2T CIHZ BFHoIMQ MBS B8 2ZEQ0 BT IM 1225

44 w7 BAANL Ay 1F 2ZENC]
TE A

- AR TR

-] o}

AXEo] 29§ AAAA g2gi4 ASAAA F=E AWM e 2Zefd] ¢= AL ALD} 4
ol B F2% A9 shiolth o FE PN FAd d¢ JBAA YIWE T AU TN BE]
i8] 94% 2% AP B2 A AP Ao AZEAY UL FE IAF & £AE AP35 9
&9, §43 d¥7 @44 48 2] BF FRHE Ro| ohnz #4A o) B34 IE A&
T3 ARE P YAt £ =Edde #94 Ui 8394 A58 7N PEsed 43 AsS
L2 B 95 A& Agdn, ol YU

VA Software Release Policy Assuring Reliability for Imperfect
Debugging

Joong-Yang Park' - Young-Soon Kim?'!

ABSTRACT

BB B el s

Annmumﬁrmuedev&wshpdumwhm]mmmﬂwmmwtehxu
mumwymmmnsw&by&mdamaedfmnmamﬂmd’ neéded to meet
memmmwmmmmmmmmmwymmmmdmmmqmm.uu
detected fatlts are not always corrected under imperfect debugging eaviroresitWerAtrefist N & new: Joprbech %
software release policy for imperfect debugging. This paper suggests a software relase polity, which guarantees that
wmmmmmmmwmumwﬂmmhmﬁc
SRGMs.

i RN . fratr

J‘v)n‘ H-

1. Introduction Y S ol attributes -of smm quality. Software r

_ olighitity, however, is’ ﬂnémly 'accepted as th

An important issue in developing a software e w flctor in woftwhy fuality since it quanti
system is to produce a high quality software s o bttivale faflures! "Whdi sokiware reliability
ystem satisfying user requirements. There are has'been a primary déoncern for both users and
software development organizations. Most soft

13 o 4:330%a AdAqe} A%GY 34, ware development organizations are adopting s
Haaa: :g::: ::ﬁ%zg}ﬁqﬂ;;% oftware reliability as 4 criterion for product re

EEA4 21997 129 229, JA1¢ha : 1998\ 34 234 lease. A mathematical model called a software

1226 S2ATEM2(=T =BX WA H52(985)

relmblllty growth medel (SRGM) ig a n@ef.ul
tool: for grasping and assessing the’ ‘de&ée of

software reliability. A SRGM describes seftw
are fault-detection or software failure oceurr -

ence phenomena during the testing phase of
software development and during the operat-
ion phase.

Another important issue for software

developers is to determine when to stop
testing the seftware system and release it to
users. This problem is called an optimal
software release problem. In this paper, we
consider the optimal software release
problem especially for imperfect debugging
environment. The optimal software release
policies are generally dependent on the
employed SRGM and optimality criteria.

Thus SRGMs -for imperfect debugging and .
optimality criteria are briefly reviewed inE:

Sections 2 and 3. A new approach to the
optimal software release problem s
suggested for the imperfect debugging
environment in Section 4. The new approach
.allows us to declare that a software system
has achieved its reliability requirement. The
suggested approach is then implemented for
two specific SRGMs in Sections 5.

2. SRGMs for imperfect Dubugging

Software reliability is defined as the
probability of failure-free software operation
for a specified period of time in a specified
environment. Due to design and other human
errors, few software systems are completely
free of faults. One way of reducing the number
of faults in a software system is to perform an
extensive test with the aim of detecting and
removing as many faults as possible prior to
its release. Such software testing alao enables
us to assess and improve software reliability.
SRGMs are used to estimate quantitative

measures quch as t.he nptla} fault con;gnt the
mean’ time between sofiware fallures and‘the
software reliability and to monitor the

“rehablllt.y growth behavior of a software under

testing or operation based on its failure
history.

