 7)1 5AAA A E @4 283 vl 2ol @A E doE AHdE R
2 =RdAde 249 A Aol g §4ER /ML e 2R Y2 uklg 2Y 4AE Adgrt

A Binding Model Design and Graphics Object Types
Analysis Based on the PREMO

Young-Chul Lee' - Min-Hong Kim'' - Ha-Jine Kim'"

ABSTRACT

The ISO/IEC JTC1/SC24/WGS is studying of a binding model because of the problems from language bindings
[1]. That had cancelled the language binding standardization and this model is not depend on any specific language.
To suggest the graphics binding model, we analysis the object functions on the PREMO. We see the data mapping
relate to the binding model and descripted function operation for the object-Z functional specification. In this
paper, We have proposed a graphics binding model design based on the graphics language binding functions of
PREMO.

1. Introduction

In spite of the development of computer graphics
technology, existing standards(GKS, PHIGS), how-
ever, have little chance of providing appropriate ans-
wers to rapidly changing today's computer graphics

8 W:oppuier vt YHE

8 QA% ARANYH 25

8 d:ordetz YL NN AR B 24
F84:19974 104 89, A 1e2:19974d 124 319

technology. Therefore, ISO/IEC JTC1 SC24, responsible
for the development and maintenance of computer
graphics standards recognized the need to develop a
new computer graphics standard radically.

To this end, the new work named PREGO(PResent-
ation Environment for Graphical Objects)was pro-
posed. But it was renamed PREMO during the process
of the Chiemsee meeting to reflect the applicability to
not only graphical objects but also multimedia objects
as well. A new project was launched at an SC24 meet-

786 BRI XCIHD) =X M5 X 3%(98.3)

l Applic ctionT

Construction
Environm ent

v 0

Virtual
Environm ent

Viewing
Environm ent

v 0

Logical
Environm ent

v A

Realization
Environm ent

l Operator T

(Fig. 1) Environments in MRI component

ing in Chiemsee, Germany in October 1992, subsequ-
ent meetings resulted in a draft for a new standard
called PREMO[3].

The major features of the PREMO can be briefly
summarized as follows[4][5]i6).

-PREMO is a Presentation Environment.

- PREMO aims at a Multimedia Presentation.

- PREMO is Object Oriented.

The computer graphics environment means the MRI
(Modelling Rendering Interaction) environment that
the environment model is called CGRM(Computer
Graphics Reference Model)[7](8](9]. The main purpose
of the CGRM is to define concepts that shall be used
to develop computer graphics standards. Additional
purposes are (o explain relations between SC24
standards and to provide a from whereby areas out-

side computer graphics can identify their relationships-

to computer graphics. This model may be applied to:
- verify and refine requirement for computer graphics;
- identify needs for computer graphics standards and
external interfaces;

- develop models based on requirements for com-
puter graphics;

- define the architecture of new computer graphics
standards;

- compare computer graphics standards.

2. Graphics Binding Model Design

The main area of the international standards for
computer graphics contains GKS(Graphical Kernel
System) and PHIGS(Programer’s Hierarchical Inter-
active Graphics System). The main reasons for stand-
ardizing basic computer graphics are:

- to allow application programs involving graphics

to be easily portable between different installations;

-to aid the understanding and use of graphics
methods by application programmers.

- to serve manufacture of graphics equipment as a
guideline in providing useful combinations of
graphics capabilities in a device.

-to reduce program development costs and time;
many of the functions currently performed by the
application program will now be performed by
standards.

2.1 Analysis of the Object types

The PREMO objects consist of the structures which
are callbacks and controller and event handler objects
and event handlers time and synchronization object
and enhanced property services and factories(Fig. 2).

The PREMO uses an object model to support de-
sign portability and reuse of object definitions. The use
of an object-oriented design leads to natural descrip-
tion and provides, in particular, a way for explain-
ing PREMO’s extensibility and configuration aspects
(s119].

