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C(m)=A(m-1)+C(m-1) 282 D(m)=B(m-1)+D(m-1)

A Study On The Dynamic Behavior Of Cellular Automata CA-6

Jung-Hee Park' - Hyen-Yeal Lee''

ABSTRACT

The dynamic behavior of nonlinear cellular automata CA-6 ~ with two states (0 and 1) and four different boundary
conditions is identified in terms of the fixed point and the recursive formulae generating the state transition graph. The

recursive formulae explored are, in particular, as following:

C(m)=A(m-1)+C(m-1) and D(m)=B(m-1)+D(m-1).

1. Introduction

Cellular automata are discrete dynamical
systems that generate diverse, complicated
behavior(3.8.10.11,13}. First introduced in
1948 by Von Neumann and Ulman(1]) as
potential models for biological self-reproduction,
cellular automata have since been used as
mathematical models for many investigatidns
in natural science, combinatorial mathematics
and computer science; in particular they
represent a natural way of studying the
evolution of large physical systems. They also
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constitute a general paradigm for parallel
computation, such as Turing machines do for
serial computation(15]. Many scientists, in
particular, have been trying to investigate the
dynamic behavior of infinite or finite cellular
automata with various methods. Aloke tried to
characterize cellular automata with matrix
algebra and also studied to characterize
additive cellular automata based on the depth
of state transition graph. Moreover. Voorhees
presented an analysis of nearest-neighbor
cellular automata based on the seperation, for
each automaton rule, of additive and non
additive parts. Furthermore, attempt to
analyze the dynamic behavior of finite cellular
automata by recursive formulae for state

transition diagram has been made by Lee.
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However since it is highly difficult to find the
recursive formulae for the state transition
diagram of even elementary cellular automata
clearly, many rules have been still remained
unexplored except rules 1.4,5,8,12,19.29,36,72,
76.108,140 and 200. In this paper. it is aimed
to identify the dynamic behavior of rule 6
(CA-6) in terms of the general formulae for
numbers of fixed points and their patterns, the
general formulae for numbers of adjacent
nodes which are attracted to nonzero fixed
points, maximal cycle length and the recursive
formulae for state transition diagram.

In general, cellular automata can be defined
as a spatial lattice of sites whose values at
each time step t are determined as a tran-
sition function of the values of neighboring
sites at the previous time step t-1 (2). This
function provides the rule governing the
automata’s behavior. Specially, consider the
class of automata defined on a one dimensional
set of sites x; ., each of which assumes any of

the values {0,1}. The general form of a rule
for such an automaton is then given by

PR € NP AP B (1.1)

£{0, 1} 71{0,1}

where 7=0

neighborhood considered by the rule and each

site x; is assigned an initial value x?.

represents the size of the

Elemetary cellular automata of r=1 are
defined by rules of the form:

t+1

X; =ﬂx$—11x:)x5+l)r (1-2)

£{0,1*~{0,1}

A rule is therefore equivalently defined by

specifying the value assigned to each of the 2°
possible 3-tuple configurations of site values:

i.e. by specifying the a;, i=0,....7 such that

111 110 101 100 011 010 001 000
A A (1.3)

ar &g A a4 Az a; a Q

Since each a;={0,1}, there is a total of

22 =956 possible rules(2].
Wofram has defined a labeling scheme
according to which a rule is assigned a value

rule number =R= i:loa,--zf

where a; is the value assigned to the 3-tuple

corresponding to the number i in binary
representation(3).

CA-6 defined by
n ¢ Lt — Lit]
j(xi_tl,x;.x;+1)‘—xi . (14)
xi when x;_1=x;41=0
={ xt when xi_1=0,x,,=1
0 ebke

can be rewritten in the form of (1.3) as

111 110 101 100 011 010 001 000
Lol bbbl (1.5)
¢ 0 0 0 0 1 1 0

A cellular automaton CA— R, ,(m) with

boundary condition a-b (a. b = 0 or 1), cell-
size m and rule number R is a dynamical

system (X, 00 5).
Here X, is the set of states and a state

transition function &7-, is defined by

3:‘—b(xlx2"'xm—1xm)= (1.6)
Rax\ ) Ax1xox3) KX m—1Xmb)’ '

8 _(e)=¢€ (empty string)



where f is a triplet local transition function
with rule number R. Its configuration is shown
in Fig.1.1.