Most of earlier SRGMs assume that
detected faults are corrected perfectly
without introduction of any new faults. To
make existing SRGMs more realistic, this
assumption should be relaxed. It is therefore
necessary to develop SRGMs which assume
imperfect debugging in which the faults
detected by testing are not always
corrected/removed. Such imperfect debugging
SRGMs are expected to estimate reliability
assessment measures more accurately. SRGMs
taking account of imperfect debugging 'were

_considered by Dalal and McIntosh [3]. Goel and

Okumoto (78], Kapur and Garg (111, Kapur and
Younes [12), Xia, Zeephongsekul and Kumar [20],
Yamada, Tokune and Osaki [2] and
Zeephongsekul, Xia and Kumar [26]. Goel and
Okumoto (78] proposed an imperfect debugging
model which is basically an extension of
De-Eutrophication model advocated by Jelinski
and Moranda [10]. Kapur and Garg [11] developed

an_ imperfect debuygging model based on the

nonhomogeneous Poisson Process (NHPP) SRGM
introduced earlier by Goel and Okumoto [9]. Dalal
and McIntosh [3] considered a SRGM taking
account of code changes, which implicitely
include the concept of imperfect debugging.
Xia, et al. [20] and Kapur and Younes [12] have
further extended to the situation where there
is learning in the debugging process.
Zeephongsekul, et al. [%] proposed an NHPP
SRGM in which primary-failures generate

" secondary-faults under imperfect debugging.

Kapur and Younes [12] developed NHPP SRGM
that describes the error removal phenomenon

under imperfect debugging environment.

Yamada, Tokuno and Osaki [23] considered an
imperfect debugging model based on Geometric
De-Eutrophication model.

3. Optimality Criteria for Software Release
Polioies

Sinece Forman and Singpurwalla [4] addressed
themselves to the optimal software release pro
-blem, there have been a number of researches.
The optimal software release policy is usually
determined on the basis of two criteria described
by Okumoto and Goel [17]. The two criteria are
respectively :

1. When a measure for the quality of a
software system (e.g. reliability, number
of remaining faults and mean time to
failure) reaches a given threshold,

2. When the cost (profit)
(maximized).

is minimized

[

Sometimes a mixture of the two criteria are
employed. Specifically

3. When the cost (profit) is .minjmited
(maximized) subject to a restriction that
a measure for the quality of a software
system reaches a given threshold.

Optimal software release policies. fopaach of
the three criteria are regpedtively referre fn
as reliability-optimal, cost-optimal and mest-¥el
iability-optimal software release: pohqio,ﬁ;,.l’rivi
-ous studies on software release policy ; were

classified in Table 1 with respect to types of

w2H

criterion and debugging. Literatures for imnfér--

fact debugging are not many. This is because
the concept of imperfect debugging was. introdu
-ced recently by Goel [6).

CIHZ SHoMa MR1Y RS ATEJN ST T 1227

(Table 1) Claseification of optimal somﬁre reease

policies.
Type of debigghg -
Perfect Tehpinefect -
Retisbiliy | [4], [5), [15], oay
-optimal (16, [18] e
Coo | 00,0203 14| i e
opimal |09], 1), 24, 5] L.'@L 28],
-reliability [19), (22) {29}, 13); [261

-~

Amummmmwmmm
Soﬂmmm

Suppose that R, is the seftware ‘reliability
objective for the operation time %,. That is,
the probability that the releas:e‘&" s’bféwai‘e
system operates without a failure for more
than x, time should be greater than or equal
to R,. Let R(#T) and R(t;md) resﬁei:;ﬁi’vely
denote the reliapility functions aﬂ;er, 7 testing
f.i;ng and after detection of my. faults.
Prgvious studies on the reliability-optimal
softyare rel,gasev policy for imperfect debugging
usuglly determine the optimal values of T
‘P,Q my subject to the _ given reliability
mYe. Fpr example, Yamada, Tokuno and
Onski [23] obtained the minimum my. g,
satfafying R(xo; mo)2R). whereas Xia, ot al.
£X) obtained the minimum T, 7", such that
R@Wo T')zRo thouzh a

soﬁware system is tested until m,, faults are

However, even

detected or 7" testing time elapses. it is not
assured that the software system achieves the
reliability objective. Software - reliability

directly depends on the number of corrected

1228 BIFSH20D =X MEH H52(985)

faults or the number of remaining faults and
we do not know how many faults are corrected
until m;* fault detection or 7° testing time.
Consequently we can not be sure that the
reliability objective is accomplished. In the
circumstances it is desirable to specify how
confident we are that the sofitware system
attains the reliability objective. We now
suggest an approach which explicitely employes
the confidence level.