For the configuration of this object model follow-
ing definitions and the description of object types are
used.

The objects support only certain operations. The
object type defines these operations, and thus charac-

PREMOE 78102 8l= JeHTA 244l EHY) A R HICIY 2 MAH 787

{ PREMOObject \
Initialize
initializeOnC
destruct id

inquireType
inquireimmediateSupertypes

CallbackByMName

CLOCK

Tick Uni
a

inquireTick

SysClock

Controller EvenfHandier
[careniSRie |

Event SyncElement : i
everiName possbleSiate mvmt
mﬁ sycneverd handieEvent

SynchronizationPoint

Add Syncevent
5 ENHANCED PROPERTY SERVICES
AND FACTORES

STRUCTURE AND CALLBACKS

SynchroaizationPoint inquireAli _

et andes

CONTROLLER AND EVENT HANDLER OBJECTS ~ EVENT HANDLERS, TIME AND SYNC OBJECTS

(Fig. 2) PREMO foundation object types

terizes the behaviour of object. Objects are the PREMO
Object Model, objects shall not change their type.
Types are arranged into a type hierarchy that forms a
directed, acyclic graph. Types can be related to one an-
other through supertype/subtype relationship, and an
abstract type in PREMO can be providing. PREMO
objects inherit from type PREMOObject(Fig. 2).

2.1.1 Fundamental Object Behaviour

The PREMO objects consist of many objects. They
are covered by the specification of a so-called PREMO-
Object object type, which is the common supertype
for all PREMO object types. By virtue of subtyping,
all operations defined on this object type are available
for all other PREMO Objects{3]141(5]19].

- Enhanced Data Objects: The semantics associated
with a data object define the construction and modifi-
cation interface of a particular data object. Examples
are geometric 2D or 3D points, colour matrices, with
related operations and other attributes, video frames,
frequency spectra, etc.

- Bvent Handler Objects: This object type offers the
necessary operations for the implementation of event
management within PREMO. Event management
plays a fundamental role within interactive systems in
general, and the “Event Model” of PREMO aims at pro-
viding this basic mechanism. The essential feature of
the event model is the separation between the source
of the events, and the recipient of these events. Sour-
ces broadcast the events without having any knowl-

788 BRIYBXA2IST] =X H5H H3%5(88.3)

edge of which objects would receive them; this is done
by forwarding the event instance to special PREMO
EventHandler objects. Prospective recipients of events
register with these EventHandler object, placing a re-
quest based on the event type and optionally other
more complex constraint specifications. The recipients
are then notified by the EventHandler on the arrival
of an event, together with information on the source
of the event. This simple mechanism constitutes one
of the main building blocks for the creation of more
complex interaction patterns in the PREMO.

- Controller Objects: The role of a Controller is to
coordinate cooperation among objects. A controller
object is an autonomous and programmable finite
state machine(FSM). correspond to messages sent to
other objects. The actions of a Controller object may
cause messages to be sent to other Controller objects,
thus a hierarchy of Controllers can be defined.

-Clock Objects:These objects provide a unified
interface to the system’s view of real-time clock. The
clock object type assumes the existence of two non-
object types: Time, to measure elapsed ticks(realized,
for example, as a 64 bits integer), and TimeUnit, which

(as an enumerated type) defines the unit represented
by each clock tick, for example an hour or a micro-
second. Specifically, the clock object type supports an
operation, inquireTick, that returms the number of
ticks that have occurred since the start of era defined
for PREMO. However, the accuracy in various units
with which particular PREMO implementation can
describe the elapsed duration since the start of era
will vary, performance of the local object.