Now, let us define cellular automata A(m),
B{m), C(m) and D(m) for four different
boundary conditions as following:

A(m)= CA— Ry_o(m) = (X,,, 80-0),
B(m)=CA—Ry_(m)=(X,, 8-,
C(m)= CA— R, _o(m) =(X,,, 61~0),
D(m)=CA—R,_(m)=(X,,, o))

@—

—®

X1|—]x2|—| x3a |——{ Xm

(Fig. 1.1) A configuration of CA— R, ,(m)
Section 2 will analyse fixed points of
transition function of CA-6. In section 3, the
simple recursive formulae for the transition
diagram will be explored. Finally section 4 will
make conclusions on the characteristics of
CA-6.
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2. An analysis of fixed points of CA-6 with
boundary conditions

2.1 The characteristics of fixed points in Alm)

A(m) has more than two fixed points but
cycles do not exist. Fixed points and number
of nodes in the transition graph that are
adjacent to the corresponding fixed point is
summarized in Table 2.1. The values in each
cell indicate fixed points and the values under
slash are numbers of adjacent nodes which

converge to those fixed points. Table 2.1 tells
(&tl

us that 0™ and 2~ @V are fixed points

and the general formular of numbers of fixed
points is n+1 whenever cellsize m is both even
(2n) and odd (2n-1) as shown in Table 2.2.
Moreover, it can be seen from the table that
the sequences (1, 1, 2, 4, 6, 9, 14, 21, ) of
numbers of adjacent nodes which converge to
nonzero fixed points are all the same (see
column 3 to 6). The general formular of this
sequence is

3 __
Sn= L kz'g dk+ Je=n—3,n=4.

{Table 2.1 Fixed points and Numbers of adjacent nodes which converge to nonzero fixed -points in A(m)

ixed points
g Om 2-—1 Zm—l+2n—3 Zm—l+21u—3+2m-5 Zm-l+2u—3+2n—5+2m—
1 0 2
1 1
2 W B
3 2 2 0
3 0 3 2 9| 2°+2 1
4 3 3 1
4 0 4 2 4l 2°+2 1
5 05 6 24 6 24+22 2 24+22+20 1
6 06 9 25 9 25+ 23 4 25+ 23+ 2] 1
7 0" A3l 2° A4 2°+2 6l 2+2t+2 2%+ 20+ 27+ 2 1
8 0° Agl 20 Ayl 2+ 2 gl 27+ 28428 Syl 2"+ 2%+ 2%+ 2 1
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Table 2.2> The number of fixed points in A(m)

m 1234567178
numbers of fixed points| 2 2 3 3 4 4 5 5

2.2 The characteristics of fixed points in B(m)

. §
B(m) has a single fixed point 2‘122:’—1 when

cellsize m is even. When cellsize m is odd,
B{(m) has no fixed points but cycles do exist.

The maximal cycle length is 4 for m=3.

2.3 The characteristics of fixed points in C(m)
The behavior of C(m) is quite similar to
that of A(m). C(m) has no cycle but fixed

points exist. By Table 2.3, fixed points are 0™
12

and g 2™ % The number of fixed points is

shown in Table 2.4. Furthermore, the sequence
of numbers of adjacent nodes which converge
to each of nonzero fixed points is the same as
that in A(m) given in Table 2.1.

24 The characteristics of fixed points in D(m)
Like B(m), D(m) has a single fixed point

m
2122"1 (m)1) when cellsize m is odd. When

cellsize m is even, D{m) has no fixed points
but cycles exist. The maximal cycle length is
also 4 for m=4.