Consider a software release policy under which
a software system is released when ms, faults
are corrected. Let R(x;m.) be the reliability
function when m. faults Are corrected. The
minimum value of m, satisfying R(zgm.)>R,
is the optimal value of m,.. In the imperfect
debugging environment we can only recognize the
detected faults and do not know whether each
detected fault is corrected or not. Therefore
determination of the value of m, does not
completely specify a software release policy.
Thus we suggest that the software system be
tested until the probability that m. faults are
corrected is greater than or equal to some
acceptable value @. Then we can say 100a%
confidently that reliability of the software
system is at least R,. The probability a is
thus referred to as the confidence level.
Denote by N.(#) the number of corrected
faults up to ¢ testing time. The procedure for
obtaining an optimal policy is then described
as:

(1) Determine the minimum integer .,
m.*. satisfying the given reliability
objective, i.e., R(xp; m)2R,.

(2) Dstermine the minimum 7T such that
the probability that N.(T)=m.* is

greater than or equal to the given
confidence level a.

Section 5 applies the suggested approach to
two apetific imperfect debugging SRGMs
recently advocated by Yamada, Tekuno . and
Osaki [23] and Xia, Zeephongsekul and Kumar
(20). The former belongs to the class of SRGMs
describing times between failures. the latter
belongs to the class of NHPP SRGMs.

5. Impiementation for Two Imperfect Debu
-gging SRGMs

5.1 A Reliability-Optimal Release Policy for Yamada,
Tolkuno and Osaki Model

Yamada, Tokuno and Osaki {23] developed a
SRGM under the following assumptions.

(1) Each fault which causes a software
failure is corrected perfectly with
probability ».

(2) The hazard rate is constant between
software failures caused by a fault in
the software system and geometrically
decreases whenever each detected fault
is corrected.

(3) The probability that two or more
software failures occur simultaneously is
negligible.

(4) No new faults are introduced during the
debugging. At most one fault is removed
when it is corrected and the correction
time is not considered.

Assumption (2) implies that when i faults
have been corrected, the hazard rate for the
next software failure occurrence is given by

z;(t)=D¥F, i=0,1,2,, D>0, 0<4<1,

where D and k are the initial hazard rate
and decreasing ratio, respectively. Distrib-
ution function for the next software failure
occurrence time is . then given by

Fi(t)=1—exp(—Dk't). Several reliability
measures were derived under these assum

-ptions. Define the following random vari-
ables.

Sy : nth successful correction time of
detected faults.
X, : time interval between ({—1)st and !

th software failures.

Let Gu.(#) and @,(t) denote the
distribution functions of S, and X,
respectively. It was shown that

Ga(£)= 53 Auir{1 — exp(— pD),

and

o,<t)=‘;",’)t~ ;)"H{t*—am(uw
- T Y -

where Au;—l and Ahi.m t:;:w‘

/ (¥ —¥). Denoting by P.(f'j the

J=Upki
probability that N.(¢)=1, it is easlly
verified that P,(t) = G.(t)— G, (2)." 3

Yamada, Tokuné®’ and” Ofkki’ ‘m‘“ o
suggested & doMWAth reldiss’” poll%?b
releases a software uy;tom ﬁﬂfﬂmr
have been detected. Thé ‘splium’W

L
my, my

is the minimum integer s,
satisfying R(xpmg)=R,. Here R(xp '_1?!4) =
1-0 g+l (xo) .

produces a random, not deterministic, .release

Since this release policy

W2E [HZ BH0IMY LRI B8 2LER0 BT BN 1229

time, it was suggested that a software system
be released at TH= gE(X 1) where

EX)= (plk+(1—p)"/D. Table 2 of
Yamada, Tokuno and Osaki [23] shows the
optimal values of M, and corresponding Td.
for D=0.2, #=0.9, x,=2.5 and R;=0.95.
For the sake of comparison the optimal values
are reproduced in Table 2. Note that
m; =22 for p=1.0 and m.*=m,;" when
»=1.0. This implies that at least 22 faults

should be corrected in order to -attain the
given reliability objective. We computed

Pr(N(T;"Y=m_."), the probability that at
least m.'=22 faults are corrected during

T,* testing time. The probabilities does not

seem to be large snough, so the release policy
of Yamada, Tokuno and Osgki does not assure
the software reliability sufficiently.