- Synchronization Objects: The synchronization fa-
cilities included in PREMO are based on an ecvent-
based synchronization model{10]. In this model, each
synchronizable object is considered to progress auto-
nomously along an internal, one dimensional coordi-
nate space, which may be integer, real, or time-based
(e.g., an integer coordinate may be used to describe
frames in a video sequence) may have a set of refer-
ence points(c.g., video frames). Points on this space
are referred to as reference points; for each reference
point, an object and an operation can be registered,
together with an event instance(the synchronization
event). This operation is invoked by the synchroniz-
able object when a reference point is crossed, using

L J

PREMOObject
Grep WicsObjoct
Graphics Tunctions
r~ I |)
Config Ot \Mul?f EvertHender t] Siresm Object) [OtherOtied
[eqiwrecaa o EveniSouce
- Respurce Lost *
/ Resourts Pol l Evert Glert J
FomatObject v Mediseem Object
| | a:o ..WM Do
S——— | |WeiumConnectionCbject Eveniclert
QosOtject Unicast Muaticont y
Type W, 51%, Dlract Networ 3
| Reliabitity aoponed Flestroam Ooject
Delay [~ AddFesouce |
Jittes J RemoveRasouce
C{Trport and Mecse Streem Protocaionjed |

(Fig. 3) Graphics object mode!

PREMOE 7|12 Sl= JcHEA 24A| EIQ) &4 R dIQlE 29 MH| 789

the event stored at the reference point as an argu-
ment. A reference point may also contain a boolean
flag, which may instruct the synchronizable object to
suspend itself and wait for an external message re-
quest to continue its progress. Typically, a reference
point would refer to an event handler object or a con-
troller object. The event based synchronization model
can be used for synchronization patterns where trad-
itional, purely time-based synchronization is not soph-
isticated enough. A purely time based synchronization
can also be built on top of this model, and this is
done by combining(through multiple inheritance) the
purely event based synchronization objects with the
clock object.

2.1.2 Graphics language bindings

The binding functions for providing graphics bind-
ing model based on standard language binding(GKS,
GKS-3D, PHIGS, PHIGS PLUS), that used follow-
ing standards in (Table 1) [11][12][13](14]:

(Table 1) Graphics binding documents

Language Binding Documents ISO Document No
GKS Fortran language bindings IS 8651-1
GKS Pascal language bindings IS 8651-2
GKS Ada language bindings IS 8651-3
GKS C language bindings IS-8651-4
GKS-3D C language bindings IS-8806-4
GKS-94 Fortran90 language bindings WD 8651-5
PHIGS Fortran language bindings IS 9593-1
PHIGS Ada language bindings IS 9593-2
PHIGS C language bindings IS 9593-3

All list of standard function names depend on the
documents(GKS, PHIGS) that function name for
graphics bindings are:

- Control functions

- Output primitive functions

- Attribute specification functions

- Transformation and clipping functions

- Structure content functions

- Structure manipulation functions
- Structure display functions

- Structure archive functions

- Input functions

- Metafile functions

2.2 Formal specification for bindings

The importance of formalizing the specification of
standards has been recognized for years. In this paper,
we advocate the use of the formal specification langu-
age Object-Z in the definition of standards. Object-Z
[2] is an extension (v the Z language specification to
facilitate in an object oriented style.

The Z specification defines a number of state and
operation schemas. Inferring which operations may
affect a particular state schema requires examining
the signatures of every operation. In contrast, Object-Z
associates individual operations with one state schema.
The collective definition of a state schema with its
associated operations constitutes the definition of a
class. The class is template for objects:each object of
the class has a state which conforms to the class’ state
schema and is subject to state transitions which con-
form to the class’ operations. A class is also used as a
type:instances of that type are identities which refer-
ence objects of that class. This enables objects to refer
to other objects. An Object-Z specification of a system
comprises a number of class definitions possibly re-
lated by inheritance, a mechanism for class adaptation
by modification or extension. For the more detailed
description of the Z semantics can be referred to[2).

2.3 Containment functionality of object-Z

To the specify the binding functions, we should ap-
ply the containment functionality of Object-Z specific-
ation method. Roger Duke et al[2] have given the fol-
lowing example to explain containment.