{Table 2.4> numbers of fixed points in C(m}

m

1234567178
numbers of fixed points [ 1 2 2 3 3 4 4 5

3. The formalism of transition diagrams

The formalization for the transition diagram
of cellular automata in an algebraic method is
highly difficult because the evolution of cellular
automata is unpredictable. In this section,
however, one will try to represent the state
transition diagrams of CA-6 by simple recursive
formulae. To do this, let us introduce two
¢ and ¢
definition 2 respectively.

operators in definition 1 and

Consider X,,-;as the set of states of
cellular automata with cellsize m-1, i.e.

X1 = {2120 xm-1lx,(0,1}} and X, X%, XL

(Table 2.3 fixed points and numbers of adjacnet nodes which converge to each of nonzero fixed points

o fed points 0" 2~? 2n 2yt LS A P A A
—n
: ° e e
2 0? gl 2 1
3 0* 5 2 1
4 0! gl 2 o| 22+2° 1
5 ¢ g % g T2 1
6 08 18l 2 ol 2'+2° o 2+2°+2° A4
7 0’ 2° g| 2°+2° P+20+20 A
8 0* 2 laf 2°+2 42042 g | 2P+t 1




as those with cellsize m, satisfied with
X=X, Ux, and X%NXxL=0 (3.1
where

X = {0x 05 X 12120 X 1 E X 1)
anld
Xn={lxxy 2 |% 1% X1 EX 1}

Definition 1

A transition function @,, is defined as

P XX . @m( X)) C 87 (X,
such that @m(0%) %y X)) =80 (%1 Xy Xm—1)
for all 0x %y Xm— 1 €X' a0d XXy L 1 E X o1

where the transition function &7-; is that
defined in (1.6).

Definition 2

A transition function ¢, is defined as
P Xo> X, Im( XH)TEM (X,) such that
D112 Xy 1) = 0054 (21 252 p—y) for all

lxlxz---x,._IEX},. and x1X3 X 1EX m—1.

In the following theorem, we want to show
that C{(m) in the rule number 6 is partitioned
by the diagraphs derived by A(m-1) and

C{(m-1). Thus for convience., we consider @,

and ¢, as
Pm(021 g+ X 1) = 0850 (%1 %" X m—1)

and @om(121 %5 X 1) = 087 ¢ (X1 Xar X py— 1)
Theorem 1

In the rule number 6, dynamic systems
(X%, 9,) and (X.,¢&,) are a partition of

(X, 61=¢) which is a dynamic system C(m).

We will denote it as
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Clm)=A(m—1)+ (m—1).

Proof.
By eq.(3.1),

X=X UXxL and
xXNxL=0.

Hence it will suffice to prove the following
relations:

For each (0x1%y*%p_)EXS, .
0T 0(0x1 %5 Xy~ 1) = @021 X X 1) (3.2)
and for each (1x;xy %y )EX 0

0T o(1xy Xg X m—1) = P12 X2 X p—1) (3.3)

Let us prove this by mathematical induction.

(i) When m is 1, X,, is {0, 1} where X% is
{0} and X2 is {1}. Thus

81— (0)=0 (3.4)

since 81_¢(0)=A100)=0

and

8o (1)=0 (3.5)
since 8-¢(1)=A110)=0.

On the other hand, X,_; is empty string.
By definition 1,

21(0) = 2,(08) =08} _ () =0e=0 (3.6)
By definition 2,
H(D=¢1(18=08]_(e)=0e=0 3.7

By eq.(3.4) and eq.(3.6),
8} -0(0) = @,(0)

and
by eq.(3.5) and eq.(3.7),

8_o()=¢,(1).

Hence it holds when the cellsize m is 1.

(ii) Assume that it is true when the cellsize
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is m, then we need to show that it holds when
the cellsize is m+1.

T 0x, x50 X m)

= A10x1) * AOx1x2)* AX - 1200)

=0+ A0x1x2) - Ax129%3) KX 1%00)
=0 - 85 o(x1 %2 2 ) = Py 1 (0%, X7 % )

by eq.(1.5), eq.(1.6) and eq.(3.2).