(Table 2) Values of m;* and T, for D=0.2,

£=0.9, 2=2.5 and, Be=0af. . - . .

Fp M TS hmw)xﬁm
21,0 22 . .411.96 0,54

09 25 491.74 . 0.65

08 . 554.22 0:65

o§ oL

6 41.82

0.5 93540 6‘73

0.4 1171.99 0.7

03 _ u;ua 0.77 -

02 : N3, 24718 .. 080 .
0.1 801714, » R = -

Let ug fiow derive the o;itimll goftdire rele
ase policy sugsested iri Sbetion 4. Pirst we obt
ain the minimum value of m,. satisfying given
reliability objective. If m,. faults are correcte
d, the hazard rate for the next software failur

e is given by 2..(f). Thus the corresponding

1200 SRFRX2IWMY =FX| H5A H5Z(985)

reliability function is
R(t;m.) = exp(—Dk™¢). The minimum inte
-ger satisfying R(xp;m.)=Ry is then the opti
corrected faults. If

R(x4;0)< Ry. monotonicity of R(xp;m.) ensure

mum number of

s that there exists a unique m.® such that
R(x;m.*)2Ry and R(xp;m. " —1) (R,. Othe

rwise, m.*=0. That is,

0, if R(xg0)=R,

[ln(—lnRQ_)h—th—lnxg]_’_l' herwi

mcg

where [x] denote the largest integer less (fhdh
or equal to x. The optimum software release
time 7.° is then the minimum value of T
satisfying Pr(N.(D=2m.)=a. Since
Pr(NA(T)2m;) =G, -(T) is a monotone

increasing function of T, T.° is the root of
Gu(T)=a. For example, assume that
%=2.5. R=0.95, D=0.2 and A=0.9 as
in Table 2. The optimal value of m. is
obtained as 22 from equation (5.1). The

(Table 3) Values of T.° for D=0.2, 4=0.9,
xo=2.5 and Rp=0.95.

. T.*

) a=0.90 a=0.95
1.0 ' 550.05 599.41
0.9 611.17 666.01
08 687.57 749.26
0.7 785.79 856.30
0.6 916.76 999.02
0.5 1100.11 1198.82
04 1375.14 1498.82
0.3 1833.51 1998.04
0.2 2750.27 2097.06
0.1 5500.54 5994.12

correspording values of 7T,.° are numerically
computed and presented in Table 3 for
2=0.90 and 0.95. As expected, more testing
time is required to assure the software
reliability.

52 A Reliabifity-Optimal Policy for Xia, Zeephongsekul
and Kumar Model

Xia, Zeephongsekul and Kujar [20]
developed an NHPP SRGM for imperfect
debugging. in which the debugging process
improves with experiences, that is, there is a
learning factor involved. A cost-reliability-
optimal release policy was then obtained. The
model is based on the following assumptions.

(1) Software system is subjected to failures
caused by faults remaining in the
software system.

(2) Software failure rate is equally affected
by faults remaining in the software
system.

(3) The occurrences of software failure
follow an NHPP.

(4) The software failure rate at any time is
proportional to the number of faults
remaining in the software system at that
time,

(5) Failures are independent and each
failure is caused by one fault.

(6) On the occurrence of (i+1)st failure,
the following may occur :

- fault content is reduced by one with
probability »; ;

-fault content is unchanged with
probability (1—2;).

(7) The pfobabi]ity of fixing a failure is a
1:inear1y increasing function of the
number of repaires carried out in the

past, that is, ;= pll+(i—1)1],

TRILET

where py is the probability of correcting

the 1st fault and / is the learning
factor.

Let m.(¢) and my(¢) denote the expected
values of N.(¢) and Ny(¢). where N.(¢)
and N,(#) are the numbers of corrected faults

and detected faults up to time £. It was also
shown that

m() = L ma (Dpi+ pyma(t)

and

2a[1 — exp(— bpyrD)]
2l (1+ P —(1— D exp(— bpyrd]

mqy()=

where a is the total number of faults in the

software system, & is the proportionality

constant (failure rate per fault) and
r= v 1+2al/p,.