Considering the situation where a campus contains
a set of buildings, each building contains a set of
rooms and each room contains a set of terminals. A

790 BITHEMIES =2 M5 M 3%(98.3)

specification in Object-Z would be

Terminai

|— GRAPHICS BINDING FUNCTIONS

{Table 2) Graphics binding functions

— BINDING FUNCTIONS

CONTROL FUNCTIONS

Open, Close, Update, Redraw sei display. Message. Activate, Create, Escape eic.

OUTPUT PRIMITIVE FUNCTIONS

Room -

[details omitted) -
ts ¢ P Terminal
[operations_omitted]

™~ Building — — Camp
as : P Room bs : P Building
¥ rir2 : ase Vbl b2 bs
rl #r2 blxb2 »

{

blas nb2 12 =0
¥ rl : blas; r2 : b2as *
rlas n r2as = @

rlasnrlas = &

operations omitted]

Polyline, Polymarker Texi. Anmotation text relotive, Fill area, Cell array, Generalized
drawing primitive eic.

OUTPUT ATTRIBUTE SPECIFICATION FUNCTIONS

Polyline. Polymarker, Linetype. Marker. Texi, Character, Fill area. Pavern Aspeci, Annotation
Imserior. Edge. Mighiighting . Hitor et

TRANSFORMATION AND CLIPPING FUNCTIONS

[operations omitted)

The class invariant of class Bailding specifies that
no terminal can be in two distinct rooms in a bwild-
ing. Similarly, the class invariant of class Campws
specifies that no room can be in two distinct buildings
of the campus. Furthermore, despite the fact that the
predicate of class Building states that no terminal can
be in two distinct rooms in distinct buildings.

3. Functions for the binding model

The PREMO binding model is emerging standard
developing area. Therefore, we do not compare with
other graphics binding model. Existing graphics stand-
ards are descripted according to the specify imlement-
ation languages(Fortran, C etc,.). In this paper, we
are descripted the graphics functions based on the
language binding. For the methodology of the bind-
ing functions not descripted detail. In the binding
model descripted only language mapping functions of
graphics functions, because of independ on the specific
language.

As the explain above, we propose only a graphics
binding model for PREMO, that is not depend on
any specific language. (Table 2)

Window, Viewport, Local, Globai, Modelling Scale, Rotate, Transform. Evaluate eic.

SEGMENT FUNCTIONS

Creote, Close, Delete, Rename, Associate, Copy, Insert, Visibifity, Detectability etc.

STRUCTURE CONTENT FUNCTIONS

Open, Close, Execwis, Label Application, Edv, Elameni, Ewmpiy etc.

INPUT FUNCTIONS

Initialize, Locator, Choice, Locaior, Request, Sample, Get, stc.

STRUCTURE MANIPULATION FUNCTIONS

Delete, Change, etc.

STRUCTURE DISPLAY FUNCTIONS

Posi Siructure, Unpost Structure esc.

STRUCTURE ARCHIVE FUNCTIONS

Open,, Clase. Archive. Retrieve. Delete etc

METAFILE FUNCTIONS

Write item. Get item, Read item, Inierpret iem sic.

INOUIRY FUNCTIONS

Operation siate value, GKS state list, Worksiation sseie list, Worksiation description
table, Segment state lisi, Pixel, Ervor state list

ERROR CONTROL FUNCTIONS

Emergency close, Error handling Error Logging, Error handling Mode wic.

SPECIAL INTERFACE FUNCTIONS

Escape.

APPLICATION FUNCTIONS

Application function in GKS, Specific functions in binding eic.

PREMO®E 718l 2 Sl= JoHEA 24K EI) 24 R HIQIE D A 791

Fuctionsl Mapping HOW_APPLIED :in COMPOSITION _TYPE);
Error Hondling

Data Mapping

; ¢ o procedure WINDOW, VIEWPORT, GLOBAL,
Duse e deiiins MODELLING, SCALE, ROTATE, TRANS-
Ervor Codes FORM, EVALUATE etc,.