Also

S0 (Lay xgox,)
= A1lx) * Alxixy) « - * KXy 1%00)
=0 - Alxxg) < Axpx0%3) < - * KX 1%0)

=081 o(%) 22 % ) =@y 1 (X1 XX )
by eq.(1.5), eq.(1.6) and eq.(3.3).

These prove our theorem. O

Let us consider ¢, and ¢,, as
¢m(0x1x2“'xm—1)=036":11(?61752"'1».—1)
and

Pml1%y X7 X gy 1) = 03;"—_11(’61752”*»;—1)

Then we have theorem 2. The proof is word
for word the same as proof of theorem 1, so
will not be reproduced.

Theorem 2

In the rule number 6., dynamic systems
(X%, pm) and (X, ¢, are a partition of

(X, 00-1) which is a dynamic system D(m).
In other word, D(m) in the rule 6 is
partitioned by the diagraphs derived by
B(m-1) and D(m-1).

We will denote it as

D(m)=B(m—1)+ D(m—1).

For example, let us show that C(3)=A(2)
+C(2). Transition diagrams of A(2) and C(2)
are graphs with two connected components as
shown in Fig.3.1, Fig.3.2 and Fig.3.3.

Graph G; which is created by prefixing 0 to

each site string of A(2) as shown in Fig.3.1
becomes a subgraph of C(3) as shown in
Fig.3.3. Strings lx;x; created by prefixing 1

to each site string xx3; of C(2) are transitted
to the strings created by prefixing 0 to
8, -o(x1x2) such that ¢(lx;x5) =08,-_(x1x)
where &)-¢ is the transition function of C(2)
as shown in Fig.3.2. Let us denote this graph
as Gs;. Then G, is also a subgraph of C(3). It

can be noticed that the sets of { G;, Gy} are a
partition of C(3).

()
O O
(Fig. 3.1) A(2)

(Fig.3.2) C(2)



(Fig. 3.3) C(3)
4. Conclusion

In this paper, the dynamic behavior of
nonlinear cellular automata CA-6 with two
states 0 and 1 and four different boundary
conditions has been identified in terms of
fixed points, maximal cycle length and the
recursive  formulae for state transition
diagrams. It is to say that the dynamic
behavior of A(m) is similar to C(m) and also
the dynamic behavior of B(m) is similar to
that of D(m). A(m) and C(m) have fixed
points but cycles do not exist. On the other
hand, B(m) and D(m) have cycles with no
fixed points or have just single fixed point

| =L

with no cycles. 0™ and g m~@i=1)

are

fixed points of A(m) and the general formula
of numbers of fixed points is n+1 whenever
cellsize m is both even (2n) and odd (2n-1).
Moreover the general expression of sequences
of numbers of adjacent nodes which converge
to nonzero fixed points is

3_ g2
Sa= k k-é- k+12 L k=n—3,n24.
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Fixed points of C(m) are 0™ and
|2 '
g:l 2™ %  The sequence of numbers of

adjacent nodes which converge to each of
nonzero fixed points is the same as that in

.. 3
A(m). B(m) has single fixed point g_"l22""

only when cellsize m is even. When cellsize m
is odd, B(m) has no fixed points but cycles

whose maximal cycle length is 4 (m=3 ) do

exist. Like B(m), D(m) has a single fixed

point ZIZZi_l (m>1) when cellsize m is odd.

When cellsize m is even, D(m) has no fixed
points but cycles exist. The maximal cycle
length is 4 for m=4. The recursive formulae
for state transition diagrams are C(m)=A(m
-1)+C(m-1) and D(m)=B(m-1)+D(m-1). This
recursive formulae can make to generate the
state stransition diagram automatically. However
many rules of one dimensional cellular automata
have been still remained unexplored. Thus we
will try to find the recursive formula of those
rules continuously. Studies on the formali-
zation of finite cellular automata which have
more than 3-neighbor, more than two states
and more than two dimension remain as further
works.
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