We now obtain the optimal release time for
this SRGM. . Assumptions_ (2) and (4), jmplies
that the reliability. function - R(tm), isgiven
by expl[— da—m)t]. I R($50)YERy:ithen
m,*=0. Otherwise, m.* is the mm'iimiug
integer such that R(xpm.)2R,. Therefore the
optimal value of m,. is obtained as
0, if RisgOy2Ry~ ~ ~7F

.=
m,

[o+ e 41, aterwiee.

The corresponding optimal release time 7°
is thus the satisfying
Pr(N.(T)=m_")=a for some acceptable a.

minimum T

Since N.(T) is a Poisson distributed random

o)

AN ClHZ SH0IM A2 B8 2ZEMH Y I 1231

variable with mean m.(7T'). we can obtain 7T°

numerically. We illustrate l_:y an example,
which was conslidered in Example 1 of Xia, et
al. [20].

Example Supposes that @=26.63.
5=0.0072, $,=0.6. /=0.026, x; =2.0 and
Ry=0.8. Suppose further that e=0.9.

Using these parameters, we ubtain m." =12

from equation (6.1) and T =170.498 by a
numerical method. The minimum value”of T
such that R{xg T)=R, was however obtained
as 101.83 in Xia, et al. [0].

6. Discuseion

It is important to determine an appropriate
release time for a software system under
development. In this paper we suggested a
new approach to reliability-optimal software
release policies for the imperfect debugging
environment. The approach first determines
the number &f faults to be corrected and then
the temifg itime . required : to -correct the
détermined: umiber *4f: faults With' some: desirable
probability. So we are provided witly software
release .. policies rasstiring that a software °
system attaing the wiveniizeliability objective.
The suggested-approach is 5o general that it can
be alsd- hpplied to ‘the - cost-reliability-optimal
software release policies.

i o
N i

[1] D. S. Bai and W. Y. Yun, Optimum
Number of Errors Corrected before
Releasing A Software System,” IEEE
Trans. Rel., Vol. 1, pp. 41-44, 1988.

21 S. R. Dalal and C. L. Mallows, “When

1232 TRZEA2IWD| =BX HEH ME2(985)

Should One Stop Testing Software,”
Journal of the American Statigtical
Association, Vol. 83, No. 403, pp. 872-879,
1988.

(3] S: R. Dalal and A. A. McIntosh, “When to
Stop Testing for Large Software Systems
with Changing Code.” IEEE Trans.
Software Eng., Vol. 20, No. 4, pp. 318-323,
1994,

(4] E. H. Forman and N. D. Singpurwalla, “An
Empirical Stopping Rule for Debugging and
Testing Computer Software,” Journal of the
American Statistical Association, Vol. 72,
pp. 750-757, 1971.

[5] E. H. Forman and N. D. Singpurwalla,
‘Optimal Time Intervals for Testing
Hypothesis on Computer Software Errors,’
IEEE Trans. Rel., Vol. R-28, pp. 250-253,
1979.

{61 A. L. Goel, “Software Reliability Models :

Assumptions, Limitations and Applicability,”

IEEE Trans. Software Eng.. Vol.Se-11, No.
12, pp. 1411-1423, 1985.

[71 A. L. Goel and K. Okumoto. "An Analysis
of Recurrent Software Failures in A
Real-time Control System,” in Proc. ACM
Annu. Tech. Conf., ACM. Washington. DC.
pp.496-500, 1978.

8] A. L. Goel and K. Okumoto, “A Markovian
Model for Reliability and Other Performance
Measures of Software Systems,” in Proc.
Nat. Comput. Conf., New York, Vol. 48, p
p. 769-774, 1979.

[9] A. L. Goel and K. Okumoto, “Time-Dependent
Error-Detection Rate Model for Software
Reliability and Other Performance Measures,”
IEEE Trans. Rel., Vol.R-28, pp.206-211,
1979.

{10} Z. Jelinski and P. Moranda, “Software
Reliability = Research,” in Statiatical
Computer Performance Evaluation. W.
Freiberger, Ed. New York: Academic, pp.

465-484, 1972.