5)SEGMENT FUNCTIONS : SET SEGMENT
procedure SET_SEGMENT

L_. GRAPHICS BINDING FUNCTIONS

procedure CREATE, CLOSE, EXECUTE, LABEL,
APPLICATION, EDIT, ELEMENT, EMPTY elc,.

3.1 Function operations in the binding model
1)CONTROL FUNCTIONS :procedure OPEN_
XXX(Graphics system or workstation name)

(ERROR_FILE:in FILE ID:=system name STR- 6)STRUCTURE CONTENT FUNCTIONS:OPEN

ING(DEFAULT ERROR FILE); STRUCTURE
AMOUNT_OF _MEMORY :in system_NATUR- "';’:’5“" O:EE):;'T‘T‘;;;‘_’_RESTRU e
AL:=DEFAULT_MEMORY _UNITS); S))_ CTURE- i STRUCTURE-

procedure CLOSE, REDRAW SET DISPLAY,

EXE , EL, AP-
MESSAGE, ACTIVATE, CREATE, ESCAPE etc,. procedure CLOSE, CUTE, LABEL, AP

PLICATION, EDIT, ELEMENT, EMPTY, etc,.

2)OUTPUT PRIMITIVE FUNCTIONS : POLYLINE

FU :SET PICK IDE ER
procedure (POINTS :in MCPOINT _LIST); DINPUT FUNCTIONS:§ NTIFI

procedure SET _PICK _IDENTIFIER
(pick _identifier :in PICK _ID);

procedure SET_INITIALIZE, CHOICE, LO-
CATOR, REQUEST, SAMPLE, GET, etc,.

procedure INITIALIZE _LOCATOR

procedure POLYLINE, POLYMARKER, TEXT,
ANNOTATION TEXT RELATIVE, FILLA-
REA, CELL ARRAY, GENERALIZED DRAW-
ING PRIMITIVE etc,.

3OUTPUT ATTRIBUTE SPECIFICATION (ws in WS_id;
FUNCTIONS : SET POLYLINE _INDEX DEVICE ‘in LOCATOR - DEVICE.-
NUMBER;

procedure (POLYLINE_IND:in POLYLINE.

INDEX); INITIAL_VIEW_IND :in VIEW INDEX;

INITIAL_POSITION :in WC.POINT_2;

procedure SET_POLYMARKER_INDEX, LI- ECHO_AREA :in DC, RECTANGULAR
NETYPE, MARKER, TEXT, CHARACTER, REGION_2;
FILL AREA, PATTERN, ASPECT, ANNO- DATA_RECORD :in LOCATOR_DATA._
TATION, INTERIOR, EDGE, HIGHLIGHT- RECORD);

ING, HLHSR etc,.
8)STRUCTURE MANIPULATION FUNCTIONS

4)TRANSFORMATION AND CLIPPING FUN- :DELETE STRUCTURE

CTIONS : SET LOCAL TRANSFORMATION
procedure SET_LOCAL _TRANSFORMATION
(MATRIX :in TRANSFORMATION MATRIX _2;

procedure DELETE STRUCTURE
(STRUCTURE_IDENTIFIER :in STRUCTURE_
ID);

792 siRXHKLIES| =X M5 K| 355(98.3)

procedure CHANGE, etc,.

9)STRUCTURE DISPLAY FUNCTIONS:POST
STRUCTURE
procedure POST_STRUCTURE
(WS :in WS_ID;
STRUCTURE_IDENTIFIER:in STRUCTURE_ID;
PRIORITY :in WS_ID)

procedure POST STRUCTURE, UNPOST
STRUCTURE efc,.

10)STRUCTURE ARCHIVE FUNCTIONS :OPEN
ARCHIVE FILE
procedure_OPEN _ARCHIVE_FILE
(ARCHIVE_IDENTIFIER :in ARCHIVE_ID;
ARCHIVE_FILE tin FILE_ID);

procedure CLOSE ARCHIVE, RETRIEVE
DELETE etc,.