(111 P. K. Kapur and R. B. Garg, “Optimal
Software Release Policies for Software
Reliability Growth Models under Imperfect
Debugging,” Operations Research, Vol.24,
pp.295-305, 1990.

(12) P. K. Kapur and S. Younes, "Modelling An
Imperfect Debugging Phenomenon in Software
Reliability.” Microelectron. Reliab., Vol. 36,
No. 5, pp. 645-650, 1996.

[13] H. 8. Koch and P. Kubat, “Optimal Release
Time of Computer Software,” IEEE Trans.
Software Eng., Vol. SE-9, No. 3, pp.
323-327, 1983.

141 Y. Masuda, N. Miyawaki, U. Sumita and
S. Yokoyama, A Statistical Approcah for
Determining Release Time of Software
System with Modular Structure,” IEEE
Trans. Rel., Vol. 38, pp. 365-372, 1989.

[151J. D. Musa and A. F. Ackerman,
"Quantifying Software Validation : When to
Stop Testing?,” IEEE Software, May, pp.
19-27, 1989.

(16] H. Ohtera and S. Yamada, “Optimum
Software-Release Time Considering an
Error Detection Phenomenon During
Operation,” IEEE Trans. Rel., Vol. R-39,
pp. 596-599, 1990. .

(171 K. Okumoto and A. Goel, “Optimum
Release Time for Software Systems Based
on Reliability and Cost Criteria,” The
Journal of Systems and Software, Vol. 1,
No. 4, pp. 315-318, 1980.

[18] S. M. Ross, “Software Reliability : The
Stopping Rule Problem,” IEEE Trans.
Software Eng., Vol. SE-11, pp. 1472-1476,
1985.

[199N. D. Singpurwalla, “Determining An
Optimal Time Interval for Testing and
Debugging Software.” IEEE Trans.

Software Eng.. Vol. 17. No. 4, pp.
313-319, 1991.

RN ClHZ SH0MO MBI HE ATEQ0 AT HM 1233

(0] G. Xia, P. Zeephongsekul and S. Kumar,
Optimal Software Release -Policies with
Learning Factor for lepgrfect Debugging.”
Microelectronics & Reliability, Vol. 33,

. pp.81-86, 1993.

{211 S. Yamada, J. Hishitani and 8. Osaki,
“Software Reliability Growth with A Weibull
Test-effort : A Model & Application,” IEEE
Trans. Rel.. Vol. 42, pp. 100-105, 1993.

[2]S. Yamada and S. Osaki, "Software
Reliability Growth Modeling : Models and
Assumptions,” IEEE Trans. Software Eng.,
Vol. S8E-11, No. 12, pp. 1431-1437, 1985.

(23] S. Yamada, K. Tokuno and S. Osaki,
“Software Reliability Measurement in
Imperfect Debugging Environment and Its
Application,” Religbility Eng. and System
Safety, Vol.40, pp.139-147, 1993.

24 M. C. K. Yang and A. Chao,
“Reliability-Estimation & Stopping-Rules
for Software Testing, Based on Repeated
Appearances of Bugs,” IEEE Trans. Rel.,
Vol. 44, No. 2, pp. 315-321, 1995.

[B5]W. Y. Yun and D. S. Bai., "Optimum
Software Release Policy with Random Life
Cycle,” IEEE Trans. Rel., Vol. 39,
pp.167-170, 1990,

[26] P. Zeephogsekul, G. Xia and S, KnMu Lo
“‘Software-Reliability Growth Model - Priimaéy == -
-Failures Generate Secon@aty-Faults aiilés® i -

Imperfect Debugging.” IEEE Trans. Rel.,
Vol.43, No. 3. pp.408-413, 1994.

1t

L, 48

Tlg82d Atz 48 EAG

EEREE X 2020

19844 ¥IFWled A3
3 SREARTHA

1994d V2Aerled AT

3 $EARE(HAD

1984 ~1989d A4t ANEALLSY 245

1989~ WA AN FA%S 25

BYEL: AN AHY, NAT, HY BA 29,

AYANY

49
1994 BydistE FA%H &
A (el &b
. 19964~ A Bydsta $A%
A1)
RAgor: 2xugo] NgA, A
Y, Y 34 =y,
A9ANY