11)METAFILE FUNCTIONS : WRITE ITEM TO
METAFILE
procedure GET_CHOICE
(status: out CHOICE_STATUS;
(CHOICE: out Choice_NUMBER);

procedure GET ITEM, READ ITEM, INTER-
PRET ITEM eic,.

12)INQUIRY FUNCTIONS :OPERATION STATE
VALUE
procedure INQ SYSTEM STATE VALUE, &
STATE LIST, WORKSTATION STATE LIST,
WORKSTATION DESCRIPTION TABLE,
SEGMENT STATE LIST, PIXEL, ERROR
STATE LIST etc,.

13)ERROR CONTROL FUNCTIONS:EMERG-
ENCY CLOSE XXX(SYSTEM NAME)
procedure EMERGENCY _CLOSE_XXX(SYS-
TEM NAME)

procedure ERROR_HANDLING
(ERROR _INDICATOR :in ERROR NUMBER:

SUBPROGRAM !in SUBPROGRAM
NAME;

ERROR_FILE !in FILE_ID:=
STRING(DEFAULT_

ERROR_FILE));
procedure ERROR LOGGING, ERROR HAND-
LING MODE etc,.

14) SPECIAL INTERFACE FUNCTIONS : ESCAPE.

15) APPLICATION FUNCTIONS: APPLICATION
FUNCTION IN xxx(system name),
SPECIFIC FUNCTIONS IN BINDING etc,.

3.2 Implications of the binding model

1) The Functions Mapping of graphics systems are
all mapped to implementation language procedures.
The mapping utilizes a one-to-one correspondence be-
tween the graphics system and Ada procedures.

2)ERROR_HANDLING procedure may be repl-
aced by one defined by the user.

3)Data mapping

The general correspondence between the data types
and implementation binding datatype is summarized
below:

- Graphics types are integer, real, string, point, vec-
tor, enumeration types, filter, pick path item, clement
reference types etc,. These types are mapped to im-
plementation language integer, floating-point, string,
record, enumeration types.

4) Abbreviations used in procedure names

ASF : aspect source flag

CHAR : character

ESC ! escape

GDP : generalized drawing primitive
GSE : generalized structure element

HLHSR : hidden line/hidden surface removal
INQ . inquire

PREMOE 71RI2 2 8= JeiTA 24Kl EFY 24 R HiQi 29 M 793

AROP archive open
ASF aspect source flag
ASAP as soon as possible
ASTU at some time
BNIG before next interaction globally
BNIL before next interaction globally
CBS can be simulated
CHAR character
DC divice coordinate
GDP generalized drawing primitive
GSE generalized structure element
HLHSR hidden line/hidden surface removal
ID identifier
IMM immediate
IND index
IRG implicit regeneration
MAX maximum
MC modelling coordinates
MI metafile input
MIN minimum
MISC miscellaneous
MO metafile output
NIVE no immediate visual effect
NPC normalized projection coordinates
PT point
REF reference
SF scale factor
STCL structure closed
STOP sturcture open
UQUM use quick update method
UWOR update without regeneration
vC viewing coordinates
wC workstation closed
WS workstation
WSCL workstation closed
WSHOP workstation open
5)Data type definitions

Generally, graphics data types are summarized be-

low:

ARCL

archive closed

4. Conclusion

In the process of developing PREMO, there still re-
main many open issues. In this paper, focusing on the
graphics object functions and using the “object-Z”
method for the functional specification of graphics
objects. We have addressed two major issues on bind-
ing model. Firstly, we have analysed all object types
for the PREMO which are related the object oriented
concept. Next we have proposed a design of graphics
binding model. The other object bindings will be fol-
lowing future research.

Reference

(1] Recommendations of JTC1/SC24/WG6/(N1580)
PREMO RG Meeting-Kyoto, Japan, June 1996.

{2] Roger Duke, Gordon Rose and Graeme Smith,
Object-Z: a Specification Language Advocated for
the Description of Standards, Software verificat-
ion Research center Department of computer sci-
ence The university of Queensland4072, Techn-
ical Report No. 94-95, Australia, December 1994,

[3] Min Hong, Kim, “An Adaption of CGRM to
PREMO" Ph.D. Thesis, Ajou University, Feb,
1996.

{4] Ivan Herman, Graham J.Reynolds, PREMO: An
Emerging Standard for Multimedia Presentation,
Part I:Overview and Framework, IEEE, pp.
83-89, Fall. 1996.

{5} Ivan Herman, Graham, Reynolds, Reports of the
Center for Mathematics and Computer Sciences,
CS-R9554, “PREMO: An Emerging Standard for
Multimedia Presentation”, (Multimedia : Premo-
IEEE/Report.doc.htm!# REF46720).

(6] Information processing system-Computer graphics
and image processing-Presentation Environment
for Multimedia Objects (PREMO).(ISO/IEC CD
14478-1) Part 1: Fundamentals of PREMO, 1997.

[7] Information processing systems-Computer graph-

794 SRFEANCIEI] =2X HISH H35(98.3)

ics and image processing-Presentation Environ-
ment for Multimedia Objects (PREMO).(ISO/
IEC CD 14478-4) Part 4:Modelling, Rendering,
and Interaction Component, 1997.

[8] ISO/IEC, “Information technology-Computer gr-
aphics-Computer Graphics Reference Model
(CGRMXISO/IEC 11072)", 1992.

[9] Information processing systems-Computer graph-
ics and image processing-Presentation Environ-
ment for Multimedia Objects (PREMO).(ISO/IEC
CD 14478-3) Part 3: Multimedia Systems Services
Component, 1997.

[10] Information processing systems-Computer graph-
ics and image processing-Presentation Environ-
ment for Multimedia Objects (PREMO). 1SO/
IEC CD 14478-2) Part 2: Foundation Component,
1997.

(11] ISO/IEC 9593-2:1990, Information technology-
Computer graphics-Programmer’s Hierarchical
Interactive Graphics System(PHIGS) language
bindings-Part 2: Ada.

[12] ISO/IEC 9593-3:1990, Information technology-
Computer graphics-Programmer’s Hierarchical
Interactive Graphics System(PHIGS) language
bindings-Part 3:C.

(13] ISO/IEC 8651-1:1988, Information technology-
Computer graphics-Graphical Kernel System
(GKS) language bindings-Part 1 : Fortran.

[14) ISO/IEC 8651-2:1988, Information technology-
Computer graphics-Graphical Kernel System
(GKS) language bindings-Part 2: Pascal.

o g9 %

g adcte A
A3 §A(EHAD
QM %2 il o4l
ARA A GIHF o4
Ah

otz gty AF
HE &3 ARy 8
19759~34 VI FFFABAS AYF
BAEL: A FE 2R YL, o] FEFA, YEIvT

4 82 =
1963 WUt FHR Y
LAY FGAYAD
19774 ABANT Jl¢A
1978 Sz AFd Yy
ARA BFAHAD
19939 ©u|= Colorado th & 4t
R A
19963 o}Fditt 49 HFe FEIHAD
19813~ A7t olskf et AxA N} 24
FPRE:EINA, PR7e BER F

& &

19628 A g&distw FelAutt
583K o] gD

1978 Grenoble 1 tj 2t o o}
948474 D.EA
(el g4 A1)

1980 Saint-Etienne ¢} &2 o
g9 85Ny
Li2))

1984d~1985d =2 INRIA 2424

1989 ~1992d ¥ F B8 NY

1993 d~19959 ojF i &2 F3di et o3

19743~84 olrditte Foh g AFeF U 25

FPR:PFHaRY 2, £AHY §

